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Abstract: When a shield tunneling machine based on earth pressure balance (EPB) bores through
the sandy pebble stratum, the conditioned sandy pebble inside the soil cabin of shield machine is
an aggregation of numerous granules with pebble grains as skeleton. It is essential to construct
a reasonable particle element model of the conditioned sandy pebble before carrying out discrete
element simulation of the soil cabin system. Sandy pebble belongs to a kind of frictional material, the
friction behavior of which is highly sensitive to the angularity of the grains. In order to take the shape
effect into account, two particle element models—single sphere with rolling resistance and cluster of
particles—were attempted in this paper. The undetermined contact parameters in two models were
calibrated by virtue of least squares support vector regression machine (LS-SVR). With the purpose of
making both the flow behavior and mechanical properties of the modeled soil consistent with reality,
the calibration targets the result of laboratory test of slump test and large-scale triaxial test as goals.
The presented comparative analysis indicates that the two established particle models both can well
describe the strength property and fluidity of the actual soil due to properly calibrated parameters.
So, the rolling resistance and cluster models are two effective ways to incorporate the shape effect.
Besides, because of the angularity of the nonspherical grains, there exists strong interlocking between
clusters. So, in the cluster model, relatively smaller rolling friction coefficient and surface energy are
required. It is also concluded that the single sphere model is more computationally efficient than the
cluster model.
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1. Introduction

Shield tunneling machines based on earth pressure balance (EPB) have been widely used in
the construction of tunnels in urban areas. It is quite common that EPB type shield machines go
through heterogeneous ground conditions, typically the sandy pebble stratum. In China, a total
of 23 cities have constructed or to build metro tunnels in sandy pebble stratum, such as Chengdu,
Beijing, Shenyang [1]. Japan also encountered sandy pebble in the construction of the Hiroshima
Metro. Sandy pebble has attracted great interest among geotechnical researchers. Sandy pebble is
a special type of geomaterial, a mixture of hard gravel and soft sand. The weakly weathered pebble
grains, with high compressive strength and large grain size, are intermingled with soft and flowable
sands. With pebble blocks as skeleton and weakly bonded interface, sandy pebble is a kind of loose
and highly discrete noncontinuum material. Besides, it is sensitive to the external disturbance since the
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point-to-point contact between grains [2]. Obviously, sandy pebble soil cannot satisfy the requirements
of EPB tunneling and it is essential to perform soil conditioning. Conditioned soil, which presents
good fluidity and plasticity, can flow as well as form certain shape. So it is in a transient state between
solid and fluid, and more like a solid-like material.

The soil cabin system of EPB shield machine is in charge of several important tasks, such as
soil excavation and tunnel face stabilization, so its performance to a large degree determines the
construction efficiency and safety. However, under the complex interaction between the soil and
shield machine, the soil cabin system shows both time dependency and randomness. Therefore, it is
challenging to investigate the dynamic behavior of the whole system. Classical computational methods
for modeling such type of systems include the discrete element method (DEM) [1–3], meshless and
particle methods [4–9], efficient remeshing techniques in the context of FEM [10–14], DH-PD [15,16]
and specific multiscale methods [17–20].

In the DEM simulation, one of the difficult tasks is to construct the equivalent DEM model of
the conditioned sandy pebble. Several types of particle are available in DEM simulation, typically
single sphere, cluster of particles and bonded particles. Wherein, the single sphere is used for globular
particles, while the other two for particles with irregular shape. In addition, the bonds within a
cluster are impossible to break and the particles comprising the cluster remain at a fixed distance
from each other, while the bonded particles are liable to separate once the suffered force exceeds
its bonding strength. In reality, the grain shape of geomaterial is generally irregular. Especially for
sandy pebble, which is a kind of frictional material, its friction behavior is highly sensitive to the
angularity of the grains. Adopting single sphere, which is easy to roll without rolling resistance,
the simulation may result in a deviation from the actuality. In contrast, the other two types can
better characterize the microscopic shape of actual geomaterial. However, reconstructing the actual
shape of all particles will make the complexity increase greatly; it is also impractical. Rahul et al.
pointed out that nonspherical particles are more accurate than spherical particles. However, for
nonspherical particles, when the sphericity is decreased to a certain value, the simulation results
are similar. So there is no need to adopt highly precise particle shape. However, determining
the parameters for discrete element model is another tricky task. Presently, there are mainly three
approaches, namely analytical solution, experimental measurement and inverse analysis. Due to
various simplifications of substantial material, the analytical solution proposed by Mindlin can only
provide a rough estimation and qualitative analysis [21], which remains distant for engineering
application. The relevant experiments include impact test [22,23], tribometer test [24,25], and drop
particle test [26]. Besides, a set of device for calibrating contact parameters has been developed
in Chalmers, Sweden [27]. However these experiments are usually applicable to large-size grains;
these test devices are not widely available. The mostly employed method is inverse analysis method,
which includes trial-and-error, fitting relation of macroscopic and mesoscopic parameters, and machine
learning [28]. The trial-and-error is time-consuming due to repeated simulations and it is somewhat
unreliable with strong subjective factors involved. Additionally, since highly nonlinear relationship
exists between the macroscopic and mesoscopic parameters of the granular material, it is difficult to
describe the relationship with explicit expressions. In the inverse analysis, the parameters are usually
calibrated solely according to the macroscopic mechanical properties. Whereas, since the obtained
parameters are not the unique solution, the strength-desired parameters can not necessarily meet the
requirement of fluidity.

In this paper, the conditioned soil mixture of middle fine sand and pebble obtained from Beijing
region is selected to construct its equivalent DEM model for further DEM simulation of soil cabin
system within EDEM. The shape effects are considered by two approaches, namely defining rolling
resistance and adopting cluster model. The machine learning method as adopted to determine the
mesoscopic parameters in accordance to both the flow behavior and mechanical properties of the
actual soil.
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2. Properties of Conditioned Sandy Pebble

2.1. Conditioner Constituents

Based on the findings from slump tests in laboratory and tentative tunneling on site, the optimum
injection ratio of foam (with expansion ratio of 15) was found to be approximately 45–60% subject to
the condition that the addition ratio of bentonite slurry (with mass concentration of 12.5%) was 7%.

2.2. Grain Size Distribution

The granulometric curves of natural soil and conditioned soil are plotted in Figure 1. It can be
found that the cumulative mass percentage corresponding to the grain size within the range between
0.32 mm and 5 mm is larger for the conditioned soil, which indicates the increase of fine-sized grains.

Appl. Sci. 2019, 8, x 3 of 19 

2.1. Conditioner Constituents  

Based on the findings from slump tests in laboratory and tentative tunneling on site, the 
optimum injection ratio of foam (with expansion ratio of 15) was found to be approximately 45–60% 
subject to the condition that the addition ratio of bentonite slurry (with mass concentration of 12.5%) 
was 7%.  

2.2. Grain Size Distribution 

The granulometric curves of natural soil and conditioned soil are plotted in Figure 1. It can be 
found that the cumulative mass percentage corresponding to the grain size within the range between 
0.32 mm and 5 mm is larger for the conditioned soil, which indicates the increase of fine-sized grains.  

 
Figure 1. Granulometric curves of natural soil and conditioned soil. 

2.3. Fluidity  

During tunneling, the slump of soil in the discharging vehicle was tested at the interval of 3–5 
rings of shield tunneling construction. Figure 2 shows the photo of slump test at the scene. It can be 
seen that the soil was transformed into a plastic paste with good fluidity and the fine particles wrap 
the larger grains completely due to enhanced viscosity. As shown in Figure 3, most of the measured 
slump magnitude ranges from 175 to 180 mm. 

 
Figure 2. Slump test at the construction site. 

0.0625 0.125 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

 
C

um
ul

at
iv

e 
m

as
s 

pe
rc

en
ta

ge
 (%

)

 conditioned soil
 natural soil

Grain size (mm)

Figure 1. Granulometric curves of natural soil and conditioned soil.

2.3. Fluidity

During tunneling, the slump of soil in the discharging vehicle was tested at the interval of
3–5 rings of shield tunneling construction. Figure 2 shows the photo of slump test at the scene. It can
be seen that the soil was transformed into a plastic paste with good fluidity and the fine particles wrap
the larger grains completely due to enhanced viscosity. As shown in Figure 3, most of the measured
slump magnitude ranges from 175 to 180 mm.
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2.4. Shear Strength

The triaxial shear tests under unconsolidated and undrained conditions for conditioned sandy
pebble were conducted by using large triaxial shear apparatus (SJ-70, China Institute of Water Resources
and Hydropower Research, Beijing, China), as shown in Figure 4. When making test samples,
the prepared conditioned soil was compacted by means of vibration by five layers. The molded
sample has a diameter of 300 mm, height of 700 mm, and wet density of 2 g/cm3. During tests,
the confining pressure was set to 0.4 MPa, 0.6 MPa, and 0.8 MPa, successively, and the shear rate was
maintained at 1 mm/min. Figure 5 records the measured stress–strain curves. Since no peak can be
seen in the stress–strain curve, the corresponding point with strain of 15% is treated as failure point.
Subsequently, Morh’s circles and their enveloping line are plotted in Figure 6, from which the total
shear strength indexes are determined as cohesion cu = 26kPa and internal friction angle ϕu = 34.57

◦
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3. Geometric Model of the Particle Element

The particle element model mainly involves geometric model and physical model. As for the
geometric model, it includes three aspects: particle shape, particle size distribution, and particle
spatial arrangement.

3.1. Particle Shape

To take into consideration the angularity effect induced by irregular shape, the alternative
approaches include exerting rolling resistance on single sphere and adopting nonspherical particles.
So this paper involves two types of shape—basic sphere and cluster of particles—furthermore,
the simulation result and computational cost of the two established models can be comparatively
analyzed. Figure 7 shows the adopted geometry template of cluster, which is randomly selected for
the irregular pebble. And the template is fitted with four same spheres (see Figure 7). It can be seen
that the constructed cluster is nearly an ellipsoid, and the ratio of its polar radius, short equatorial
radius, and long equatorial radius is 1:1.19:1.69.
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3.2. Particle Size Distribution

Particle size distribution has certain effect on the macroscopic deformation and strength of bulk
materials. Ideally, the particle size should be consistent with the substantial material. However, since
the actual soil grains are generally too small, which will result in huge amount of particle elements
and hence unacceptable computational cost, proper handling of the particle size is therefore necessary.
It is generally accepted in the community that the simulation is aimed to investigate the macroscopic
behavior of bulk materials instead of detailed interactions between particles. Thus, the particles of
soil can be upscaled into surrogate particles which are much larger than the physical sizes of the
grains in order to reduce the computational cost as long as a proper surrogate model can be found
and validated.

From granulometric curve in Figure 1, it can be seen that the conditioned soil contains large
amount of fine grains and are continuously distributed in numerous sizes. In order to reduce the
particle number, the particle size is amplified here. Besides, since it is hardly possible to involve all
particle sizes, only a few representative sizes are selected and herein the aperture diameters of the sieve
meshes used in the sieving test are designated. Moreover, the large grains act as the main medium for
force transmission in the soil mass, while most of the small grains only act as filler to fill the porous
space. It can be concluded that omitting small particles has slight effect on the resultant mechanical
response. So the original particle size is not only multiplied and discretized, but also truncated.

However, the determination of particle sizes and amplification factor should take into account
computational cost, simulation accuracy, as well as opening size of shield machine. According to
relevant experience, the number of particles should be controlled within 300,000. With single sphere
model as example, Table 1 presents the particle number required for a soil box (24 m × 8 m × 2m)
when adopting different size combinations and the corresponding minimum amplification factor to
ensure an acceptable particle number. Additionally, the throughput capacity of the cutterhead and
screw conveyor is also considerable. In view of the inner diameter of screw conveyor only 770 mm, the
particle size cannot be too large: otherwise clogging and jamming accidents are easy to occur. On the
premise of meeting the above two requirements and to model the material as realistically as possible,
it is decided to magnify the particle 6 times and to select the size combination of 40 mm, 25 mm, and
20 mm. And, the particles of 240 mm, 150 mm, and 120 mm account for 10.82%, 9.02%, and 80.16% of
the total mass, respectively.

Table 1. The required particle number when adopting different size combinations.

Combination of Particle
Size (mm)

Particle Number
(×106)

Minimum
Amplification Factor

Particle Number after
Amplification

40-25-20-16-10-5 2219 20 277,375
40-25-20-16-10 358.4 11 269,271

40-25-20-16 107.1 8 209,180
40-25-20 58.487 6 270,773

40-25 31.924 5 255,392
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3.3. Particle Arrangement

In order to embody the significant anisotropy and spatial variability of soil mass, the particles in
this simulation are arranged by random function, and they are oriented randomly when generated.

4. Physical Model between Particles

4.1. Contact Components

Compared with the natural sandy pebble, the cohesion among conditioned grains has been greatly
enhanced under the action of foam and bentonite slurry. Thus cementitious interaction should be
introduced in the contact model in addition to the standard contact action. In this study, the sphere and
cluster employ the Hertz–Mindlin model (H-M) with the Johnson–Kendall–Roberts (JKR) cohesion
model. The physical analogue characterized by several contact components for H-M with JKR cohesion
model can be seen in Figure 8. Among them, the spring is used to simulate the elastic contact force
between particles Pi and Pj The damper is a description of energy dissipation in the process of imperfect
elastic collision. The frictional components include resistance devices to relative slide and rotation.
The viscous components mainly provide resistance to tension, shear and torsion severally in the
direction of normal, tangential and rotation. Those viscous components can simulate the viscous force
exerted on pebble grains by foam and bentonite slurry. While the breaker implies the tension vanishes
once the bonding between particles breaks.
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4.2. Contact Constitutive Relation

A schematic diagram of contact vectors in the H-M model can be found in Figure 9. In the model,
the calculation of normal elastic force Fnij

e is based on Hertzian contact theory [29], while the tangential
elastic force Ftij

e was derived by Mindlin and Deresiewicz [21,30]. As for the energy dissipation in
the contact process, Tsuji et al. [31] proposed a nonlinear normal damping force Fnij

d and tangential
damping force Ftij

d. Hence, the contact action exerted on particle i by particle j can be expressed
as follows 

Fnij
e = 4

3 E∗
√

R∗un
3
2

Ftij
e = −ktut

Fnij
d = −2

√
5
6 β
√

m∗kn∗vn
rel

Ftij
d = −2

√
5
6 β
√

m∗ktvt
rel

(1)

where, un and ut denote the normal and tangential overlap of particle i and particle j, respectively;
kt is shear stiffness, kt = 8G∗

√
R∗un; kn

∗ denotes equivalent normal stiffness, kn
∗ = 2E∗

√
R∗un; E∗,

R∗, m∗, and G∗ denote Young’s modulus, radius, mass, and shear modulus of particles in contact,
respectively; β denotes damping coefficient, which is associated to the restitution coefficient e by
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β = ln e√
ln2 e+π2

; and vn
rel and vt

rel denote the normal and tangential components of relative speed of

two particles, respectively.
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The tangential force obeys Coulomb law of friction [32], that is to say if
∣∣∣∣→F tij

e +
→
F tij

d
∣∣∣∣ >

Fµ = µs

∣∣∣∣→F nij

∣∣∣∣ (Fµ is friction force and µs denotes the coefficient of sliding friction), then slip

occurs. While the rolling friction is accounted for by applying directional constant torque model [33],

namely Tµ = −µr

∣∣∣∣→F nij

∣∣∣∣ri
→
ωi, where µr is the coefficient of rolling friction, ri is the distance from the

mass center of particle i to the contact point, ωi denotes the unit vector of angular velocity.
To describe adhesive action, JKR theory enriched the Hertz–Mindlin model with normal cohesion

force, and the normal elastic force Fnij
e is revised to [34]

Fnij
JKR = −4

√
πkE∗α

3
2 +

4E∗

3R∗
α3 (2)

where, k denotes surface energy per unit of contact area, measured in J/m2; the relationship between

coefficient α and normal overlap un can be expressed as un = α2

R∗ −
√

4πkα
E∗ .

5. Calibration of Model Parameters

5.1. Undetermined Parameters

The macroscopic and mesoscopic parameters in DEM model can be subdivided into three
categories. The intrinsic parameters, including shear modulus G, Poisson’s ratio ν, and density
ρ, are inherent attribute of material itself and irrelevant to the external factors. The H-M contact
parameters include restitution coefficient e, static friction coefficient µs, and rolling friction coefficient
µr. The third category is about cohesion parameter and different model involves different cohesion
parameters. JKR cohesion model only contains surface energy k. Table 2 lists all of the involved
materials and contact parameters. Among them, some are either measured or obtained from literature
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and the others need to be calibrated. So there are altogether three undetermined parameters (e, µr,
and k) in the H-M with JKR cohesion model.

Table 2. The input parameters for the simulation model.

Input Parameter Unit Value Comment

Material Parameter

Density ρ kg/m3 2700 Measured by overflow method
Poisson’s ratio ν n/a 0.15 Hu et al. (2013) [35]

Yong’s modulus E MPa 5 × 104 Hu et al. (2013) [35]
Shear modulus G MPa 2.17 × 104 G = E

2(1+ν)

H-M Contact parameter

Restitution coefficient e n/a To be calibrated
Static friction coefficient µs n/a 0.6891 µs ≈ tan ϕu

Rolling friction coefficient µr n/a To be calibrated

Cohesion parameter (JKR model)

Surface energy k J/m2 To be calibrated

5.2. Method

With the purpose of making the flow behavior and mechanical properties of the modeled soil
consistent with the reality, the calibration procedures are as follows. First of all, we established the
least squares support vector machine (LS-SVM) with unknown parameters as input variables and the
slump value as output variable. Then generate 10,000 parameter combinations at random and predict
their corresponding slump value with the constructed LS-SVM. Subsequently, use the parameters that
can turn out a desired slump value to simulate the large-scale triaxial shear test. Among all the triaxial
tests, the one resulting in smallest deviation of stress–strain curve from measured curve in laboratory
is regarded as calibration result.

5.3. Calibration Process

5.3.1. Range of Parameters

Before the establishment of LS-SVM, the correlations between the slump value and three
undetermined parameters, as well as the value range of each parameter are analyzed by single-variable
method. Figure 10 shows the established discrete element models for slump test. Similarly, the slump
cone has been enlarged 6 times with top diameter of 600 mm, bottom diameter of 1200 mm, and height
of 1800 mm. In the simulation, the lifting speed is 0.36 m/s and the whole lifting process is completed
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Figure 10. Slump test model of sphere (a) and cluster (b).
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Figure 11 records the slump value against the surface energy k in the cases of single sphere (a) and
cluster (b) when e = 0.15 and µr = 0.02, 0.05, 0.1, 0.15, 0.2, successively. As is indicated in the figures,
the slump value is in negative correlation to k. It can be explained by (1) low surface energy: the mutual
cohesion is rather weak and the interparticle forces cannot resist the particle weight, therefore the
aggregation is easy to scatter into single particles, which makes for a large slump value (Figure 12a,e).
(2) When the surface energy improves, the internal contact force is strong enough to resist gravity,
thus the aggregation can deform continuously and displays good fluidity and plasticity as the actual
conditioned soil. Consequently, the slump value is reduced (Figure 12b,f). (3) If the surface energy is
excessively high, the soil presents poor fluidity thus leading to a small slump (Figure 12c,g). In addition,
it can be seen from Figure 11 that the slump value is also negatively correlated to µr. This is because
the strong rolling friction contributes to a strong interlocking action and makes it harder to deform.
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Figure 12. The simulation result of slump test: (a–c) sphere model and (e–g) cluster model.

Figure 13 shows the variation of slump value versus e in six different scenarios of µr and k
(taking sphere model as example). It is obvious that no strict correlation exists between slump value
and restitution coefficient e. On the whole, the slump value increases as e improves.
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Figure 13. The slump value against restitution coefficient.

On the basis of literature research, the range of the restitution coefficient is set as 0 < e ≤ 0.6,
while the scope of the other two parameters are determined according to their correlation with the
slump value. Figure 14a,b shows the slump value against rolling friction coefficient when k = 0
respectively in the case of sphere and cluster. It can be concluded that once µr > 0.22 for sphere
or µr > 0.15 for cluster, the slump value is less than 160mm regardless of the value of e. It means
even without cohesive force between particles, the frictional interaction is strong enough to resist
the flow of soil. In such a situation, the slump value can no more meet the requirements. Therefore,
the rolling friction coefficient should be set within 0.22 and 0.15, respectively, for sphere and cluster.
Similarly, as shown in Figure 15, when µr = 0 and k > 19, 500 for sphere (k > 2660 for cluster),
the slump value cannot fall into the satisfactory range. So the reasonable scope of surface energy is
0 < k < 19, 500 for sphere and 0 < k < 2660 for cluster.
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Figure 14. The slump value against rolling friction coefficient (k = 0): (a) sphere model and (b)
cluster model.
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Figure 15. The slump value against surface energy (µr = 0): (a) sphere model and (b) cluster model.

5.3.2. Parameter Sets with Satisfactory Fluidity

Then the LS-SVM that reflects the nonlinear relationship of slump value and three undetermined
parameters can be established. As for training samples, some sets of unknown parameters are
randomly generated within their respective range and the corresponding slumps are obtained through
discrete element simulation. LS-SVR adopts a RBF kernel and its parameters are tuned by the GA-PSO
collaborative algorithm. In the tuning process, the n-fold cross-validation error is chosen as a fitness
function. For the sphere model, 440 training samples are collected altogether and n = 5. The parameters
of LS-SVM are optimized as penalty parameter γ = 281.87 and kernel parameter σ2 = 0.824. While in
the cluster model, only 99 samples are collected and n is set as 9. And the optimization result is
γ = 7.3544, σ2 = 0.1905. For the two cases, the comparison between the fitted values and numerically
calculated values can be seen in Figure 16a,b. The resultant root mean square errors (RMSE) are 12.53
and 9.68, respectively, indicating a satisfactory degree of accuracy.
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Figure 16. Comparison of fitted values and discrete element method (DEM) result: (a) sphere model
and (b) cluster model.

Based on the established slump prediction model, the parameter sets that can result in a desired
slump can be found. Firstly, randomly generate 10,000 parameter sets and predict their corresponding
slump value by the established LS-SVM. Since the on-site measured slump ranges from 175 mm to
180 mm, and with a consideration of fitting error, the samples resulting in a slump between 170 mm
and 185 mm are further checked by discrete element simulation. If the simulated slump can fall into
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the range of 175 to 180 mm, the corresponding parameter set is considered to be able to meet the
requirement for fluidity. By regression analysis with LS-SVM, 86 (72) out of 10,000 sets of parameters
get a satisfactory slump value in the case of sphere (cluster); Figure 17 shows comparison between
fitted values and numerically calculated values of the 86 (72) sets, among which 22 (26) calculated
values range from 175 mm to 180 mm. In addition, Figure 17 also indicates that the constructed
LS-SVMs have satisfactory generalization ability and prediction accuracy.
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Figure 17. Comparison of fitted values and numerically calculated values: (a) sphere model; and (b)
cluster model.

5.3.3. Strength Required Parameter Set

DE simulations of triaxial shear test are carried out successively with previously found parameter
sets adopted, and the one with result closest to the experimental result is regarded as desired parameter
set. Since the calculated static earth pressure at tunnel face ranges from 66.39 kPa to 92.98 kPa,
and measured soil pressure at the bulkhead fluctuates between 30 kPa and 80 kPa, the soil inside
shield chamber works in a low-pressure state. Therefore, the parameter sets are evaluated by the
stress–strain curve measured under confining pressure of 0.4 MPa. Figure 18 presents the established
discrete element models for the simulation of triaxial test. In the simulation, the confining pressure is
realized by exerting body force on peripheral particles via developing custom plugin programmed
in C++; the body force equals to the product of confining pressure and contact area between particle
and boundary. According to Hu [7], the contact radius of particle and geometry can be approximately
taken as particle radius.
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In the single sphere case, the 22 test specimens fall into three groups according to simulation
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specimens, the measured stresses constantly remain zero except for the beginning of loading. This is
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because their surface energy is too low. With weak cohesive force between particles, the soil specimens
have insufficient strength and self-stability. Therefore collapse occurs under the disturbance of axial
load. The evolution of the 12th specimen along with loading can be seen in Figure 19.
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Figure 19. The evolution of the 12th specimen as loading.

Whereas, the second group consists of the 2nd, 3rd, 4th, 6th, 9th, 11th, 15th, 16th, and 18th
specimens. Compared with the first group, the nine soil specimens have developed some intensity
because of the improved cohesive force between particles. Their stress–strain curves measured under
the confining pressure of 0.4 MPa are shown in Figure 20. It can be seen that both the shape and
value of the curves deviate greatly from the result of laboratory test (see Figure 4). Figure 21 records
the evolution of the 2nd specimen during shear process. Obviously, the soil specimen expands
continuously, leading to an ongoing reduce in interlocking induced shear resistance. Once the cohesive
force and friction force are not enough to resist external force, local damage begins to occur on the
specimen. Along with loading, the damage area gradually gets larger and only a part of soil specimen
works in the end.Appl. Sci. 2019, 8, x 15 of 19 
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Figure 20. The stress–strain curve of specimens in the second group.
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The third group, including the 1st, 5th, 7th, 8th, 10th, 13th, and 17th specimens, behaves similarly
with the actual soil in laboratory. The stress–strain curves of the seven specimens (see Figure 22)
generally experience three stages, namely initial stage, strain hardening stage and strain softening
stage (or constant strain stage). At the beginning of the second stage, the deviatoric stress rises
rapidly because the closely packed particles must overcome a strong interlocking resistance for shear
dislocation, but the duration is short before shear dilation occurs. When the volume of specimen
increases, the soil becomes loose, resulting in weakened interlocking effect between particles and
thus a reduction in growth speed of stress. Then a peak, namely peak strength, can be seen in the
curve with certain expanded specimen volume. Along with the increasing shear load, the curve turns
into the third stage. In this stage, the specimen keeps expanding, but the shear strength decreases.
Finally, the curve fluctuates at residual strength as a result of continuous stress relaxation. The residual
strength is mainly shear resistance provided by sliding friction and rolling friction. Figure 23 shows the
variation of the first specimen in the shear process. As the shear load increases, the specimen appears
to undergo bulging deformation. It can be concluded from Figure 22; Figure 23 that discrete element
simulation can embody the nonlinearity, plasticity, strain softening, and shear dilatancy of granular
material. There are two possible reasons why the laboratory test cannot reflect the strain softening and
shear dilatancy: (1) With improved gradation and vibration method adopted when making sample,
the conditioned soil grains are closely arranged, therefore strong interlocking exists among grains.
(2) Besides, the sample was wrapped with a rubber film when testing. Constrained by the rubber film,
the soil cannot deform easily. Moreover, Figure 22 also shows that the 13th simulation has the most
similar stress–strain curve to the laboratory test. Therefore, a decent set of parameters is found as
e = 0.3234, µr = 0.0359, and k = 4523J/m2. In this way, the established discrete element model is
almost consistent with the actual soil both with respect to strength property and fluidity.Appl. Sci. 2019, 8, x 16 of 19 
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Similarly, the 26 cluster specimens fall into three groups. Figure 24 shows the stress–strain curves
of the specimens in the third group, and Figure 25 presents the evolution of the 2nd specimen. So for
the cluster model, the desired parameters are e = 0.2569, µr = 0.0249, and k = 1845J/m2.
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From the above analysis it is notable that when cluster is adopted, lower values for rolling friction
coefficient µr and surface energy k are required to obtain a good match between the experiment and
DEM simulation. This is because there exists additional strength gained from interlocking action due
to the irregular shape of the cluster. Besides, in the cluster case the CPU processing time for slump
test and triaxial shear test are respectively 144 min and 1235 min, which are 4.97 times and 3.68 times
higher than that in the sphere case.

6. Conclusions

This paper constructed two particle element models for conditioned sandy pebble. To take the
shape effect into account, rolling resistance was exerted on the single sphere or the single sphere was
replaced by the cluster of particles. Based on a laboratory test and DEM simulation of the slump test
and large-scale triaxial test, the undetermined contact parameters in two models were calibrated by
virtue of LS-SVR. Through comparative analysis, the following conclusions have been obtained.

(1) Because of the angularity of the nonspherical grains, there exists strong interlocking between
clusters. So in the cluster model, relatively smaller rolling friction coefficient and surface energy
are required.

(2) Since the model parameters are properly calibrated, the two established particle models both can
well describe the strength property and fluidity of the actual soil. However, the cluster model
takes ~4 times longer than the sphere model to execute the simulation.
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It is worth noting that calibrating parameters by intelligent algorithm is still a time consuming
task. There is an urgent need to conduct further research into multifunctional testing device for direct
measurement of material parameters. An uncertainty analysis as done in [36–38] might be helpful.

Author Contributions: P.C. is responsible for the model setup and computational. X.Z. validated and checked
the model. H.Z. is the PI of the project and supervised the work. Y.L. analysed the results and data.

Funding: The authors gratefully acknowledge the supports from the National Natural Science Foundation
of China (Grant No. 41672360), Science and Technology Commission of Shanghai Municipality (Grant No.
17DZ1203800), and Shanghai Shentong Metro Group Co., Ltd. (Grant No. 17DZ1203804).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, P.; Jin, L.; Du, X.; Lu, D. Computational homogenization for mechanical properties of sand cobble
stratum based on fractal theory. Eng. Geol. 2018, 232, 82–93. [CrossRef]

2. Yagiz, S. Brief notes on the influence of shape and percentage of gravel on the shear strength of sand and
gravel mixtures. Bull. Eng. Geol. Environ. 2001, 60, 321–333. [CrossRef]

3. Maynar, M.J.M.; Rodríguez, L.E.M. Discrete numerical model for analysis of earth pressure balance tunnel
excavation. J. Geotech. Geoenviron. Eng. 2005, 131, 1234–1242. [CrossRef]

4. Rabczuk, T.; Belytschko, T. A three dimensional large deformation meshfree method for arbitrary evolving
cracks. Comput. Methods Appl. Mech. Eng. 2007, 196, 2777–2799. [CrossRef]

5. Rabczuk, T.; Belytschko, T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks.
Int. J. Numer. Methods Eng. 2004, 61, 2316–2343. [CrossRef]

6. Rabczuk, T.; Gracie, R.; Song, J.H.; Belytschko, T. Immersed particle method for fluid-structure interaction.
Int. J. Numer. Methods Eng. 2010, 81, 48–71. [CrossRef]

7. Amiri, F.; Anitescu, C.; Arroyo, M.; Bordas, S.; Rabczuk, T. XLME interpolants, a seamless bridge between
XFEM and enriched meshless methods. Comput. Mech. 2014, 53, 45–57. [CrossRef]

8. Rabczuk, T.; Bordas, S.; Zi, G. On three-dimensional modelling of crack growth using partition of unity
methods. Comput. Struct. 2010, 88, 1391–1411. [CrossRef]

9. Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H. A simple and robust three-dimensional cracking-particle
method without enrichment. Comput. Methods Appl. Mech. Eng. 2010, 199, 2437–2455. [CrossRef]

10. Areias, P.; Cesar de Sa, J.; Rabczuk, T.; Camanho, P.P.; Reinoso, J. Effective 2D and 3D crack propagation with
local mesh refinement and the screened Poisson equation. Eng. Fract. Mech. 2018, 189, 339–360. [CrossRef]

11. Areias, P.; Rabczuk, T. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture.
Finite Elem. Anal. Des. 2017, 132, 27–41. [CrossRef]

12. Areias, P.; Rabczuk, T.; Msekh, M. Phase-field analysis of finite-strain plates and shells including element
subdivision. Comput. Methods Appl. Mech. Eng. 2016, 312, 322–350. [CrossRef]

13. Areias, P.; Msekh, M.A.; Rabczuk, T. Damage and fracture algorithm using the screened Poisson equation
and local remeshing. Eng. Fract. Mech. 2016, 158, 116–143. [CrossRef]

14. Areias, P.; Rabczuk, T.; Dias-da-Costa, D. Element-wise fracture algorithm based on rotation of edges.
Eng. Fract. Mech. 2013, 110, 113–137. [CrossRef]

15. Ren, H.; Zhuang, X.; Rabczuk, T. Dual-horizon peridynamics: A stable solution to varying horizons.
Comput. Methods Appl. Mech. Eng. 2017, 318, 762–782. [CrossRef]

16. Ren, H.; Zhuang, X.; Cai, Y.; Rabczuk, T. Dual-Horizon Peridynamics. Int. J. Numer. Methods Eng.
2016, 108, 1451–1476. [CrossRef]

17. Talebi, H.; Silani, M.; Rabczuk, T. Concurrent Multiscale Modelling of Three Dimensional Crack and
Dislocation Propagation. Adv. Eng. Softw. 2015, 80, 82–92. [CrossRef]

18. Talebi, H.; Silani, M.; Bordas, S.; Kerfriden, P.; Rabczuk, T. A Computational Library for Multiscale Modelling
of Material Failure. Comput. Mech. 2014, 53, 1047–1071. [CrossRef]

19. Budarapu, P.; Gracie, R.; Bordas, S.; Rabczuk, T. An adaptive multiscale method for quasi-static crack growth.
Comput. Mech. 2014, 53, 1129–1148. [CrossRef]

20. Budarapu, P.; Gracie, R.; Shih-Wei, Y.; Zhuang, X.; Rabczuk, T. Efficient Coarse Graining in Multiscale
Modeling of Fracture. Theor. Appl. Fract. Mech. 2014, 69, 126–143. [CrossRef]

http://dx.doi.org/10.1016/j.enggeo.2017.11.013
http://dx.doi.org/10.1007/s100640100122
http://dx.doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1234)
http://dx.doi.org/10.1016/j.cma.2006.06.020
http://dx.doi.org/10.1002/nme.1151
http://dx.doi.org/10.1002/nme.2670
http://dx.doi.org/10.1007/s00466-013-0891-2
http://dx.doi.org/10.1016/j.compstruc.2008.08.010
http://dx.doi.org/10.1016/j.cma.2010.03.031
http://dx.doi.org/10.1016/j.engfracmech.2017.11.017
http://dx.doi.org/10.1016/j.finel.2017.05.001
http://dx.doi.org/10.1016/j.cma.2016.01.020
http://dx.doi.org/10.1016/j.engfracmech.2015.10.042
http://dx.doi.org/10.1016/j.engfracmech.2013.06.006
http://dx.doi.org/10.1016/j.cma.2016.12.031
http://dx.doi.org/10.1002/nme.5257
http://dx.doi.org/10.1016/j.advengsoft.2014.09.016
http://dx.doi.org/10.1007/s00466-013-0948-2
http://dx.doi.org/10.1007/s00466-013-0952-6
http://dx.doi.org/10.1016/j.tafmec.2013.12.004


Appl. Sci. 2019, 9, 1137 18 of 18

21. Mindlin, R.D. Compliance of elastic bodies in contact. J. Appl. Mech. 1949, 16, 259–268.
22. Tavares, L.M.; King, R.P. Single-particle fracture under impact loading. Int. J. Miner. Process. 1998, 54, 1–28.

[CrossRef]
23. Mishra, B.K.; Murty, C. On the determination of contact parameters for realistic DEM simulations of ball

mills. Powder Technol. 2001, 115, 290–297. [CrossRef]
24. Jayasundara, C.T.; Yang, R.Y.; Yu, A.B.; Rubenstein, J. Effects of disc rotation speed and media loading on

particle flow and grinding performance in a horizontal stirred mill. Int. J. Miner. Process. 2010, 96, 27–35.
[CrossRef]

25. Rosenkranz, S.; Breitung-Faes, S.; Kwade, A. Experimental investigations and modelling of the ball motion
in planetary ball mills. Powder Technol. 2011, 212, 224–230. [CrossRef]

26. Piechatzek, T.; Kwade, A. DEM based characterization of stirred media mills. In Proceedings of the European
Symposium on Comminution, Espoo, Finland, 15–18 September 2009.

27. Quist, J.C.E. Device for calibrating of DEM contact model parameters. In Proceedings of the EDEM
Conference, Edinburgh, UK, 5–7 April 2011.

28. Li, C.Q.; Liu, T.W.; Zhang, H.Y. Back-analysis on micromechanical parameters of soil mass using BP neural
network. J. Eng. Geol. 2015, 23, 609–615. (In Chinese)

29. Hertz, H. On the contact of elastic solids. J. Fur Die Reine Und Angew. Math. 1882, 92, 156–171.
30. Mindlin, R.D.; Deresiewicz, H. Elastic spheres in contact under varying oblique forces. ASME J. Appl. Mech.

1953, 20, 327–344.
31. Tsuji, Y.; Tanaka, T.; Ishida, T. Lagrangian numerical simulation of plug flow of cohesionless particles in a

horizontal pipe. Powder Technol. 1992, 71, 239–250. [CrossRef]
32. Cundall, P.A.; Strack, O.D.L. A discrete numerical method for granular assemblies. Geotechnique 1979, 29, 47–65.

[CrossRef]
33. Sakaguchi, E.; Ozaki, E.; Igarashi, T. Plugging of the flow of granular materials during the discharge from a

silo. Int. J. Mod. Phys. B 1993, 7, 1949–1963. [CrossRef]
34. Johnson, K.L.; Kendal, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Proc. R. Soc. A

1971, 324, 301–313. [CrossRef]
35. Hu, M.; Xu, G.Y.; Hu, S.B. Study of equivalent elastic modulus of sand gravel soil with Eshelby tensor and

Mori-Tanaka equivalent method. Rock Soil Mech. 2013, 34, 1437–1442. (In Chinese)
36. Vu-Bac, N.; Lahmer, T.; Zhuang, X.; Nguyen-Thoi, T.; Rabczuk, T. A software framework for probabilistic

sensitivity analysis for computationally expensive models. Adv. Eng. Softw. 2016, 100, 19–31. [CrossRef]
37. Hamdia, K.; Zhuang, X.; Silani, M.; He, P.; Rabczuk, T. Stochastic analysis of the fracture toughness of

polymeric nanoparticle composites using polynomial chaos expansions. Int. J. Fract. 2017, 206, 215–227.
[CrossRef]

38. Hamdia, K.; Zhuang, X.; Alajlan, N.; Rabczuk, T. Sensitivity and uncertainty analyses for exoelectric
nanostructures. Comput. Methods Appl. Mech. Eng. 2018, 337, 95–109. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0301-7516(98)00005-2
http://dx.doi.org/10.1016/S0032-5910(00)00347-8
http://dx.doi.org/10.1016/j.minpro.2010.07.006
http://dx.doi.org/10.1016/j.powtec.2011.05.021
http://dx.doi.org/10.1016/0032-5910(92)88030-L
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1142/S0217979293002705
http://dx.doi.org/10.1098/rspa.1971.0141
http://dx.doi.org/10.1016/j.advengsoft.2016.06.005
http://dx.doi.org/10.1007/s10704-017-0210-6
http://dx.doi.org/10.1016/j.cma.2018.03.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Properties of Conditioned Sandy Pebble 
	Conditioner Constituents 
	Grain Size Distribution 
	Fluidity 
	Shear Strength 

	Geometric Model of the Particle Element 
	Particle Shape 
	Particle Size Distribution 
	Particle Arrangement 

	Physical Model between Particles 
	Contact Components 
	Contact Constitutive Relation 

	Calibration of Model Parameters 
	Undetermined Parameters 
	Method 
	Calibration Process 
	Range of Parameters 
	Parameter Sets with Satisfactory Fluidity 
	Strength Required Parameter Set 


	Conclusions 
	References

