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Abstract: Person re-identification is a typical computer vision problem which aims at matching
pedestrians across disjoint camera views. It is challenging due to the misalignment of body parts
caused by pose variations, background clutter, detection errors, camera point of view variation,
different accessories and occlusion. In this paper, we propose a person re-identification network
which fuses global and local features, to deal with part misalignment problem. The network is
a four-branch convolutional neural network (CNN) which learns global person appearance and
local features of three human body parts respectively. Local patches, including the head, torso and
lower body, are segmented by using a U_Net semantic segmentation CNN architecture. All four
feature maps are then concatenated and fused to represent a person image. We propose a DropParts
method to solve the parts missing problem, with which the local features are weighed according
to the number of parts found by semantic segmentation. Since three body parts are well aligned,
the approach significantly improves person re-identification. Experiments on the standard benchmark
datasets, such as Market1501, CUHKO03 and DukeMTMC-relID datasets, show the effectiveness of our
proposed pipeline.

Keywords: person re-identification; representation learning; parts alignment; occlusion handling

1. Introduction

Person re-identification is a typical computer vision problem which aims at matching pedestrians
across disjoint camera views. It has attracted a lot of research interest due to its significant application
potentials, such as in visual recognition and surveillance [1,2]. One of the most important tasks that
person re-identification is shouldering is to learn generic and robust feature representations of people.
Recently, the methods based on deep learning learn feature representation directly from tasks and
have shown significant improvement compared with hand-crafted feature extractors. State-of-the-art
CNN network architectures, such as Inception network [3-5], Resnet network [6,7], are applied to
learn feature representation for person re-identification.

Person re-identification is a challenging task due to the misalignment of body parts caused
by poses variation, background clutter, detection errors, camera point of view variation, different
accessories and occlusion. Figure 1 illustrates some examples in person re-identification tasks. There
are images of two persons in Figure 1, with one person in each row. Images in the top row are from the
Market1501 dataset [8], and those in the bottom row are from DukeMTMC-relD dataset [9]. In the top
row, poses, background, detection, camera viewpoints and accessories are quite different. In the bottom
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row, poses variation, background clutter, detection errors, camera point of view variation occlusion also
occur. Part misalignment occurs frequently and degrades the performance of person re-identification.

Figure 1. Examples of part misalignment caused by pose variation, background clutter, detection

errors, camera point of view variation, different accessories and occlusion. Images in top row are from
Market1501 dataset [8], and images in bottom row from DukeMTMC-relD dataset [9].

To solve this problem, many scholars focus on person re-identification based on part alignment
recently. Some methods divide the person image into many stripes or grids to reduce the effects of
part misalignment [7,10]. The division of grids or strips is predefined and heuristic, which can’t locate
the parts precisely. Pose-based methods [5,11] employ a pose estimation model to infer corresponding
bounding boxes. However, parts missing is ineluctable; it causes the convolutional neural network to
not work properly.

This paper focuses on the problem of body part misalignment. It proposes a human parts
semantic segmentation aware representation learning method for person re-identification. We employ
semantic segmentation network to infer corresponding bounding boxes, and propose a DropParts
method to solve the part missing problem. Experiments on the standard benchmark datasets show the
effectiveness of our proposed pipeline. The contributions of this paper are as follows:

(1) We design a four-branch convolutional neural network to deal with parts misalignment
problem. The four-branch CNN network learns a person’s appearance features globally and using
the features of three local body parts. The bounding boxes of three body parts are inferred from
human parts semantic segmentation results, which are learned with a popular U_Net [12] semantic
segmentation network.

(2) We propose a DropParts method to solve the part missing problem, with which the local
features are weighed due to the appearance vector and fused with global feature. The DropParts
method makes the four-branch convolutional neural network work properly when part missing occurs.
On the other hand, it improves the performance of person re-identification.

2. Related Work

In this section, we present a brief review of works in feature exaction and part alignment for
person re-identification.

At the beginning of the study, hand-crafted features extractors, such as color histogram [13],
Scale-Invariant Feature Transform (SIFT) [14], Local Binary Patterns (LBP) features [15], Bag of Word
(BoW) [8] and Local Maximal Occurrence (LOMO) [16] are employed for the person representations.
Recently, the methods based on deep learning learn feature representation directly from tasks and have
shown significant improvement compared with hand-crafted feature extractors. All kinds of popular
CNN network architectures, such as Inception network [3-5], Resnet network [6,7], are applied to
learn feature representation for person re-identification. Additionally, different loss functions, such as
Softmax loss [17], Siamese loss [4,18], Cluster loss [19], Triplet loss [20] and their combination [21] are
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used to improve the discriminative feature learning in person re-identification tasks. Softmax loss [17]
function is the common loss function used in recognition tasks.

Many scholars focus on person re-identification based on part alignment [7,10,17,22,23]. Early
works divide the person image into many stripes or grids to reduce the effects of part misalignment.
Article [10] divides the person image into three horizontal stripes and extracts CNN features of each
strip. After that, they concatenate and fuse them with a fully connected layer to represent a person
image. Meanwhile, DeepRelD method [17] also divides the person image into horizontal stripes and
carries out patches matching within each stripe. On the other hand, SpindleNet [22] takes the human
body structure information into person re-identification pipeline to help align body part features of
images. The features of different semantic levels are merged by a tree-structured fusion network based
on human body region which is guided by multi-stage feature decomposition and tree-structured
competitive feature fusion, to represent a person image. IDLA method [23] captures local relationships
between the two input images on the basis of mid-level features of each input image, and computes
a high-level summary of the outputs of this layer by a layer of patch summary features, which are
then spatially integrated with subsequent layers. More stripes- and grids-based methods can be found
in [7]. Although stripes- and grids-based methods reduce the risk of part misalignments, the division
of grids or strips is predefined and heuristic, which can’t locate parts precisely.

Pose-based person re-identification methods leverage external cues from human pose estimation.
Article [11] incorporates a simple cue of the person’s coarse pose (i.e., the captured view with respect
to the camera) and the fine body pose (i.e., joint locations) to learn a discriminative representation of
person image. PDC method [5] leverages the human part cues to alleviate the pose variations and learn
feature representations from both the global image and different local parts. To match the features
from global human body and local body parts, a pose driven feature weighting sub-network is further
designed to learn adaptive feature fusions. Pose-based methods leverage human pose estimation to
infer the location of body parts. However, parts missing is ineluctable, it makes the convolutional
neural network not work properly. And it is hard to find the right body part in the crowd because
there may be several parts of the same semantic label in an image.

Attention mechanism has a large impact on neural computation, which selects the most pertinent
pieces of information and focuses on specific parts of their visual inputs to compute the adequate
responses [24-29]. Article [25] decomposes the human body into regions following the learned person
re-identification sensitive attention maps. Accordingly, it computes the representations over the regions,
and aggregates the similarities computed between the corresponding regions of a pair of probe and
gallery images as the overall matching score. The PersonNet method [26] learns attention map from
different scales for each module and applies the attention map to different layers of the network. At the
end, they learn features by fusing three attention modules with Softmax loss. Moreover, HydraPlus-Net
method [27] has several local feature extraction branches which learn a set of complementary attention
maps in which hard attention is used for the local branch and soft attention for the global branch,
respectively. More methods based on the attention mechanism can be found in [28,29]. Methods based
on the attention mechanism highlight the important region information of person images, but they
also increase the number of feature maps by several times, and bring risks of over-fitting.

We use a semantic segmentation network to infer human body parts in this paper. Due to the
ensemble effects of label of each pixel, bounding boxes inferred from semantic segmentation map are
stable. We propose a DropParts method to solve the part missing problem; the method makes the
four-branch convolutional neural network work properly when part missing occurs.
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3. The Proposed Method

3.1. Overview of the Proposed Method

Given a probe person image, person re-identification targets the most similar persons from gallery
sets according to the distance between appearance representations. Our object is to learn the generic
and robust feature representations of person.

Figure 2 illustrates the architecture of the proposed parts aware person re-identification network,
consisting of four CNN branches which learn person appearance and three body parts feature maps.
The four feature maps are fused to an image descriptor. Three local patches, including head patch,
torso patch and lower-body patch, are inferred from a semantic segmentation map. Four image
patches, including whole person image and three image patches, are resized to the fixed size and then
input into the proposed four-branch network. Each branch learns the representation of one part and
finally is fused by a concatenation layer and a fully connected layer. A softmax layer is used to classify
person ID.
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Figure 2. The architecture of proposed parts aware person re-identification network. The network
consists of four convolutional neural network branches which learn person appearance and three body
parts feature maps respectively, and then fuses four feature maps to an image descriptor. Its input
images include a whole person image, head part patch, torso part patch and lower-body part patch.
Each branch learns the representation of the whole person image or part patch and finally is fused by a
concatenation layer and a fully connected layer.

INPUT: Given an image I € RM*N and its semantic segmentation map S € {0,1,2,3M*N where
semantic labels 0, 1, 2 and 3 represent background, head, torso and lower-body pixels of person image
respectively; M and N are the height and width of person image, respectively.

NETWORK: The bounding boxes {BB;};-1 2 3 of the three local parts are fixed by the minimum
enclosing rectangles of pixels with the same semantic label. The corresponding image patches are
denoted as {P;};—123 (P; is a null matrix if its corresponding part is missing). The person image I and
three local parts patches {P;, P, P3} go through four network branches {CNN;};-1 73 4, each image
passes through one branch. The feature vectors of four network branches are CNNj(I), CNN,(Py),
CNNj3(P;) and CNNy(P3) respectively, CNNj(-) € R,

This paper uses a 3-dimensional vector to represent the absence of all 3 parts:

PA = [061, X2, 063] (1)
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0, size(P;) =0
1, size(P;) >0 °

The proposed DropParts method (detailed in Section 3.2) maps parts absence vector PA to another
3-dimensional vector PA:

where a; =

PA = [, 05, o] )

Scale the part feature vectors and concatenate them with the whole image feature vector, get a

fusion vector:
Normalize(CNNq(I))

~ oy - Normalize(CNN (Py))
F I,P{,P; P3) = 1 .

concate( 1,52 3) OCIZ‘NOTmﬂllZE(CNNg(Pz))

oy-Normalize(CNNy(P3))

®)

where Normalize(-) is a normalized operator. This paper uses batch normalization method [27] to
normalize features of each part branch.

And then a fully connected layer which functions as metric learning [10,30], is used to fuse the
features of the whole person image and three body part patches:

ﬁfuse (I/PLPZ/PS Wzb> - Wﬁconcate(I/PhPZ/P?)) +b (4)

where W c Rdf X (d1+d2+d3+d4), B c Rdf x1

The object of this paper is to learn stable and discriminative person representation
Fiuse (I, P1, P2, P3[W, b).

OUTPUT: At last, a softmax classifier [17] is used to discriminate different person IDs according
to their fused CNN features.

3.2. Person Parts Localization and Parts Alignment

Semantic segmentation associates each pixel of an image with a class label. Due to the ensemble
effects of label of each pixel, bounding boxes inferred from semantic segmentation map are more
stable and accurate than detection methods. This paper uses semantic segmentation map to find the
bounding boxes of human body parts.

U_Net [12] is a popular semantic segmentation method which is good at biomedical image
segmentation. U_Net architecture consists of a contracting path to capture the context and a symmetric
expanding path that enables precise localization. We make three modifications to adopt it for the
person parts segmentation. At first, we reduce the number of pooling operators due to the small size of
person image. Next, we add two residual structures to compensate for the depth reduction. Third, we
do not reduce the size of feature maps by 2 when passing through convolutional layers; as a result, the
output segmentation maps have the same size as input images. Figure 3 illustrates the U_Net structure
we used. We use its segmentation maps to find the bounding boxes of human body parts. Person
images are resized to 192 x 88 and pass through the U_Net network. The size of the output semantic
segmentation maps is also 192 x 88, and then the segmentation maps are resized to the same size as
the original person images. Figure 4 illustrates some examples of part segmentation by super-pixels.

Bounding boxes of person parts are fixed by the parts semantic segmentation map. For the stable
feature extractor, there are two points need to be considered: (1) Large scale differences make extracted
feature instable; (2) Large aspect ratio changes lead to part misalignment. This paper gives up two
kinds of part regions: (1) the part region whose area bellows 5% of its corresponding person image;
(2) the part region whose aspect ratio beyond reasonable scope. We set reasonable scopes [0.75, 1.33]
for head region, [1, 3] for torso region and [1, 3] for lower-body region. We crop the person images
with minimum circumscribed rectangle of its corresponding parts if they are complete.
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Figure 3. U-net architecture used for part segmentation. Each box corresponds to a multi-channel
feature map. The number of channels is denoted on top of the box. The height and width are provided
at the lower left edge of the box. The arrows denote the different operations.

After parts localization, the person image and three local patches are propagated forward through

the proposed four-branch network, which completes parts alignment. An example illustrated in
Figure 4. Figure 4a is an example of parts misalignment. It is the head region in red rectangle region of
left image while it is background in the same location in right image. We locate three body parts and
combine them with the whole image as the input of proposed four-branch CNN network. Figure 4b,c
illustrate two input of the proposed network, which corresponds to two images of Figure 4a. As seen
from Figure 4b,c, the input patches are well aligned.

Figure 4. Example of body part alignment based on part segmentation. (a) An example of part
misalignment; (b) Aligned image and part patches of left image in (a); (c) Aligned image and part
patches of right image in (a).

3.3. Part Missing Representation and DropParts Method

Part missing is another problem of person re-identification in a complex environment, which

happens when meeting with occlusion or parts region is small enough. It degrades the performance of
person re-identification. This paper proposes the DropParts Method to solve part missing problem.
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A normal feature fusion and metric learning are formulated as follows:

CNN; (I)
I CNNy(Py)
F I,P,P,,P;) = 5
Concate( 1,2 3) CNN3 ( PZ) ( )
CNNQ(Ps3)
I:‘:fuse(Ir Pl/ PZ/ P3|W, b) = WFconcate(Ir Plr PZ/ PB) +b (6)

In Equation (5), both normalization and non-normalization of whole person image and part
patches vectors CNN; (P;) are feasible, because subsequent metric learning Equation (6) layer will
reweigh them.

When meeting with parts missing, the usual method set its corresponding patch or feature a zero
matrix or a zero vector. However, it takes the risk of unstable training when all the numbers in a big
block are zero. Norms of feature fusion vector Fconcate(l, Py, P,, P3) with zero blocks and without zero

A A

blocks are quite different, as a result, parameters W and b cannot meet the demands of parts missing
and part non-missing and a compromising solution degrades the performance.

The key is to make the norms of feature fusion vector Fconcate(l, Py, P;, P3) stable when part
missing happens. In this paper, inspired by Dropout [31], we propose a DropParts method to deal
with the parts missing problem.

Dropout [31] is a technique to deal with the over-fitting problem of deep neural networks with a
large number of parameters. For example, the [+1 th original hidden layer is formulated as:

Zl(z+1) _ ngl+1)y<;) +b1(l+1) )
1 1
Yz( +1) _ f<ZZ§ +1)> ®)
where ZZ(IH) denotes ith node of layer [ + 1, yl(lﬂ) denotes the ith active value of layer [ + 1, WZ(ZH)

and b§l+1) are the weights and biases of layer I + 1 respectively. f(-) is the active function.

The key idea of Dropout is to randomly drop units (along with their connection) with probability
p from the neural network during training. During training, dropout samples from an exponential
number of different thinned networks. With Dropout, the [ + 1 th hidden layer is illustrated as:

r](-l) ~ Bernoulli(p) )

7 = r](l>*y<l) (10)

Zl(lﬂ) _ WEIH)?(Z) +bl(l+1) (11)
yl(l+1) _ f(zl(lﬂ)) (12)

At test time, approximate the effect of averaging the predictions of all these thinned networks by
simply using a single un-thinned network that has smaller weights.

wil = pw® (13)

Dropout significantly reduces risks of over-fitting and gives major improvements over other
regularization methods.
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In the proposed DropParts method, we formulate the feature fusion of the whole feature and local
part features as Equation (14).

Normalize(CNN;j (I))
u‘;‘}” Normalize(CNNy(Py))
=2 -Normalize(CNNj3(Py))

(

1Al
-Normalize(CNNy(P3))

Feoncate (I/ Pl/ Py, P3) = (14)

\PAI

where |- is the L1 norm operator. Normalize(-) is a normalization operator, and this paper uses
the batch normalization method [32] to normalize the features. Here, normalization Normalize(-)
is important, because it maintains the stability of L2-norm of feature vectors. The character of
= [&q, ap, 3] is normalized too by been divided by its L1 norm. After this, norms of feature
fusion vector Feoncate (I, P1, P2, P3) is stable.
Then, the metric learning is:

1::fuse(I/ Pl/ PZ/ P3|W/ b) - WFconcate(I/ Pl; PZ/ PS) +b (15)

Parts missing samples are not frequent, which leads to imbalanced sample problem. To solve this
problem, during training, we drop bins of the absence vector PA, and normalize it:

rj ~ Bernoulli(p) (16)
r* PA
b= ¥ PA| 17
Normalize(CNN (I))

o} -Normalize(CNNa(P;)) =

b 18
oy -Normalize(CNN3(P,)) + (19
o-Normalize(CNNy(P3))

?(I,Pl,PZ,P3‘V~V,5) —W

Part missing can be regarded as an example of DropParts during training. So, at test time,
the fusion feature extractor uses the same parameters W and +b:

F(I, Py, P2, P3) = WEconcate(I, P1, P2, P3) +b (19)
4. Experiment

4.1. Network Structure and Experiment Settings

Any network can be used as the baseline of our proposed network. Take 34-layer ResNet [33] as
an example, the architecture of our four-branch network and its feature map sizes (on Market-1501
dataset [8]) of input, hidden and output layers are illustrated in Table 1.

The person image size of the input layer (Branch01) is fixed by the average aspect ratio of all
images of the dataset, and then the sizes of input layer Branch02, Branch(03, Branch04 are fixed by
width/2 x width/2, height/2 x width/2, and height/2 x width/2 respectively. The person image
and part patches are resized to the input sizes of the corresponding CNN branch. In consideration of
the small feature size of res4, we remove the res5 module in Branch02, Branch03, and Branch04. Pool5
layer is the results of global pooling of their previous feature map. We apply our DropParts method to
pool5 feature maps of Branch02, Branch03 and Branch04 to get their scaled_pool5 feature maps, then
concatenate them with pool5 of Branch01 to get F_concate feature map. An inner product operator is
used to map the 1280-dimensional F_concate layer to 512-dimensional F_fuse layer. At last, we use
Softmax loss function to train the model. When testing, we use F_concate feature map, normalized by
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L2-norm, as the features of a person for person re-identification experiments. Euclidean distance is
employed to measure the differences between person features.

Table 1. The architecture of our four-branch network and its feature map size (Market-1501).

NetModule Branch01 Branch02 Branch03 Branch04
input 3 x 224 x 112 3 x 56 x 56 3 x 112 x 56 3 x 112 x 56
convl 64 x 112 x 56 64 x 28 x 28 64 x 56 x 28 64 x 56 x 28
res2 64 x 56 x 28 64 x 14 x 14 64 x 28 x 14 64 x 28 x 14
res3 128 x 28 x 14 128 x 7 x 7 128 x 14 x 7 128 x 14 x 7
res4 256 x 14 x 7 256 x 4 x 4 256 X 7 x 4 256 X 7 x 4
resb 512 x 7 x 4 - - -
pool5 512 x 1 x 1 256 x 1 x 1 256 x 1 x 1 256 x 1 x 1

scaled_pool5 - 256 x 1 x1 256 x 1 x 1 256 x 1 x 1

F_concate 1280 x 1 x 1
F_fuse 512 x 1 x 1

softmax 751 x1x1

Our CNN networks are trained on Caffe framework [34] with a TITAN X GPU. We perform
stochastic gradient descent (SGD) [35] to perform weight updates. Start with a base learning
rate of yyp = 0.01 and gradually decrease it as the training progresses using a step policy:
;i = yopow(y, floor(i/step_size)), where ¢ = 0.0001, step_size = 10,000, i is the current mini-batch
iteration. We use a momentum of p = 0.1 and weight decay A = 0.0005.

Training data augmenting often leads to better generalization. We carry out several primary kinds
of data augmentation in experiments when training our networks: rotation, shifting, blurring, color
jittering and flipping. For rotation, we rotate the image by random degrees between —30° and 30°.
For shifting, we shift the image to the left, right, top and bottom at most 5% of its width or height.
For blurring, we blur the image witha 3 x 3,5 x 5 or 7 x 7 sized Gaussian kernel. For color jittering,
we change the brightness, saturation, and contrast by at most 5% of its original value. For flipping, we
flip the images horizontally with probability 0.5.

4.2. Modified U_Net Performance

At first, we perform experiments on public LIP dataset [36]. There are 20 semantic labels in LIP
dataset: background, hat, hair, glove, sunglasses, upper clothes, dress, coat, socks, pants, jumpsuits,
scarf, skirt, face, left-arm, right-arm, left-leg, right-leg, left-shoe, and right-shoe. We change the
output num of the last layer in U-net architecture (Figure 3) from 4 to 20, to adopt it for the semantic
segmentation tasks on LIP dataset. Our proposed method is compared with current state-of-the-art
methods, including SegNet [37], FCN-8s [38], DeepLabV2 [39], Attention [40], DeepLabV2 + SSL [36],
Attention + SSL [36] and standard U_Net [12]. From Table 2 it can be observed that standard U_Net
network [12] outperforms the state-of-the-art networks on human semantic segmentation dataset
LIP [36], our modified U_Net network outperforms the standard U_Net network by 0.23% at overall
accuracy, 0.26% at mean accuracy and 0.35% at mean IoU index.

We group the 19 semantic labels of LIP dataset into 3 labels: head (hat, hair, sunglasses, scarf,
face), torso (glove, upper clothes, dress, coat, left-arm, right-arm) and lower-body (socks, pants,
jumpsuits, skirt, left-leg, right-leg, left-shoe, right-shoe), and train the modified U_Net network on
LIP dataset with grouped labels at first. We randomly chose 300 images of people from the trainset
of Market-1501 [8], CUHKO3 [17], and DukeMTMC-relD [9], and then labelled them with 4 semantic
labels. Finally, we fine-tuned the modified U_Net network model on LIP dataset with labeled data.
We use the fine-tuned model for part segmentation in the proposed person re-identification method.
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Table 2. Performance of human semantic segmentation on the validation split of LIP.

Method Overall Accuracy Mean Accuracy Mean IoU
SegNet [37] 0.6904 0.2400 0.1817
FCN-8s [38] 0.7606 0.3675 0.2829

DeepLabV2 [39] 0.8266 0.5167 0.4164
Attention [40] 0.8343 0.5255 0.4244
DeepLabV2 + SSL [36] 0.8316 0.5255 0.4244
Attention + SSL [36] 0.8436 0.5494 0.4473
U_Net [12] 0.8499 0.5625 0.4677
U_Net (ours) 0.8522 0.5651 0.4712

Figure 5 illustrates some examples of parts semantic segmentation map and corresponding
bounding boxes of human parts. The top row images are person images, and the bottom images
illustrate their part segmentation by super-pixels and bounding boxes of person parts are demonstrated
with red rectangles. It illustrates the results of parts localization in different situations, including
normal situation (1st column), leg occlusion (2nd and 3rd columns), head occlusion (4th and 5th
columns), detection mistakes (6th to 9th columns) and crowds (10th and 11th columns). As seen
from the localization results in different situations, semantic segmentation-based part localization is
stable and accurate. There are also some mistakes. As seen from the 6th column and the 10th column,
there are some segmentation mistakes in the torso part, which result in the width of the bounding
box of torso part reduced by 7.14% in the 6th column, and height of bounding box of lower-body
part increased by 8.26% in the 10th column. We then randomly chose another images of people
from the trainset of Market-1501 [8], CUHKO03 [17], and DukeMTMC-relD [9], and labelled their part
bounding boxes to evaluate the performance of part location with modified U_Net. The mean IoU
between labeled bounding boxes and inferred ones are 69.15% for head, 82.57% for torso and 76.78% for
low-body, respectively. This is acceptable for part location and can be treated with data augmentation.

=t
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~ " \»
o il A L SN N "

Figure 5. Examples of part semantic segmentation maps and corresponding bounding boxes of parts.

The top row images are RGB images of person, and the bottom images illustrate their part segmentation
by super-pixels and bounding boxes of human parts are demonstrated with red rectangles.

4.3. Person Re-Identification Performance

We performed experiments on three public person re-identification datasets: Market-1501 [8],
CUHKO3 [17], and DukeMTMC-relD [9].

Market-1501 dataset [8] consists of images of 1,501 persons 32,668 images which cropped with
bounding-boxes predicted by DPM detector [41]. These images are captured from 6 different cameras,
including 5 high-resolution cameras, and one low-resolution camera. Overlap exists among different
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cameras. The whole dataset is divided into training set with 12,936 images of 751 persons and testing
set with 3368 query images and 19,732 gallery images of 750 persons.

The CHUKO3 dataset [17] includes 13,164 images of 1,360 people captured by six cameras. Each
identity appears in two disjoint camera views (i.e., 4.8 images in each view on average). Our dataset is
partitioned into training set (1160 persons), validation set (100 persons), and test set (100 persons).

The DukeMTMC:-reID dataset [9] consists of 1,404 identities appearing in more than two cameras
and 408 identities (distractor ID) who appear in only one camera. There are 16,522 training images of
702 identities, 2,228 query images of the other 702 identities and 17,661 gallery images (702 ID + 408
distractor ID).

Our proposed method is compared with current state-of-the-art methods, including IDLA [23],
Part-Aligned [25], PersonNet [26], HydraPlus-Net [27], BoW+kissme [8], Basel. + LSRO [9], DCSL [42],
PDC [5], PSE [11], SVDNet [43], PAN [44] and ATWL [45] to show our considerable performance
advantage over all the existing competitors. In our experiments, we report the cumulative matching
characteristics (CMC) rank-1, rank-5, rank-10 and mean average precision (mAP) to evaluate the
performances of person re-identification methods. And we use state-of-the-art network architectures,
such as VGG [46], ResNet [33], DenseNet [47] and Inception v3 network [48], as our baseline network to
test the performance of different networks in our approach. The results are summarized in Tables 3-5,
where we denote our method as PADP (Parts Alignments with DropParts).

Table 3. Rank-1, rank-5, rank-10 and mAP of various methods on the Market-1501 dataset.

Method Rank-1 Rank-5 Rank-10 mAP
PersonNet [26] 0.3721 - - 0.1857
BoW-+kissme [8] 0.4725 - - 0.2188
PAN [44] 0.7159 0.8389 - 0.5151
HydraPlus-Net [27] 0.7690 0.9130 0.9450 -
Part-Aligned [25] 0.8100 0.9200 0.9470 0.6340
SVDNet [9] 0.8230 0.9230 0.9520 0.6210
PDC [5] 0.8414 0.9273 0.9492 0.6341
AACN [29] 0.8590 - - 0.6687
PSE [11] 0.8770 0.9450 0.9680 0.6900
PADP (VGG19+BN) 0.8821 0.9530 0.9697 0.7086
PADP (Resnet18) 0.8771 0.9510 0.9658 0.6902
PADP (Resnet34) 0.8895 0.9541 0.9742 0.7093
PADP (Resnet50) 0.8824 0.9561 0.9718 0.7028
PADP (Densenet121) 0.8881 0.9513 0.9685 0.7133
PADP (Inception_v3) 0.8884 0.9543 0.9700 0.7056

Table 4. Rank-1, rank-5 and rank-10 of various methods on the CUHKO03 dataset.

Method Rank-1 Rank-5 Rank-10
IDLA [23] 0.5474 0.8650 0.9388
PersonNet [26] 0.6480 0.8940 0.9492
DCSL [42] 0.8020 0.9773 0.9917
SVDNet [43] 0.8180 0.9520 0.9720
Basel. + LSRO [9] 0.8460 0.9760 0.9890
Part-Aligned [25] 0.8540 0.9760 0.9940
PDC [5] 0.8870 0.9861 0.9924
PADP (VGG19+BN) 0.9029 0.9879 0.9943
PADP (Resnet18) 0.8923 0.9820 0.9923
PADP (Resnet34) 0.9083 0.9896 0.9953
PADP (Resnet50) 0.9001 0.9869 0.9951
PADP (Desnet121) 0.9021 0.9842 0.9941

PADP (Inception_v3) 0.9053 0.9849 0.9944
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Table 5. Rank-1, rank-5, rank-10 and mAP of various methods on the DukeMTMC-RelD dataset.

Methods Rank-1 Rank-5 Rank-10 mAP
Basel. + LSRO [9] 0.6768 - - 0.4713
PAN [44] 0.7159 0.8389 - 0.5151
SVDNet [43] 0.7670 0.8640 0.8990 0.5680
AACN [29] 0.7684 - - 0.5925
PSE [11] 0.7980 0.8970 0.9220 0.6200
ATWL(2-stram) [45] 0.7980 - - 0.6340
HA-CNN [28] 0.8050 - - 0.638
PADP (VGG19+BN) 0.8134 0.8720 0.9264 0.6444
PADP (Resnet18) 0.8076 0.8726 0.9221 0.6407
PADP (Resnet34) 0.8156 0.8742 0.9286 0.6455
PADP (Resnet50) 0.8150 0.8755 0.9223 0.6452
PADP (Desnet121) 0.8191 0.8752 0.9287 0.6455
PADP (Inception_v3) 0.8128 0.8748 0.9285 0.6424

From Tables 3-5, it can be seen that the proposed algorithm with different network architectures
outperforms the current state-of-the-art person re-identification methods on average. Due to its simpler
structure, 18-layer Resnet method performs worse than other networks, by 0.9% on Market-1501
dataset, 1.14% on the CUHKO03 dataset, 0.76% on the DukeMTMC-RelID dataset at rank-1. However,
it also outperforms the current state-of-the-art person re-identification methods on three datasets.
On the Market-1501 dataset, our method with 34-layer Resnet outperforms the second best method by
1.25% at rank-1, and the Densenet121 based method outperforms the second best method by 2.33% at
mAP. On the CUHKO03 dataset, our method with 34-layer Resnet outperforms the second best method
by 2.13% at rank-1. On the DukeMTMC-ReID dataset, our method with Densenet121 outperforms the
second best method by 1.41% at rank-1, and 0.75% at mAP.

5. Discussion

To better understand the proposed method, we analyzed it in two aspects: the effect of part
alignment, and the effect of DropParts.

5.1. Effect of Part Alignment

The analysis is performed on DukeMTMC-RelD dataset [9]. The proposed network is compared
with two networks, 34-layer Resnet network and four-branch parts fusion network without DropParts.
The architectures are as follows:

(1) BASE network architecture: Branch01 in Table 1, including input, conv1, res2, res3, res4, res5,
pool5, F_fuse and Softmax layers.

(2) ALIGN network architecture: same as architecture in Table 1 but without scaled_pool5 layer;
when meeting part occlusion, a zero patch is used to replace it.

(3) ALIGN +DROP network architecture: same as architecture in Table 1.

In this experiment, we report the loss curve during training and CMC curve to evaluate the
performances of three networks above.

From Figure 6a, we can see that after 13000 iterations of training, the losses of ALIGN and ALIGN
+DROP network reach the very low level (<0.02) while the loss of BASE network is above 0.12, which
signifies under-fitting of BASE network. As a result, seen from Figure 6b, rank-1 accuracy of BASE
network is lower than of ALIGN and ALIGN +DROP by almost 19%, and CMC curves of ALIGN and
ALIGN +DROP networks are above the CMC curve of BASE network all the time. As seen from the
loss curves and CMC curves, the addition of part alignment and feature fusion result in significant
improvement in the person re-identification performance.
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5.2. Effect of DropParts

We analyzed the role of DropParts by comparing ALIGN with the ALIGN +DROP network.
In Figure 6a, the loss of the ALIGN network can be very low, but the loss of ALIGN +DROP network
is even lower, i.e., below 0.01. Another point is that the losses of ALIGN +DROP network during
training are more stable than ones of ALIGN network which oscillate even at the end of training. These
two points signify well-fitting and easy training of ALIGN +DROP network. This validates the first
function of the DropParts method that it makes the four-branch convolutional neural network work
properly when part missing occurs.

In Figure 6b, CMC curve of ALIGN +DROP network is always above the CMC curve of
BASE network. The addition of DropParts results in improvement in the training and recognition
performance of person re-identification, by 1.37% at rank-1.

5 0.9 -
: 2
2 ww = 0.85 -
2 : &n
g \w\ S 08 -
3 =
2
——ALIGN+DROP < 0.75
2 g —=— ALIGN+DROP
ALIGN 0.7 - ALIGN
1
——BASE 0.65 - ——BASE
o - -
1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 0.6 L
1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20
iteration (x500) ra
(a) (b)

Figure 6. Loss curves and CMC curves. (a) Loss curves of BASE, ALIGN and ALIGN +DROP network
during training; (b) CMC curves of BASE, ALIGN and ALIGN +DROP network during testing.

In order to further analyze the role of DropParts, we investigate the performances on samples
with missing part. Table 6 demonstrates statistics of part missing on Market-1501 [8], CUHKO3 [17]
and DukeMTMC-relD [9] datasets. As seen from Table 6, part missing does not always occur.

Table 6. Statistics of part missing on Market-1501, CUHKO03 and DukeMTMC-relD datasets.

Dataset Head Missing Torso Missing Lower-Body Missing
Market-1501 12.78% 0.50% 0.65%
CUHKO03 0.77% 0.01% 0.59%
DukeMTMC-relD 2.59% 0.03% 0.53%

We evaluate the performance of proposed method with DropParts and without DropParts on
samples with missing parts. The results are summarized in Table 7.

Table 7. Performance of ALIGN and ALIGN +DROP methods on part missing samples.

Market-1501 CUHKO03 DukeMTMC-relD
Methods Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP
ALIGN 0.7334  0.8599 0.6087  0.8589 09752  0.8356  0.7379 0.8564  0.5670

ALIGN +DROP  0.8510 09286  0.6603  0.8998  0.9803 0.8777 0.7991  0.8962  0.6212
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From Table 7, it can be seen that the proposed algorithm outperforms the method without
DropParts by 7.32% at rank-1, 3.79% at rank-5 and 4.93% at mAP on average. On the Market-1501
dataset, our method outperforms our method without DropParts by 11.86% at rank-1. It validates that
the DropParts method can improve the performance of person re-identification.

6. Conclusions

In this paper, we present a new deep architecture deal with parts misalignment, and propose a
DropParts method firstly to solve the parts missing problem. Experiments on standard pedestrian
datasets show the effectiveness of our proposed method.

For the future work, we will continue to improve the models of part localization and matching, by:

(1) Dividing person images into more parts, and improving the performance of parts localization.

(2) Designing an end-to-end model that includes both parts segmentation and re-identification tasks.
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