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Featured Application: The potential application of this paper is to propose a method to solve the
planning problem of DG access to the AC/DC distribution network.

Abstract: The planning problem of distributed generators (DG) accessing the AC/DC distribution
network is a hot research topic at present. In this paper, a location and volume model of DG
is established that considers DG operation and maintenance costs, DG investment costs, system
network loss costs, fuel costs, pollution compensation costs, and environmental protection subsidies.
Furthermore, voltage and power constraints are also considered in the model. To solve the proposed
model, a hybrid algorithm called the GA-ACO algorithm is presented that combines the ant
colony algorithm (ACO) and the genetic algorithm (GA). On one hand GA has good robustness,
good adaptability, and quick global searching ability but it also has some disadvantages such as
premature convergence and low convergence speed. On the other hand, ACO has the ability of
parallel processing and global searching but its convergence speed is very low at the beginning.
The IEEE-33 node distribution network is taken as a basic network to verify the rationale of the
proposed model and the effectiveness of the proposed hybrid algorithm. Simulation results show
that the proposed model is very in line with reality, the hybrid algorithm is very effective in solving
the model and it has advantages in both convergence speed and convergence results compared to
ACO and GA.

Keywords: AC/DC distribution network; distributed generator; planning; timing characteristics;
genetic-ant colony hybrid algorithm

1. Introduction

In today’s society, the energy crisis and environmental protection problems have become more
and more serious. Traditional fossil energy cannot meet the goals of sustainable human development.
Distributed power generation technology based on renewable energy has attracted more and more
attention. Distributed generators (DG) refers to a small generator set that is designed, installed,
and operated in a distribution network with capacities ranging from a few kilowatts to tens of
megawatts [1]. Due to its high reliability, and clean, environmentally friendly, and flexible installation
location, DG plays an increasingly important role in the distribution network.

With the promotion and popularization of DG and the stricter requirements of users for power
quality, the traditional AC distribution network has revealed its inability to accept new energy [2–4].
In recent years, the development of power electronic devices has made great progress. The continuous
improvement of converter devices has accelerated the research on related technologies of DC
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distribution networks. Compared with AC distribution networks, DC distribution networks have a
larger power capacity, and the power loss is reduced, thus, the power quality becomes higher, and the
distributed power source has easier access. This has made it more and more popular with scholars.
If a DC distribution network is used, the converter used for DG access is saved greatly, and the energy
loss is reduced; also, the DC bus has no phase and frequency synchronization problems, making the
control of the distributed power supply simple and reliable [5]. Therefore, there is an urgent need to
study the problem of DG access to AC /DC distribution networks.

When the DG is connected to the distribution network, the direction of the system power changes,
which causes changes in the distribution network loss, so that the network loss is not only related
to the load, but also related to the location and quantity of the DG. At the same time, due to the
intermittent nature, volatility and randomness of DG, it inevitably affects the safe, stable and reliable
operation of the distribution network. If the penetration rate of the distributed power supply is too
high or the location of the access distribution network is improperly selected, it will not improve
the environmental protection and economy of the grid operation, but will affect the safe and stable
operation of the system. Therefore, it is necessary to plan the construction of the distribution network
with DG.

At present, the problem of distribution network planning with DG has been studied from different
perspectives. El-Khattam et al. [6] compared the difference between the distribution network with DG
planning and traditional distribution network planning, and elaborated the DG planning problem
from the aspects of economy and reliability. Zeng et al. [7] adopted the two-layer scene planning to
solve the optimal distribution network planning scheme. Li et al. [8] established the objective function
by reducing the network loss and improving the power quality, and adopted an intelligent algorithm
to solve the DG location and capacity determined problem. Zhu D et al. [9] mainly considered DG and
utilized the uncertainty of load growth to establish the distribution network planning model with DG
and grid as the planning object. Guo et al. [10] comprehensively considered the stochastic volatility
of DG and load, and used the opportunity constrained programming method to comprehensively
optimize the configuration of DG. Rau N S et al. [11] used the gradient method to find the optimal
solution of DG installation and configuration problems, but found it was easy to fall into local parts.
Wang et al. [12] considered the location and capacity of DG and the expansion planning of the
distribution network, and used a combination of genetic algorithm, branch exchange and simulated
annealing algorithm to solve the model. Mei et al. [13] used the improved particle swarm optimization
algorithm with simulated annealing algorithm to solve the problem of DG site selection and volume
calculation based on the optimal network loss. Ye et al. [14] used the adaptive mutation particle swarm
optimization algorithm to plan the location and volume of DG without considering the load-added
nodes. However, at this stage, distribution network planning with DG mainly stays in the AC power
distribution stage, and there is very limited research content on AC/DC distribution network planning.
At the same time, most of the literature on the planning process is mainly based on the rated capacity
of DG, and does not take the timing characteristics of the DG and the load into account. This causes
deviations in the actual planning problem, and it is necessary to fully consider the DG and load timing
characteristics in the planning process.

In recent years, more and more research including the application of heuristic intelligent
optimization algorithms has been carried out. Genetic algorithms (GA) and ant colony algorithms
(ACO) serve as two mainstream algorithms, and each of them has unique advantages. The genetic
algorithm draws on the biological evolutionary law of nature to optimize the solution of the problem
by simulating the evolution process of biological genes. The ant colony algorithm mimics real-world
ant colony behavior. The algorithm simulates group behavior composed of simple individuals and
seeks optimal results through group behavior.

Therefore, this paper establishes a DG access AC/DC distribution network planning model that
takes environmental costs and timing characteristics into account, and optimizes the type, location and
capacity of DG in the distribution network. At the same time, this paper studies the ideas and methods
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of GA and ACO to solve the problem, and analyzes the solution process. Then, by combining and
improving the two algorithms, a GA-ACO algorithm is proposed and applied to the model solution.

2. AC/DC Distribution Network Model

The AC/DC distribution system generally consists of three main components: an AC distribution
network, a DC distribution network, and a voltage source converter (VSC).

The main function of the VSC is to realize the bi-directional flow of active power on the AC
side and the DC side, and at the same time to regulate the reactive power. The control mode of the
converter mainly includes master-slave control and droop control [15–17]. This paper mainly studies
the distribution network DG planning method when the converter adopts master-slave control mode.

To study the AC/DC distribution network trend, we must first establish a VSC model. When the
VSC model is obtained, the power flow additional equation of the DC system should be given to
consider the different control modes of the converter, so that the power flow of the AC/DC power
distribution system can be solved. In the AC/DC distribution network described in this paper,
the quasi-steady state model is used to equivalently process the DC part. The model not only effectively
reflects the power characteristics of the DC converter, but also accurately and fully meets the actual
engineering needs. The specific modeling process is as follow [18].

2.1. AC Distribution Network Power Flow Model

Pjk = Pij −
rij[(Pij)

2 + (Qij)
2]

(Vi)
2 − Pj (1)

Qjk = Qij −
xij[(Pij)

2 + (Qij)
2]

(Vi)
2 −Qj (2)

(Vj)
2 = (Vi)

2 − 2(rijPij + xijQij) +
[(rij)

2 + (xij)
2][(Pij)

2 + (Qij)
2]

(Vi)
2 (3)

Pj = Pj,L − Pj,DG (4)

Qj = Qj,L −Qj,DG (5)

Qj,DG = Pj,DG tan ϕ (6)

where Vi and Vj are the voltage amplitudes of node i and node j respectively; rij and xij are the branch
resistance and reactance between node i and node j, respectively; Pij and Qij are the active and reactive
power of branch ij, respectively; Pj,L, Pj,DG, Qj,L, and Qj,DG are the load active power, DG active power,
load reactive power, and DG reactive power at node j, respectively. ϕ is the power factor angle.

2.2. DC Distribution Network Power Flow Model

According to the branch flow model of the AC distribution network, the branch flow model of
the DC distribution network can be derived as follows:

Pdc,jk = Pdc,ij −
rdc,ij(Pdc,ij)

2

(Vdc,i)
2 − Pdc,j (7)

(Vdc,j)
2 = (Vdc,i)

2 −
rdc,ijPdc,ij

Vdc,i
(8)

Pdc,j = Pdc,j,L − Pdc,j,DG (9)

where Vdc,i is the voltage amplitude of the DC node i; rdc,ij is the resistance between the branches ij;
Pdc,ij is the active power between the branches ij; Pdc,j,L and Pdc,j,DG are the load active power and
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DG active power at the node j, respectively. The VSC model is shown in Figure 1. Where V∠θV is
the voltage at the junction of the converter and the AC distribution system, RVSC and XVSC are the
equivalent resistance and reactance inside the converter, VVSC∠θVSC is the phase voltage of the input
converter, PVSC + jQVSC is the power of the input converter, Pdc and Vdc are the output power and
voltage of the converter.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 16 
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The branch flow model of RVSC + jXVSC is as shown in Equation (10). The AC three-phase active
power of the input VSC is equal to the DC power of the VSC output. The input voltage and the output
voltage satisfy the following relationship:

VVSC =

√
3

3
µVdc (10)

where µ is the DC voltage utilization under SPWM modulation, which is 0.866.

3. DG and Load Timing Characteristics

3.1. DG Timing Characteristics

Distributed generator usually contains micro-turbine generators (MT), wind turbine generators
(WGs), photovoltaics (PV), and so on. Different types of DG apply to different regions. For example,
photovoltaics generate more electricity in areas with sufficient light; micro-turbine generators are more
suitable for areas with high heat demand [19]. Different DGs contribute differently to the environment,
PV and WG are cleaner distributed generators. However, the timing fluctuation characteristics of
these two generators, increase the uncertainty and affect the stability of the system while improving
environmental protection. We have fully considered the timing characteristics of PV and WG. If we
do not, there is no essential difference between WG and PV, and we cannot reflect on the advantages
of MT. Additionally, we do not need to install energy storage equipment in the distribution network as
this is contrary to the reality. Therefore, for the DG planning problem, the timing characteristics must
be taken into consideration.

We took the three types of DG mentioned above as the research objects because these three types
of DG are highly representative: the MT has rated capacity; its output is controllable and does not
change with time; and the PV and WG represent a type of DG whose capacity changes with time.
We also selected these two types of DG to study the impact of timing characteristics on the distribution
network planning in depth.

Wind speed has a great influence on the WG. Generally, wind speed is high in the evening and
especially in the winter. Therefore, the output is highest in winter and the least in summer. Light
intensity and temperature have a great impact on PV. During the day, solar energy is rich, and the PV
output is strongest at noon. At night, PV does not generate electricity. In general, PV has the largest
output in summer and the least in winter. PV and WG have a natural complementarity, which is the
main reason for selecting these two DGs which have different timing characteristics. According to
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meteorological data [20], wind speed curves and light intensity were obtained in different seasons,
and the PV and WG timing characteristics curves were obtained as shown in Figures 2 and 3.
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3.2. Load Timing Characteristics

At present, according to power planning and power industry statistics, the power load is generally
divided into four typical loads, including industry, commerce, agriculture, and residents. Similar
to DG, these loads also have particular timing characteristics. Moreover, the maximum output time
of the DG is not always the same as the time of the maximum load. We took residential load and
commercial load as the research objects of the distribution network, and their four seasonal load curves
are shown in Figures 4 and 5. The electricity consumption of residents is the lowest in the summer.
The daily peak hours are generally at noon and in the evening. The daily maximum load time is about
20:00. The minimum load time, except in summer, is about 03:00, while the summer minimum load
time is about 07:00 in the morning. The fluctuations in commercial electricity consumption over the
four seasons are small, the power consumption period ranges from 09:00 to 23:00, and the maximum
load time is about 10:00.
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4. DG Optimization Configuration Model of Distribution Network

The objective function of this paper is to minimize the total annual system cost. Based on
the distributed power supply capacity and voltage fluctuation range allowed by the distribution
network node, the location and capacity of the DG are finally determined.

4.1. Objective Function

The annual cost of the distribution network is

minCTOL = Com + Ci + Closs + C f + Ce − Cp (11)

where CTOL is the total annual cost of distribution system; Com is DG annual operation and maintenance
costs; Ci is the DG annual equivalent investment cost; Closs is the system network loss cost; C f is the
MT fuel cost; Ce is the pollution compensation cost; and Cp is the environmental protection subsidy fee.

(1) DG annual operation and maintenance costs

Com = com

8760

∑
t=1

∑
i∈NDG

Ei(t) (12)

where com is DG unit operation and maintenance costs, 10,000 yuan/(MW·h); and Ei(t) is the DG
power generation connected to the i-th node at time t, MW·h.
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(2) DG annual equivalent investment cost

Ci =
r(1 + r)ny

(1 + r)ny − 1 ∑
i∈NDG

(ciS[i]) (13)

where r is the discount rate; ny is the DG payback period; ci is the investment cost of installing DG at
the i-th node, 10,000 yuan; and S[i] is the number of DG installations at the i-th candidate node.

(3) System network loss cost

Closs = closs

8760

∑
t=1

∑
i∈T

I2
i (t)ri (14)

where closs is the unit network loss; Ii is the current on the i-th line, kA; and ri is the resistance of the
i-th line, Ω.

(4) MT fuel cost

C f = c f

8760

∑
t=1

∑
i∈Nmt

Emt,i(t) (15)

where c f is the unit fuel cost per hour, 10,000 yuan/(MW·h); and Emt,i(t) is the MT power generation
connected to the i-th node at time t, MW·h.

(5) Pollution compensation cost

Ce = Kmt ∑
i∈Nmt

Emt,i(VCO2 + RCO2) ∗ 10−4 (16)

where Kmt is the emission intensity of greenhouse gas produced by a unit MT, kg/(MW·h); VCO2

is the environmental protection value, yuan/kg; and RCO2 is a fine for the MT to emit greenhouse
gases, yuan/kg.

(6) Environmental protection subsidy fee

Cp =
8760

∑
t=1

( ∑
i∈Npv

cpvEpv,i(t) + ∑
i∈Nwg

cwgEwg,i(t)) (17)

where cpv and cwg are respectively PV and WG environmental subsidies for unit power generation,
10,000 yuan/(MW·h); Epv,i(t) and Ewg,i(t) are respectively the PV and WG power generations
connected to the i-th node at time t, MW·h.

4.2. Constraints

(1) DG installation capacity constraint

Light intensity, temperature, wind speed are all uncertain factors. If too much of this type of DG
is added to the distribution network, the power quality of the system will be degraded. It is therefore
necessary to limit the installation capacity of PV and WG.{

Spv,i ≤ Spv,max, i ∈ Npv

Swg,i ≤ Swg,max, i ∈ Nwg
(18)

where Spv,i and Swg,i are respectively the PV installation capacity at the i-th PV candidate node and
the WG installation capacity at the i-th WG candidate node; Spv,max and Swg,max are respectively the
maximum installation capacity of PV and WG.
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(2) Power flow equation 
Pi = Ui ∑

j∈i
Uj(Gij cos θij + Bij sin θij)

Qi = Ui ∑
j∈i

Uj(Gij cos θij − Bij sin θij)
(19)

where Pi and Qi are the active power and reactive power injected into node i, respectively; Ui is the
voltage amplitude of node i, j ∈ i represents all nodes connected to node i; Gij and Bij are respectively
the admittance matrix real part and virtual part of the system; and θij is the phase angle difference
between node i and node j.

(3) Voltage constraint
Ui,min ≤ Ui ≤ Ui,max (20)

Udc,i,min ≤ Ui ≤ Udc,i,max (21)

where Ui,max and Ui,min are the upper and lower limits of the AC node voltage amplitude; Udc,i,max
and Udc,i,min are the upper and lower limits of the DC node voltage amplitude.

(4) Branch flow constraint
Sj ≤ Sj,max (22)

Sdc,j ≤ Sdc,j,max (23)

SVSC,j ≤ SVSC,j,max (24)

where Sj is the power on branch j; Sj,max is the maximum allowable capacity on AC branch j; Sdc,j,max
is the maximum allowable capacity on DC branch j; SVSC,j,max is the maximum allowable capacity
on VSC.

(5) Pollution compensation cost

∑
i∈NDG

Ei(t) ≥ Ltol(t) t = 1, 2, . . . 8760 (25)

where ∑
i∈NDG

Ei(t) is the total capacities of the DGs at the time t, and Ltol(t) is the sum of the loads of

all nodes at time t.

5. Model Solving

In this paper, a GA-ACO algorithm is used to solve the model. The genetic algorithm mimics
the generation and evolution process of all life intelligences. Using group search technology, through
the genetic manipulation of selection, crossover and mutation of the current population, new groups
are generated, and the population is gradually evolved to a state containing, or close to, the optimal
solution. The ant colony algorithm searches for optimal solutions by simulating the processes that ant
colonies use to search for food. Ants leave pheromones on the path they walk. The more ants that pass
along the path, the more pheromones they leave, and the greater the probability that later ants will
choose the path, thus forming a positive feedback mechanism, and finding the optimal solution.

The genetic algorithm has a large-scale and diverse initial population, so that global optimization
is performed at the beginning of the algorithm, and the genetic algorithm is scalable and easy to
combine with other algorithms. However, in the late stage of the genetic algorithm, the feedback
information cannot be easily used, and a large number of redundant iterations are generated, which
affects the convergence speed and accuracy of the algorithm. The ant colony algorithm has a fast
convergence rate and good global convergence. In particular, when the pheromone is accumulated to
a certain extent, the algorithm can quickly find the optimal solution. However, the disadvantage is
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that the accumulation of pheromones is slow at first, and it is easy to fall into the local optimum at
the beginning.

Based on the advantages and disadvantages of the above two algorithms, the two algorithms
can be combined to make up for their respective shortcomings. In this paper, the genetic algorithm is
used to generate the initial solution, then these initial solutions are transformed into the pheromone
distribution in the ant colony algorithm. Finally, the positive feedback mechanism of the ant colony
algorithm is used to search for the optimal solution. The GA-ACO algorithm solution flow chart is
shown in Figure 6.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 16 
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5.1. Genetic Algorithm Solving

In this paper, we use binary coding. Each chromosome is regarded as a planning scheme.
Each chromosome contains NDG elements. The first NMT elements represent the installed number
of MT. The intermediate Npv elements represent the number of PV installations at each PV node to be
selected; the last Nwg elements represent the number of WG installed at each WG node to be selected.

(1) Initial Population

The initial population of the genetic algorithm is randomly generated. To solve this model,
a certain chromosome in the initial population does not meet the constraints. Combined with the
planning model, the initial population is required to fully satisfy the system capacity constraints.
Therefore, it is necessary to carry out innate elimination, and the individuals who do not satisfy the
constraints are eliminated and regenerated until the number of individuals satisfy the constraints and
reach the requirements of the initial population.
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(2) Selection Operator

According to the fitness value, the individuals in the population are selected to obtain the parent
sample. This paper uses the optimal individual preservation and roulette strategy to select operators.
That is, the individual with the highest fitness is saved as a parent. For the remaining individuals,
the roulette method is used to calculate the selected probability of each individual’s fitness to select the
retained individual. That is, the more it satisfies the target condition, the easier it is to be inherited by
the offspring, but other individuals have offspring with a small probability to prevent the algorithm
from falling into local optimum and guarantee global convergence.

(3) Crossover Operator

For individuals in the population, cross operations are performed according to a certain crossover
probability, and corresponding mutation operations are performed according to the probability of a
certain mutation generating a next generation population. In this paper, the crossover operation uses a
two-point crossover operator, and the mutation operation uses a single-point mutation operator.

(4) Eliminate

Because the genetic algorithm generates the randomness of the individual, the generated offspring
may not satisfy the constraint. This paper sets a penalty function. When the mismatching of the
offspring is higher, the degree of the penalty is larger, making the gene of the offspring difficult for the
next generation to inherit, thus ensuring the innate superiority of the population.

5.2. Ant Colony Algorithm Solving

(1) Pheromone Initialization

According to the location selection of the DGs, assuming that there are N installable DGs nodes,
and the DGs capacity that may be installed on the node i is ni, then a similar matrix as shown in
Figure 7 can be generated.
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After T generation genetic optimization by genetic algorithm, m better solutions are obtained.
Then the m preferred solutions are converted into the location and capacity of the ant colony algorithm,
as shown in Figure 8. These location capacities are connected to form m paths, and update the
pheromones on those paths. The number of ants is also set to m. M slaves are placed on m paths and
the previous update pheromone are used as the initial value of the pheromone.
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(2) Loop Iteration

In each iteration, ant k (k = 1, 2, 3, . . . , m) determines the direction of their transition based on
the pheromone on each path. The tabu table, tabuk is used to record the location capacity of the ants.
The ant determines the transition probability based on the pheromone and path heuristic information
on each path. Pij(t) represents the probability that ant k is transferred from position i to position j at
time t:

pk
ij =


[τij(t)]

α [ηij ]
β

∑
s∈allowedk

[τis(t)]
α [ηis ]

β

0

j ∈ allowedk (26)

where allowedk = {C− tabuk} (k = 1, 2, 3, . . . , m) represents the position that the ant k next allows
to select. α is a heuristic information factor, and represents the importance of the motion trajectory,
that denotes the role that information accumulated by ants during exercise plays in the selection of
ant movements. α has a value range of (0,5). β is the heuristic factor of expectation, which is the
importance of characterizing the visibility of the path, that is, the role that the ant plays in the ant
selection path during the movement. The value range of β is (0,5).

τij(t) represents the pheromone strength on the path (i, j) at time t. Where i is the beginning
location and j is the end location. ηij(t) is a heuristic function, which is generally the reciprocal of the
sum of the DG installation cost at location j and the distributed power source operating cost.

(3) Pheromone Update

According to the expected value of each capacity of each node and the pheromone concentration
value on the path, the transition probability of the n-th ant at each capacity point on the node is
calculated, and then the path is selected.

In order to prevent excessive heuristic pheromone and flooding the heuristic information,
the residual pheromone is updated after the ant completes an ergodic operation on all m position
capacities. According to Equations (27) and (28), adjusting the amount of information on the path (i, j)
at time t+1

τij(t + 1) = (1− ρ)τij(t) + ∆τij(t) (27)

∆τij(t) =
m

∑
k=1

∆τk
ij(t) (28)

where ρ is the pheromone volatilization coefficient, 1− ρ is the pheromone residual coefficient, and ρ

is in the range of (0, 1). ∆τij(t) represents the pheromone increment on the path (i, j) during the current
cycle, ∆τij(t)=0 at the initial time. ∆τk

ij(t) represents the number of pheromones left by the k-th ant in
the path (i, j).

∆τk
ij(t) =

{
Q/Lk

0
if the kth ant passes the path (i, j)

else
(29)

where Q represents the pheromone strength, and its value affects the convergence speed of the
algorithm. Lk represents the total cost of the path taken by the k-th ant in this cycle.

6. Case Analysis

In this paper, the IEEE-33 standard node distribution network is used as an original network for
analysis [21]. The distribution network structure is shown in Figure 9.
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6.1. Case Parameters

In Figure 9, 0-33 is the node number, and L1-L33 are the line numbers. The node and line basic
data are shown in Table 1.

Table 1. Node and line data.

Node Number Load/MW Load Type Line Number Start Node End Node R X

0 0 balance

1 0.1 commercial 1 0 1 9.22 4.7
2 0.09 commercial 2 1 2 4.93 25.1
3 0.12 commercial 3 2 3 36.6 18.6
4 0.06 commercial 4 3 4 38.1 19.4
5 0.06 resident 5 4 5 81.9 70.7
6 0.2 resident 6 5 6 18.7 61.8
7 0.2 resident 7 6 7 71.1 23.5
8 0.06 resident 8 7 8 103 74.1
9 0.6 resident 9 8 9 104 74.1

10 0.45 resident 10 9 10 19.6 6.5
11 0.06 resident 11 10 11 37.4 12.4
12 0.06 resident 12 11 12 146 115
13 0.12 resident 13 12 13 54.1 71.3
14 0.06 resident 14 13 14 59.1 52.6
15 0.06 resident 15 14 15 74.6 54.5
16 0.06 resident 16 15 16 128 172
17 0.09 commercial 17 16 17 73.2 57.4
18 0.09 commercial 18 1 18 16.4 15.6
19 0.09 commercial 19 18 19 150 136
20 0.09 commercial 20 19 20 40.9 47.8
21 0.09 commercial 21 20 21 0.819 -
22 0.09 commercial 22 2 22 45.1 30.8
23 042 commercial 23 22 23 89.8 70.9
24 0.42 commercial 24 23 24 0.374 -
25 0.06 resident 25 5 25 20.3 10.3
26 0.06 resident 26 25 26 28.4 14.5
27 0.06 resident 27 26 27 10.5 93.3
28 0.12 resident 28 27 28 80.4 70.1
29 0.2 resident 29 28 29 50.8 25.9
30 0.15 commercial 30 29 30 97.4 96.3
31 0.21 commercial 31 30 31 31.1 36.2
32 0.6 commercial 32 31 32 0.381 -

Based on the original AC distribution network, the following changes were made to simulate the
AC/DC distribution network: the AC lines between node 20 and node 21, node 23 and node 24, node
31 and the node 32 change into the DC lines. Capacitors with a value of 1 are modified at nodes 20, 21,
23, 24, 31, 32. The VSCs are installed after the three DC lines, and the configuration parameters of the
converter station are consistent: the rated capacity is 2MVA, the resistance is 0.5 Ω, and the reactance
is 1.5 Ω.

The MT candidate nodes are 2, 6, 10, and 14, the PV candidate nodes are 21, 24, and 32, and the
WG candidate nodes are 22 and 25. The maximum current carrying capacity of the AC line is 5000 kVA,
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and the maximum current carrying capacity of the DC line is 2500 kVA. The node voltage is allowed to
range from 0.9 to 1.1 p.u., and the three types of DG are rated at 0.1 MW. The number of access nodes to
be selected for all three DGs is limited to 15. The discount rate r is taken as 0.1, the DG recovery period
ny is taken as 20, the unit net loss closs is taken as 0.017 million yuan/(MW h), and the greenhouse
gas emission intensity per unit MT Kmt is taken as 724.6 kg/(MW h). The environmental protection
value of greenhouse gases VCO2 is taken as 0.023 yuan/kg, and the fine for greenhouse gas emissions
from MT RCO2 is taken as 0.01 yuan/kg. The parameters of the genetic algorithm are: the population
individual is 100, the number of iterations is 20, the crossover rate is 0.5, and the mutation rate is 0.1.
The ant colony algorithm parameters are: the number of ants is 60, the pheromone concentration
retention coefficient is 0.9, and the information heuristic factor and the expected heuristic factor are
both 1, at the initial moment ∆τk

ij(t) = 0, the number of iterations is 60.
According to [22], it is assumed that DG’s investment, operation and maintenance, fuel cost and

environmental subsidies are as shown in Table 2.

Table 2. DG cost.

DG Type Maintenance
10,000 Yuan/(MW·h)

Investment
10,000 Yuan/MW

Fuel 10,000
Yuan/(MW·h)

Subsidy
10,000 Yuan/(MW·h)

MT 0.01 48 0.06 0
PV 0.02 100 0 0.036
WG 0.03 63 0 0.01

6.2. Result Analysis

(1) Consider Timing Characteristics

By simulating the timing characteristics of DG and the load, this paper draws a plan that is more
in line with the actual operation of the AC/DC distribution network. If the timing characteristics of
DG and load are not considered, the output of DG in the system remains unchanged, and the output
is based on the rated capacity. The two planning schemes considering the timing characteristics and
disregarding the timing characteristics are shown in Tables 3 and 4.

Table 3. Planning schemes.

DG Type Consider Timing
Characteristics Disregarding Timing Characteristics

MT 2(11), 6(15), 10(11), 14(4) /
PV 21(2), 24(3), 32(8) 21(12), 24(14), 32(14)
WG 22(5), 25(1) 22(1), 25(7)

2(11) means that 11 DGs are installed at node 2, and so on.

Table 4. Costs of planning schemes.

DG Type Consider Timing Characteristics Disregarding Timing Characteristics

Maintenance cost/10,000 yuan 679.9 884.7
Investment cost/10,000 yuan 358.3 444.1

Loss cost/10,000 yuan 203.3 267
Fuel cost/10,000 yuan 1961 0

Pollution compensation cost/10,000 yuan 78.75 0
Subsidy cost/10,000 yuan −417.6 −1322.8

Total cost/10,000 yuan 2863.7 273.1

It can be seen from the above results that the algorithm avoids including the MT if the timing
characteristics are not considered. This is because although the investment and maintenance cost of
gas MT are low, the environmental cost is too high, and the environmental subsidies for PV and WG
are very high, the overall cost of MT is higher than that of PV and WG. However, the fact that the
gas turbine is not added is obviously contrary to the actual situation, because in fact, the PV and WG
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outputs have strong volatility. If only these two types of DG are installed, there will be a certain period
of time when the power supply does not meet the demand and this affects the reliable operation of the
power grid. Therefore, it is necessary to consider the timing of DG.

(2) Algorithm Comparison

In order to verify the effectiveness of the GA-ACO algorithm, the genetic algorithm, ant colony
algorithm and GA-ACO algorithm were used to optimize the DG access to the AC/DC distribution
network. Since the results calculated by each of the algorithms in each iteration are different, this study
performed 10 experiments on each of the three algorithms and took the average of the results. The final
costs of the three algorithms are shown in Table 5 and the optimization curve for the three optimization
algorithms is shown in Figure 10.

Table 5. Average cost of the three algorithms.

Planning GA-ACO GA ACO

Maintenance cost/10,000 yuan 679.9 589.2 612.9
Investment cost/10,000 yuan 358.3 278.7 298.3

Loss cost/10,000 yuan 203.3 259.3 241.7
Fuel cost/10,000 yuan 1961 2231.6 2193.9

Pollution compensation cost/10,000 yuan 78.75 109.3 92.6
Subsidy cost/10,000 yuan −417.6 −285.6 −301.8

Total cost/10,000 yuan 2863.7 3182.5 3137.6
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From the table and the figure we can see that the genetic algorithm at the beginning of the
optimization results is better than the ant colony algorithm, and the convergence speed is faster than
the ant colony algorithm before the 20th generation, because the genetic algorithm has a wide range
of search capabilities at the beginning of the search. The ant colony algorithm takes a long time to
accumulate pheromones at the beginning. In the 20th generation of the iterations, the redundant
iterations generated by the genetic algorithm in the later stage affect the convergence speed and fall
into the local optimal solution. The convergence speed of the ant colony algorithm starts to accelerate,
and the convergence is completed at about 40 generations. However, because the initial pheromone
accumulation is not complete, the global optimal solution cannot be searched. The GA-ACO algorithm
combines the advantages of both algorithms. At the beginning, it uses a wide range of genetic
algorithms to search for pheromones, and then uses the ant colony algorithm to help the whole
optimization process maintain a faster convergence speed and not fall into local parts optimal, then,
the global optimal solution is found around the 60th generation.
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(3) Considering Load Growth

Load growth is also taken into consideration in this paper. It is assumed that all loads will increase
by 50% in the next 15 years [23]. The number of access nodes to be selected for all the three DGs will
increase to 30. What is more, the line capacity will double. The simulation results are shown in Table 6
and Figure 11.

Table 6. Planning schemes considering load growth.

DG Type Consider Timing Characteristics Disregarding Timing Characteristics

MT 2(12), 6(27), 10(11), 14(7) /
PV 21(8), 24(10), 32(15) 21(13), 24(18), 32(20)
WG 22(18), 25(8) 22(5), 25(3)Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 16 
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Figure 11. Optimization algorithm comparison chart considering load growth.

It can be seen that by considering the load growth, the model can still reasonably reflect the
actual situation and this further verifies the effectiveness of the hybrid algorithm in convergence speed
and convergence.

7. Conclusions

This paper aims to optimize the location and volume of DG in the AC/DC distribution network.
Based on the consideration of DG and load timing characteristics, a DG planning model is established.
The model is solved by the GA-ACO algorithm. The following conclusions were obtained from the
case analysis:

(1) It is necessary to consider environmental costs in the problem of DG access to the distribution
network, because this reflects the environmental advantages of PV and WG, helps to achieve
a balance between system economics and environmental protection, and greatly improves
the utilization rate of new energy, and this makes the distribution network cleaner and
more environmental-friendly.

(2) Timing characteristics models are critical in solving the problem of DG access to the distribution
network. By considering the timing characteristics, the model can more accurately reflect the
operation of the distribution network, and the resulting planning scheme is more realistic.

(3) The GA-ACO algorithm combines the advantages of genetic and ant colony algorithms.
It is superior to the two algorithms in terms of convergence speed and convergence results,
and effectively avoids the objective function falling into the local optimal solution.
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