
applied  
sciences

Article

Adaptive Sliding Mode Trajectory Tracking Control
for Unmanned Surface Vehicle with Modeling
Uncertainties and Input Saturation

Bingbing Qiu , Guofeng Wang *, Yunsheng Fan , Dongdong Mu and Xiaojie Sun

Marine Electrical Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, China;
bbqiu.dmu@gmail.com (B.Q.); yunsheng@dlmu.edu.cn (Y.F.); ddmu.phd@gmail.com (D.M.);
xjsun.phd@gmail.com (X.S.)
* Correspondence: gfwangsh@163.com; Tel.: +86-0411-8472-5623

Received: 23 January 2019; Accepted: 19 March 2019; Published: 25 March 2019
����������
�������

Abstract: In the presence of modeling uncertainties and input saturation, this paper proposes a
practical adaptive sliding mode control scheme for an underactuated unmanned surface vehicle
(USV) using neural network, auxiliary dynamic system, sliding mode control and backstepping
technique. First, the radial basis function neural network with minimum learning parameter method
(MLP) is constructed to online approximate the uncertain system dynamics, which uses single
parameter instead of all weights online learning, leading to a reduction in the computational burdens.
Then a hyperbolic tangent function is adopted to reduce the chattering phenomenon due to the sliding
mode surface. Meanwhile, the auxiliary dynamic system and the adaptive technology are employed
to handle input saturation and unknown disturbances, respectively. In addition, a neural shunting
model is introduced to eliminate the “explosion of complexity” problem caused by the backstepping
method for virtual control derivation. The stability of the closed-loop system is guaranteed by the
Lyapunov stability theory. Finally, simulations are provided to validate the effectiveness of the
proposed control scheme.

Keywords: underactuated USV; trajectory tracking; neural network; adaptive technology;
sliding mode control; input saturation

1. Introduction

With the development of marine technology, unmanned surface vehicle (USV) has attracted
great attention in the field of ocean. This is mainly due to its advantages of being fast, small volume,
low cost, and the ability of autonomous navigation. Based on the above advantages, USV has been
widely used in many applications, such as oil and gas exploration, ocean surveillance, search, rescue
and military [1–5]. However, the performance of the system is significantly decreased due to the
influence of external factors, particularly in the presence of the uncertain system dynamics and external
disturbances. Therefore, it is very important to design a controller with the anti-interference capability
and higher precision for USV.

In recent years, trajectory tracking has been a hot topic of research due to its practical importance.
Trajectory tracking is defined as a vessel being required to follow a reference path with spatial and
temporal constraint, namely, a reference path with an associated time law [6,7]. At present, a variety
of control schemes associated with trajectory tracking control design for surface vessel have been
developed in literature. Global smooth controllers are designed in [8], which achieve the practical
stabilization of arbitrary reference trajectories. In [9], a state feedback based backstepping control
strategy is proposed, which can enhance the steady state performance and control precision of USV.
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However, in actual voyage, the model of USV may change due to external disturbances and other
factors. In order to overcome this difficulty, an adaptive tracking controller based on backstepping
and neural network is developed in [10], in which neural network is hired to handle the unknown
dynamics. Based on the sliding mode control and the minimum learning parameter (MLP) technique,
an adaptive tracking control scheme is proposed in [11], where dynamical uncertainty and time-varying
ocean disturbances are centrally compensated by employing neural network MLP. In addition, for the
trajectory tracking problem of the underactuated USV, the biggest challenge is that the number of
actuators is less than the degree of freedom, which increases the design difficulty of the controller.
Some previous solutions have been published in [12,13]. A trajectory tracking controller is applied to
underactuated surface ships in [12], where the model is represented by numerical methods. Its main
advantage is that the calculation of control actions are obtained, solving a system of linear equations.
In [13], three modified dynamic inversion methods are proposed to solve the tracking control problem
of the underactuated ship , which can remove some of its inherent limitations, making it applicable to
a wide variety of underactuated systems. Based on the above analysis, there are still many problems to
be solved for tracking control of the underactuated USV.

Considering the ship motion control, several authors have contributed a set of novel ideas
and strategies. In [14], a robust adaptive control scheme based on modified function projective
synchronization is proposed, which can be used in various types of synchronization. Based on dynamic
surface control and neural network techniques, a concise adaptive neural network control scheme is
proposed in [15]. Its advantage is that the control law has a concise form and is easy to implement,
but its disadvantage is that it does not take into account control input hysteresis nonlinearity. In [16],
an adaptive fuzzy optimal control method is addressed, which not only guarantees the stability of
the system, but also achieves the optimal control performance. With the consideration of robustness,
sliding mode control [17] is a successful robust control algorithm, which has been widely used in
ship motion control [18–21], especially in practical engineering. Based on backstepping technique
and adaptive dynamical sliding control method, a novel adaptive algorithm is proposed to deal with
unknown disturbances and system uncertainties in [22]. However, there are too many assumptions
about the first derivative of the disturbance and the existence of the thruster. The paper [23] develops a
sliding mode controller based on proportional integral (PI) sliding mode control, in which an adaptive
term is designed to effectively solve the problem of system chattering. The main drawback is that
an integral term may cause the reduced stability margin due to phase lag [24]. In order to further
simplify the model and avoid the underactuation problem, a novel methodology is developed in [25].
Unfortunately, the tracking accuracy is low due to the use of a simple control law that achieves
asymptotic path following. Although there are various problems, the sliding mode control is still
an effective control algorithm to deal with nonlinear control problems. From a practical perspective,
the input saturation is unavoidable due to physical constraints in propulsion systems. If the input
saturation is neglected in control design, it will lead to the instability of the system and even the collapse
of the control system. In the presence of the input saturation, an adaptive impedance controller is
developed for an n-link robotic manipulator in [26], where an auxiliary system is adopted to handle
the input saturation. The paper [27] designs a novel robust adaptive ship trajectory tracking control
law for surface ships, in which the input saturation is approximated using a Gaussian error function.
Hence, the influence of input saturation should be considered in control design.

Based on the discussion above, considering actuator saturation and modeling uncertainties,
an adaptive sliding mode control approach is developed by employing sliding mode control, the MLP
technique, backstepping method and the auxiliary system, which accurately makes the underactuated
USV track a desired trajectory. The primary contributions of this paper are summarized as follows:

(1) A novel adaptive control strategy based on sliding mode control and backstepping method is
presented for the underactuated USV, in which the hyperbolic tangent function and the neural
shunting model are adopted to eliminate the chattering phenomenon and the “explosion of
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complexity” problem of the system, respectively. Comparing with the previous work [28],
it is more effective to implement the control scheme in real practice.

(2) Taking full account of the practical engineering, the input saturation is handled by designing
an auxiliary system. The MLP technique and the adaptive technology are used to deal with
unmodeled dynamics and unknown disturbance bounds, respectively, where the norm of all
the weights is estimated instead of estimating each element. Only two weight-norm related
parameters are required to be updated in the control law.

This brief is organized as follows. In Section 2, problem formulation and preliminaries are
presented. Section 3 illustrates a novel adaptive control scheme for the underactuated USV. The stability
analysis of the whole system is given in Section 4. The simulation results to illustrate the proposed
controller are shown in Section 5. Finally, Section 6 concludes this paper.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation

In this section, two reference frames are considered to study the USV model. The horizontal
plane motion of USV is described by the position and orientation, namely, neglecting roll, pitch and
heave, as illustrated in Figure 1, in which XEOEYE is the earth-fixed inertial frame {i} and xbobyb is the
body-fixed frame {b}. The position (x, y) in {i} represents the actual location of USV, and ψ ∈ (0, 2π)

is course angle. In addition, u, v and r denote the surge velocity, the sway velocity and the yaw rate of
USV, respectively.
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Figure 1. The earth-fixed inertial and the body-fixed frame.

Based on the above analysis, the kinematics and dynamics mathematical model of the three
degrees of freedom [29] can be described as

η̇ = J (ψ) υ

Mυ̇ + C (υ) υ + Dυ = τ + d (t)
(1)

where η = [x, y, ψ]T , υ = [u, v, r]T , J (ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 is the rotation matrix from {b} to

{i}; M =

 m11 0 0
0 m22 m23

0 m32 m33

 is the inertial matrix, and C (υ) ∈ R3×3 is the matrix of Coriolis and
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centripetal terms; D =

 d11 0 0
0 d22 d23

0 d32 d33

 is the damping matrix; τ = [τu, 0, τr]
T , in which τu and τr

denote the surge force and yaw moment, respectively. In practice, the amplitude and change rate of
the equivalent control resultant force and moment are possibly constrained due to physical limitations
of the propulsion system, which can be described as

τj =


τj max, i f τcj > τj max
τcj, i f τj min < τcj < τj max
τj min, i f τcj < τj min

(2)

where τj max and τj min (j = u, r) are the maximum and the minimum control forces or moments, τcj is
the commanded control calculated by adaptive sliding mode controller. In addition, d (t) = [du, dv, dr]

T

represent unknown time-varying ocean disturbances.
Assume that USV is symmetrical, the origin of the attached coordinate system and the barycentre

of USV are coincident [10,30,31]. (1) can be rewritten as the following state-space equations
ẋ = u cos ψ− v sin ψ

ẏ = u sin ψ + v cos ψ

ψ̇ = r
(3)


u̇ = fu +

∆ fu
m11

+ τu
m11

+ du
m11

v̇ = fv +
∆ fv
m22

+ dv
m22

ṙ = fr +
∆ fr
m33

+ τr
m33

+ dr
m33

(4)

where fu = m22
m11

vr − d11
m11

u, fv = −m11
m22

ur − d22
m22

v, fr = (m11−m22)
m33

ur − d33
m33

r, in which

∆ f = [∆ fu, ∆ fv, ∆ fr]
T represents the uncertain system dynamics.

Assumption 1. The reference trajectory (xd, yd) is smooth and differentiable, xd, ẋd, yd and ẏd are all bounded.

Assumption 2. [32] The external disturbances di (i = u, v, r) are bounded by |di| ≤ d∗i , where d∗i are unknown
positive constants.

Control objective: Considering model uncertainty and input saturation, the USV accurately tracks
the reference path (xd, yd) according to the design of the surge force τu and the yaw moment τr.
All state variables are proved to be semi-globally uniformly ultimately bounded.

2.2. Neural Network MLP Method

In control engineering, neural networks are used to approximate unknown uncertainties [33,34],
especially radial basis function (RBF) neural network, which has a strong self-learning ability. The RBF
neural network consisting of input layer, hidden layer and output layer, which can be written as

fn (z) = WT
n Θ (z) + εn (5)

where z = [u, v, r]T and fn (z) (n = u, m) are the input and output of neural network, respectively.
Wn denotes weight vector, and Θ (z) represents Gaussian Function. In addition, εn is approximation
error and |εn| ≤ ε̄n, ε̄n > 0, where ε̄n is an unknown positive number [35,36].

However, all weight vectors need online learning by using the adaptive law in [37–39], which
increases computational complexity. MLP with single parameter online learning takes the place
of RBF neural network to reduce the computational burdens, and it is easy to be implemented in
practice. The principle is to transform the weights of neural network into single parameter, that is,
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ϑ = ‖W‖2, where ϑ is a positive number. In addition, ϑ̂ is the estimate of ϑ, and ϑ̃ = ϑ− ϑ̂ represents
estimation error.

3. Control Design

3.1. Structure of the Proposed Adaptive Control Scheme

In this subsection, a novel adaptive sliding mode trajectory tracking control strategy is proposed
for the underactuated USV with unmodeled dynamics and unknown time-varying ocean disturbances.
In Figure 2, the virtual control laws are designed to stabilize the position errors, and a neural shunting
model is introduced to handle the “explosion of complexity” caused by the differential of the velocity
tracking errors. Meanwhile, in order to enhance the stability of the system, the neural network is used
to approximate unmodeled dynamics, and the adaptive technology is used to estimate the bounds
of unknown time-varying disturbances. In addition, the input saturation issue is solved by hiring an
auxiliary design system.

 Neural 

shunting 

model

( ),d dx y  Virtual 

control 

law

USV  

Model

Surge motion 

Controller

Yaw motion 

Controller

In 

saturation( ),x y ( ),u v

( )d t

yaw rate feedback

speed feedback

+

-

jtcjt
 Adaptive 

technology

( ), ,u v r )

Neural 

network

( ),e eu v

Figure 2. The structure of the proposed adaptive sliding mode control scheme for the underactuated
USV.

3.2. Adaptive Sliding Mode Trajectory Tracking Control Design

3.2.1. Virtual Control Law

Define the position errors {
xe = x− xd
ye = y− yd

(6)

Differentiating the position errors (6), we have{
ẋe = u cos ψ− v sin ψ− ẋd
ẏe = u sin ψ + v cos ψ− ẏd

(7)

Define the velocity errors as {
ue = u− αu

ve = v− αv
(8)

where αu and αv represent virtual control laws.
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In order to stabilize the position errors, the virtual control laws are designed as αu = ẋd cos ψ + ẏd sin ψ− λxe√
x2

e+y2
e+M

cos ψ− λye√
x2

e+y2
e+M

sin ψ

αv = −ẋd sin ψ + ẏd cos ψ + λxe√
x2

e+y2
e+M

sin ψ− λye√
x2

e+y2
e+M

cos ψ
(9)

where λ and M are positive constants.
Substituting (9) into (7), we obtain ẋe = ue cos ψ− ve sin ψ− λxe√

x2
e+y2

e+M

ẏe = ue sin ψ + ve cos ψ− λye√
x2

e+y2
e+M

(10)

Therefore, when ue and ve converge to zero, define the Lyapunov function V1 = 1
2 x2

e +
1
2 y2

e ,
the time derivative of V1 is written as

V̇1 = xe ẋe + yeẏe

= −
λ
(
x2

e + y2
e
)√

x2
e + y2

e + M
≤ 0 (11)

According to the above analysis, as long as we can stabilize the velocity errors ue and ve,
the position errors xe and ye asymptotically converge to zero.

Remark 1. In [11], when |xe| and |ye| are relatively large, the virtual control laws can exceed the velocity range
of USV, and they can lead to system instability or controller crash. However, the designed virtual control laws of
this paper can avoid the above problem.

3.2.2. Surge Motion Control Law

In this section, the main purpose is that the surge control law is designed to stabilize ue.
Meanwhile, the neural network MLP, the adaptive technology and the auxiliary dynamic system are
used to handle unmodeled dynamics, unknown disturbance bounds and input saturation, respectively.

Define the velocity error sliding surface s1 as

s1 = ue + γ1

∫ t

0
ue (ι) dι (12)

where γ1 is a positive constant.
To avoid the differential expansion, a neural shunting model is introduced to realize the differential

of αu, which is expressed as

β̇u = −Auβu + (Bu − βu) f (αu)− (Du + βu) g (αu) (13)

where β̇u denotes the output of the neural shunting model.

Remark 2. Neural shunting model [40] originally belonged to the biological category, which has been applied
to the field of robot control [41,42], and it can be expressed in the following form

β̇ j = −Ajβ j +
(

Bj − β j
)

f
(
αj
)
−
(

Dj + β j
)

g
(
αj
)

(14)

where Aj, Bj and Dj (j = u, r) denote three design parameters, αj and β j represent the input and output of
the system, respectively. In addition, f

(
αj
)

and g
(
αj
)

represent the threshold functions of model, in which

f
(
αj
)
=

{
αj, αj ≥ 0
0, αj < 0

, g
(
αj
)
=

{
0, αj > 0
−αj, αj ≤ 0

.
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The derivative of s1 is written as

ṡ1 =
1

m11
(m11 fu + ∆ fu + τu + du)− β̇u + γ1 (u− αu) (15)

To reduce the chattering problem and the influence of disturbances, a sliding mode control law
with hyperbolic tangent function is adopted to make the sliding surface converge to zero, which can
be written as

ṡ1 = −d̂∗u tanh (s1/ε1)− ρ1s1 (16)

where ρ1 and ε1 represent two design parameters, d̂∗u is the estimate of d∗u bound. In addition,
the corresponding estimated error is d̃∗u = d∗u − d̂∗u, and the adaptive law with “κ-correction”
is proposed as

˙̂d∗u = Γ1

(
s1 tanh (s1/ε1)− κ1

(
d̂∗u − d∗u0

))
(17)

where Γ1 and κ1 are positive design parameters, d∗u0 is the initial value.
Then the surge motion control law is designed as

τcu = −m11 fu − ∆ f̂u + m11 β̇u − γ1m11ue − d̂∗u tanh (s1/ε1)− ρ1s1 (18)

where ∆ f̂u = 1
2 s1ϑ̂1ΘTΘ is the estimate of fu, the corresponding adaptive law is

˙̂ϑ1 = ς1

(
1
2

s2
1ΘTΘ− φ1ϑ̂1

)
(19)

where ς1 and φ1 are positive constants. In addition, the estimated error is ϑ̃1 = ϑ1 − ϑ̂1.
In order to deal with the problem of input saturation (2), an auxiliary dynamic system [43,44]

is constructed as

ζ̇u =

 −Kζuζu − |s1∆τu |+0.5∆τ2
u

‖ζ2
u‖ · ζu + ∆τu, ‖ζu‖ ≥ σu

0, ‖ζu‖ < σu

(20)

where ζu is a state variable, ∆τu = τu − τcu, Kζu is a positive constant, and σu > 0 is a small
design constant.

The surge motion control law τcu can be modified by

τcu = −1
2

s1ϑ̂1ΘTΘ + h1 − d̂∗u tanh (s1/ε1)− ρ1s1 + ks1ζu (21)

where h1 = m11 β̇u − γ1m11ue −m11 fu, ks1 is a positive design parameter.

3.2.3. Yaw Motion Control Law

A second-order sliding surface is defined as

s2 = v̇e + γ2ve (22)

where γ2 is a positive constant.
The time derivative of (22) is

ṡ2 = v̈− α̈v + γ2 (v̇− α̇v) (23)
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where α̇v = χ− rαu, in which

χ = −
(

ẍd − λ
(

µ−1 − µ−3x2
e

)
ẋe + λµ−3xeyeẏe

)
sin ψ

+
(

ÿd − λ
(

µ−1 − µ−3y2
e

)
ẏe + λµ−3xeye ẋe

)
cos ψ (24)

where µ =
√

x2
e + y2

e + M.
From Remark 2, to further avoid the computational explosion in the time derivative of χ, let χ pass

a neural shunting model, which can be written as

β̇r = −Arβr + (Br − βr) f (χ)− (Dr + βr) g (χ) (25)

where β̇r denotes the output of the neural shunting model.
Then the time derivative of α̇v is

α̈v = β̇r − ṙαu − rα̇u (26)

Combining (4), (13), (25) and (26), we have

ṡ2 = rβ̇u − β̇r + γ2 (v̇− α̇v) +
αu

m33
(m33 fr + τcr + dr) +

∆ fm

m33
(27)

where ∆ fm = m33v̈ + αu∆ fr.
Similarly, a hyperbolic tangent function is used to reduce the chattering problem, and we have

ṡ2 = −d̂∗r tanh (s2/ε2)− ρ2s2 (28)

where ρ2 and ε2 are two design parameters, d̂∗r is the estimate of d∗r , and the estimated error is
d̃∗r = d∗r − d̂∗r . The adaptive law with “κ-correction” is selected as

˙̂d∗r = Γ2

(
s2 tanh (s2/ε2)− κ2

(
d̂∗r − d∗r0

))
(29)

where Γ2 and κ2 represent positive constants, d∗r0 is the initial value.
Then the yaw motion control law is designed as

τcr =
1

αu

(
m33

(
β̇r − rβ̇u − γ2 (v̇− α̇v)

)
− ∆ f̂m − d̂∗r tanh (s2/ε2)− ρ2s2

)
−m33 fr (30)

where ∆ f̂m = 1
2 s2ϑ̂2ΘTΘ, the corresponding adaptive law is

˙̂ϑ2 = ς2

(
1
2

s2
2ΘTΘ− φ2ϑ̂2

)
(31)

where ς2 and φ2 are positive constants, and the estimated error is ϑ̃2 = ϑ2 − ϑ̂2.
For the input saturation problem of the yaw motion control, the auxiliary dynamic system

is designed as

ζ̇r =

 −Kζrζr − |s2∆τr |+0.5∆τ2
r

‖ζ2
r‖ · ζr + ∆τr, ‖ζr‖ ≥ σr

0, ‖ζr‖ < σr

(32)

where ζr is a state variable, ∆τr = τr − τcr, Kζr is a positive constant, and σr > 0 is a small
design constant.
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The yaw motion control law τcr is modified by

τcr =
1

αu

(
h2 −

1
2

s2ϑ̂2ΘTΘ− d̂∗r tanh (s2/ε2)− ρ2s2 + ks2ζr

)
−m33 fr (33)

where h2 = m33
(

β̇r − rβ̇u − γ2 (v̇− α̇v)
)
, ks2 is a positive design parameter.

Remark 3. In practice, the surge velocity satisfies u > 0. From (30), τr will produce singular value when
αu = 0. Through the assumption m22αu −m11u > 0 in [28], we have αu 6= 0.

4. Stability Analysis

Define the errors Φu and Φr {
Φu = βu − αu

Φr = βr − χ
(34)

The time derivative of Φu is

Φ̇u = β̇u − α̇u

= − (Au + f (αu) + g (αu)) βu + (Bu f (αu)− Dug (αu))− Xu (35)

where Xu = ∂αu
∂ẋd

ẍd +
∂αu
∂ÿd

ÿd +
∂αu
∂xe

ẋe +
∂αu
∂ye

ẏe +
∂αu
∂ψ ψ̇.

According to the nature of the neural shunting model, if Bu = Du, we have

Φ̇u = −θuβu + Buαu − Xu (36)

where θu = Au + f (αu) + g (αu).
Similarly, if Br = Dr, the time derivative of Φr is

Φ̇r = −θrβr + Brχ− Xr (37)

where θr = Ar + f (χ) + g (χ), Xr =
∂χ
∂ẍd

...
x d +

∂χ
∂ÿd

...
y d +

∂χ
∂ẋe

ẍe +
∂χ
∂ẏe

ÿe +
∂χ
∂ψ ψ̇.

Remark 4. [10] Xu and Xr are bounded by |Xu| ≤ X̄u and |Xr| ≤ X̄r, where X̄u and X̄r are normal numbers.

Lemma 1. [45] For any ε > 0 and ξ ∈ R, the following inequality can be satisfied

0 ≤ |ξ| − ξ tanh
(
ξ
/

ε
)
≤ κ3ε (38)

where κ3 is a constant that satisfies κ3 = e−(κ3+1).

Theorem 1. Consider the underactuated USV model (3) and (4) in the presence of unmodeled dynamics and
unknown disturbances, suppose that Assumption 1 and Assumption 2 are satisfied, under the surge control
law (21) and the yaw motion law (33), together with the adaptive laws (17), (19), (29) and (31), from the
appropriately chosen parameters λ, M, γ1, γ2, ρ1, ρ2, ε1, ε2, Γ1, Γ2, κ1, κ2, ζ1, ζ2, ς1, φ2, Kζu, Kζr, ks1 and ks2,
all signals in the closed-loop system are guaranteed to be semi-globally uniformly ultimately bounded (UUB).

Proof of Theorem 1. Consider the following Lyapunov function

V =
1
2

m11s2
1 +

1
2

m33s2
2 +

1
2

Γ−1
1 d̃∗u

2 +
1
2

Γ−1
2 d̃∗v

2 +
1
2

ς−1
1 ϑ̃2

1 +
1
2

ς−1
2 ϑ̃2

2+
1
2 ∑

i=u,r

(
Φ2

i + ζ2
i

)
(39)
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The time derivative of (39) is

V̇ = m11s1 ṡ1 + m33s2 ṡ2 + Γ−1
1 d̃∗u

˙̃d∗u + Γ−1
2 d̃∗v

˙̃d∗v + ς−1
1 ϑ̃1

˙̃ϑ1 + ς−1
2 ϑ̃2

˙̃ϑ2 + ∑
i=u,r

(
ΦiΦ̇i + ζi ζ̇i

)
(40)

Substituting (15), (17), (27), (29) into (40) yields

V̇ = s1

(
WT

u Θ + εu −
1
2

s1ϑ̂1ΘTΘ− ρ1s1 + d∗u − d̂∗u tanh (s1/ε1) + ks1ζu + ∆τu

)
+ s2

(
WT

mΘ + εm −
1
2

s2ϑ̂2ΘTΘ− ρ2s2 + d∗r − d̂∗r tanh (s2/ε2) + ks2ζr + ∆τr

)
− d̃∗u

(
tanh (s1/ε1)− κ1

(
d̂∗u − d∗u0

))
− d̃∗r

(
tanh (s2/ε2)− κ2

(
d̂∗r − d∗r0

))
+ ς−1

1 ϑ̃1
˙̃ϑ1 + ς−1

2 ϑ̃2
˙̃ϑ2 + ∑

i=u,r

(
ΦiΦ̇i + ζi ζ̇i

)
≤ s1WT

u Θ + εus1 −
1
2

s2
1ϑ̂1ΘTΘ− ρ1s2

1 + d∗u (|s1| − s1 tanh (s1/ε1)) + ks1s1ζu

+ s2WT
mΘ + εms2 −

1
2

s2
2ϑ̂2ΘTΘ− ρ2s2

2 + d∗r (|s2| − s2 tanh (s2/ε2)) + ks2s2ζr

+ κ1

(
d∗u − d̂∗u

) (
d̂∗u − d∗u0

)
+ κ2

(
d∗r − d̂∗r

) (
d̂∗r − d∗r0

)
+ ς−1

1 ϑ̃1
˙̃ϑ1 + ς−1

2 ϑ̃2
˙̃ϑ2

+ ∆τus1 + ∆τrs2 + ∑
i=u,r

(
ΦiΦ̇i + ζi ζ̇i

)
(41)

According to Young’s inequality, we have

2s1WT
u Θ ≤ s2

1ϑ1ΘTΘ + 1
2s2WT

mΘ ≤ s2
2ϑ2ΘTΘ + 1

(42)

κ1

(
d∗u − d̂∗u

) (
d̂∗u − d∗u0

)
≤ − κ1

2

(
d∗u − d̂∗u

)2
+ κ1

2 (d
∗
u − d∗u0)

2

κ2

(
d∗r − d̂∗r

) (
d̂∗r − d∗r0

)
≤ − κ2

2

(
d∗r − d̂∗r

)2
+ κ2

2 (d
∗
r − d∗r0)

2
(43)

From Lemma 1, (42) and (43), we obtain

V̇ ≤ εus1 − ρ1s2
1 +

1
2

s2
1ϑ̃1ΘTΘ + d∗uκ3ε1 + ks1s1ζu + εms2 − ρ2s2

2 +
1
2

s2
2ϑ̃2ΘTΘ

+ d∗r κ3ε2 + ks2s2ζr −
κ1

2

(
d∗u − d̂∗u

)2
+

κ1

2
(d∗u − d∗u0)

2 − κ2

2

(
d∗r − d̂∗r

)2
+

κ2

2
(d∗r − d∗r0)

2

− ϑ̃1

(
1
2

s2
1ΘTΘ− φ1ϑ̂1

)
− ϑ̃2

(
1
2

s2
2ΘTΘ− φ2ϑ̂2

)
+ ∆τus1 + ∆τrs2 + ∑

i=u,r

(
ΦiΦ̇i + ζi ζ̇i

)
+ 1

≤ εus1 − ρ1s2
1 + d∗uκ3ε1 + ks1s1ζu + εms2 − ρ2s2

2 + d∗r κ3ε2 + ks2s2ζr −
κ1

2

(
d∗u − d̂∗u

)2

+
κ1

2
(d∗u − d∗u0)

2 − κ2

2

(
d∗r − d̂∗r

)2
+

κ2

2
(d∗r − d∗r0)

2 + φ1ϑ̃1ϑ̂1 + φ2ϑ̃2ϑ̂2

+ ∆τus1 + ∆τrs2 + ∑
i=u,r

(
ΦiΦ̇i + ζi ζ̇i

)
+ 1 (44)
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Define θi = Bi, substituting (34), (36) and (37) into (44) yields

V̇ ≤ εus1 − ρ1s2
1 + εms2 − ρ2s2

2 + d∗uκ3ε1 + d∗r κ3ε2 + ks1s1ζu + ks2s2ζr

− κ1

2

(
d∗u − d̂∗u

)2
− κ2

2

(
d∗r − d̂∗r

)2
− θuΘ2

u − θvΘ2
v +

κ1

2
(d∗u − d∗u0)

2

+
κ2

2
(d∗r − d∗r0)

2 + φ1ϑ̃1ϑ̂1 + φ2ϑ̃2ϑ̂2 + ∆τus1 + ∆τrs2 −ΦuXu −ΦvXv

+ ∑
i=u,r

(
ζi ζ̇i
)
+ 1 (45)

It is clear that ζu ζ̇u = −Kζuζ2
u −

|s1∆τu |+0.5∆τ2
u

‖ζ2
u‖ · ζ2

u + ∆τuζu, 2∆τuζu ≤ ∆τ2
u + ζ2

u. Similarly, ζr also

satisfies the above conditions. Thus we have

V̇ ≤ εus1 − ρ1s2
1 + εms2 − ρ2s2

2 + d∗uκ3ε1 + d∗r κ3ε2 + ks1s1ζu + ks2s2ζr

− κ1

2

(
d∗u − d̂∗u

)2
− κ2

2

(
d∗r − d̂∗r

)2
− θuΘ2

u − θvΘ2
v +

κ1

2
(d∗u − d∗u0)

2

+
κ2

2
(d∗r − d∗r0)

2 + φ1ϑ̃1ϑ̂1 + φ2ϑ̃2ϑ̂2 −ΦuXu −ΦrXr

−
(

Kζu −
1
2

)
ζ2

u −
(

Kζr −
1
2

)
ζ2

r + 1 (46)

Through inequality 2ϑ̃1ϑ̂1 ≤ ϑ2
1 − ϑ̃2

1, 2ϑ̃2ϑ̂2 ≤ ϑ2
2 − ϑ̃2

2 and Young’s inequality, we obtain

V̇ ≤ −1
2
(ρ1 − ks1 − 1) s2

1 −
1
2
(ρ2 − ks2 − 1) s2

2 −
κ1

2

(
d∗u − d̂∗u

)2
− κ2

2

(
d∗r − d̂∗r

)2

− φ1

2
ϑ̃2

1 −
φ2

2
ϑ̃2

2 −
(

θu −
1
2

)
Θ2

u −
(

θr −
1
2

)
Θ2

r −
(

Kζu −
1
2

ks1 −
1
2

)
ζ2

u

−
(

Kζr −
1
2

ks2 −
1
2

)
ζ2

r +
κ1

2
(d∗u − d∗u0)

2 +
κ2

2
(d∗r − d∗r0)

2 +
φ1

2
ϑ2

1

+
φ2

2
ϑ2

2 +
1
2

X̄2
u +

1
2

X̄2
r +

1
2

ε2
u +

1
2

ε2
m + d∗uκ3ε1 + d∗r κ3ε2 + 1 (47)

Set S1 = 1
2 (ρ1 − ks1 − 1) > 0, S2 = 1

2 (ρ2 − ks2 − 1) > 0, S3 = κ1
2 , S4 = κ2

2 , S5 = φ1
2 , S6 = φ2

2 ,

S7 = θu − 1
2 > 0, S8 = θv − 1

2 > 0, S9 =
(

Kζu − 1
2 ks1 − 1

2

)
> 0, S10 =

(
Kζr − 1

2 ks2 − 1
2

)
> 0,

Λ = κ1
2 (d

∗
u − d∗u0)

2 + κ2
2 (d

∗
r − d∗r0)

2 + φ1
2 ϑ2

1 +
φ2
2 ϑ2

2 +
1
2 X̄2

u + 1
2 X̄2

r + 1
2 ε2

u + 1
2 ε2

m + d∗uκ3ε1 + d∗r κ3ε2 + 1.
Then (47) can be written as

V̇ ≤ −S1s2
1 − S2s2

2 − S3d̃∗u
2 − S4d̃∗r

2 − S5ϑ̃2
1 − S6ϑ̃2

2 − S7Θ2
u − S8Θ2

r − S9ζ2
u − S10ζ2

r + Λ (48)

Define S := min {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10}, we have

V̇ ≤ −2SV + Λ (49)

Solving (49), we obtain the following inequality

V ≤
(

V (0)− Λ
2S

)
e−2St +

Λ
2S

≤ V (0) e−2St +
Λ
2S

, ∀t > 0 (50)

Based on the above analysis, it is clear from (50) that V is bounded by Λ
2S . Thus, the formation

errors are guaranteed to be uniformly ultimately bounded.
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5. Numerical Simulation

In this section, the main purpose is to verify the effectiveness of the proposed method.
For the sake of comparison, the proposed scheme is compared with a sliding mode robust
controller (Zhu, et al., 2012) [28]. The underactuated USV is selected as a 1:70 CyberShip II [46,47],
and the corresponding parameters of the dynamics are described in Table 1. Meanwhile, the control
parameters and initial conditions are illustrated in Table 2.

Table 1. Parameters of CyberShip II.

Parameters Value

m11 25.8
m22 33.8
m33 2.76
d11 0.72
d22 0.8896
d33 1.9

Table 2. Initial conditions and controller parameters.

Initial Condition Controller Parameters

x (0) = 0m Au = 1, Ar = 1, τu max = 250, τu min = −250
y (0) = 0m τr max = 450, τr min = −450, Kζu = 4, σu = 0.1

ψ (0) = 0rad Kζr = 4, σr = 0.1, λ = 4.5, M = 2, γ1 = 0.1
u (0) = 0m/s γ2 = 0.1, ε1 = 1, ε2 = 0.05, ρ1 = 0.1, ρ2 = 0.1
v (0) = 0m/s Γ1 = 2.8, κ1 = 0.06, Γ2 = 2, κ2 = 0.005, ς1 = 10, d∗u0 = 0.1

u (0) = 0rad/s φ1 = 0.8, ς2 = 5, φ2 = 0.5, ks1 = 1, ks2 = 1, d∗r0 = 0.1

In the simulation, the desired trajectory is described as xd = 300 sin (0.03t), yd = 300 cos (0.03t),
and the unmodeled dynamics are selected as ∆ fu

∆ fv

∆ fr

 =

 −0.2d11u2 − 0.1d11u3

−0.2d22v2 − 0.1d22v3

−0.2d33r2 − 0.1d33r3

 (51)

Meanwhile, the time-varying ocean disturbances are chosen as du

dv

dr

 =

 1 + 1.5 sin (0.2t) + 0.5 cos (0.5t)
1 + 1.2 sin (0.1t) + 0.1 cos (0.4t)
1 + 1.3 sin (0.5t) + 0.2 cos (0.3t)

 (52)

In addition, in order to further verify the superiority of the proposed controller, MIAC index [27]
is hired to quantify the tracking errors je (j = x, y), which can be expressed as

MIAC =
1

t f − t0

∫ t f

t0

|je (ι)|dι (53)

where t f represents simulation time.
The simulation results are depicted in Figures 3–10, and the performance indices are summarized

in Table 3.
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Figure 3. Tracking performance results of circular trajectory.
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Figure 4. Position tracking results of circular trajectory.
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Figure 5. Tracking errors results of circular trajectory.
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Figure 6. Velocity errors results of circular trajectory.
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Figure 7. Control inputs of circular trajectory.
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Table 3. Performance index of MIAC.

MIAC Value

the proposed scheme MIACxe = 0.318
MIACye = 17.11

(Zhu, et al., 2012) MIACxe = 2.259
MIACye = 29.45

Figure 3 shows the simulation results for circular tracking trajectory with the uncertain system
dynamics and time-varying ocean disturbances. From Figure 3, it is obvious that two controllers can
track the given trajectory accurately. However, the proposed scheme converges faster than that of
(Zhu et al., 2012). Figure 4 demonstrates the position tracking results. It is evident that the proposed
scheme provides better tracking performance than that of (Zhu, et al., 2012). The results of the tracking
errors and the velocity errors are presented in Figures 5 and 6, respectively. As shown in Figures 5
and 6, it is clearly observed that the tracking errors and the velocity errors of the proposed scheme
converge to zero quickly and still keep at the balance point. However, the tracking errors and the
velocity errors of (Zhu, et al., 2012) have fluctuations and steady-state errors. Figure 7 depicts the
control inputs τu and τr of two controllers. We can see that the surge force τu has reached saturation
at the beginning. This is mainly because a large gain or differential produces large initial value that
exceeds the limit of the propulsion system. However, τu and τr of (Zhu, et al., 2012) also have the
problem of input saturation in the control process, and the moment τr has the chattering problem
due to saturation function. Figure 8 shows that the designed adaptive law can accurately estimate
the bounds of the unknown disturbances. Figure 9 depicts that the approximation errors of neural
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network converge to zero. In addition, the virtual control law αu is shown in Figure 10, and it is clearly
observed that αu is not equal to zero.

From Table 3, we can see that the performance index of the proposed scheme is [0.318, 17.11]T ,
and it is only [14.08%, 58.09%]T of (Zhu et al., 2012). Based on the above analysis, in terms
of tracking precision, convergence speed and control efforts, the proposed scheme has the best
control performance.

6. Conclusions

In this paper, a novel adaptive sliding mode control scheme is developed for tracking control of
the underactuated USV. Combining neural network, adaptive technique, auxiliary dynamic system and
sliding mode control, a robust adaptive tracking controller is presented subject to the uncertain system
dynamics and unknown external disturbances, in which the neural network is used to approximate
unmodeled dynamics. In order to get closer to practical engineering, both the unknown disturbances
and actuator saturation can be solved by constructing adaptive technique and auxiliary dynamic
system, respectively. Meanwhile, a hyperbolic tangent function and neural shunting model are
adopted to handle the chattering phenomenon and the differential explosion problem, respectively.
In addition, the proposed method is then verified according to computer simulation and compared
with another method. In the future, the proposed algorithm can be further improved, and collision
and obstacle avoidance may also be considered in control design.
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