
applied  
sciences

Article

Adaptive Backstepping Sliding Mode Control Based
RBFNN for a Hydraulic Manipulator Including
Actuator Dynamics

Duc-Thien Tran , Hoai-Vu-Anh Truong and Kyoung Kwan Ahn *

School of Mechanical Engineering, University of Ulsan Daehakro 93, Nam-gu, Ulsan 680-764, Korea;
thientd@hcmute.edu.vn (D.-T.T.); truonganh241292@gmail.com (H.-V.-A.T.)
* Correspondence: kkahn@ulsan.ac.kr; Tel.: +82-52-259-2282

Received: 4 February 2019; Accepted: 16 March 2019; Published: 26 March 2019
����������
�������

Abstract: In this paper, an adaptive robust control is investigated in order to deal with the unmatched and
matched uncertainties in the manipulator dynamics and the actuator dynamics, respectively. Because
these uncertainties usually include smooth and unsmooth functions, two adaptive mechanisms
were investigated. First, an adaptive mechanism based on radial basis function neural network
(RBFNN) was used to estimate the smooth functions. Based on the Taylor series expansion, adaptive
laws derive for not only the weighting vector of the RBFNN, but also for the means and standard
derivatives of the RBFs. The second one was the adaptive robust laws, which is designed to estimate
the boundary of the unsmooth function. The robust gains will increase when the sliding variable leave
the predefined region. Conversely, they will significantly decrease when the variable approaches the
region. So, when these adaptive mechanisms are derived with the backstepping technique and sliding
mode control, the proposed controller will compensate the uncertainties to improve the accuracy.
In order to prove stability and robustness of the controlled system, the Lyapunov approach, based
on backstepping technique, was used. Some simulation and experimental results of the proposed
methodology in the electrohydraulic manipulator were presented and compared to other control to
show the effectiveness of the proposed control.

Keywords: hydraulic actuator; manipulator; radial basis function neural network; backstepping
technique; Taylor series expansion; Lyapunov approach

1. Introduction

Due to advantages such as high load efficiency, small size-to-power ratio, and fast response,
hydraulic actuators have been widely investigated in construction [1,2], aerospace [3], motion
simulator [4], as well as robotic area [5–7]. Boston Dynamics’ hydraulic robots such as BigDog [5],
Atlas [6], and SARCOS’s robot exoskeletons [7] are some examples of advanced hydraulic robot system.
One of the crucial challenges in control of the hydraulic manipulator is undesired behavior due to
extremely nonlinear behaviors of the system and actuator dynamics, uncertainties of the system, and
external disturbance.

In previous works [8,9], the actuator dynamics were usually excluded from the manipulator
dynamics to simplify the control procedure. However, the uncertainties in actuator dynamics affects
the control performance, as well as the stability of the whole system [10]. Consequently, the actuator
dynamics have been considered in robotic control design in recent researches [10–18]. The system
dynamics arises both unmatched and matched uncertainties in manipulator dynamics and actuator
dynamics, respectively. Many studies have been provided to deal with these problems, which can
be divided into two categories. Firstly, some advanced controllers have been investigated on system
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dynamics which were expressed by taking derivative of the acceleration variable of the manipulator
to including the actuator dynamics [10–13]. Their results proved the effectiveness of this approach.
However, they meet the observable problems due to the noise measurement. On the other hand, some
advanced controllers have been employed on the system dynamics, which includes the manipulator
dynamics and actuator dynamics, independently [14–17]. So, they take advantages of the sensors which
had already been equipped in the system. Additionally, these controllers have been developed based
on the backstepping technique because it is well-known as a good technique for handling the matched
and unmatched uncertainties [19]. The main property of backstepping design, is that it stabilizes the
system states through a step-by-step recursive process [20]. However, classical backstepping design
mainly supposes that the uncertainties and the disturbance are constant or slowly altering. To enhance
the compensation capability of the backstepping control, some adaptive laws [21] have been used to
cope with the uncertainties. But, the derivatives of the model uncertainty and the disturbance cannot
reach to zero, the backstepping with adaptive laws is no longer relevant.

The sliding mode control (SMC) has been extensively used to control uncertain nonlinear systems
with high dynamic uncertainties because of its robustness [22]. The fundamental idea of the SMC is
to use a discontinuous control term for driving the controlled system’s error state variables toward
zero. Chattering effect may be activated in cases of large control gains used [23]. So, the adaptive
mechanisms [24–28] have been provided to eliminate this effect and to improve the ability of the
SMC, which is named an adaptive SMC (ASMC). However, the SMC is not good at dealing with
the unmatched uncertainties in the nonlinear system. Considering the characteristics of ASMC and
backstepping, it is possible to combine these methods together for reserving their advantages and
reducing their limitation at the same time. In previous studies [14,15,17], the adaptive backstepping
sliding mode control was applied to a manipulator including electric actuator dynamics for position
control problem. The adaptive mechanism were developed based on linear regressor method [14,17],
and least square-support vector machine [15]. Although their results proved that these controllers dealt
well with the uncertainties and disturbances. Their structure and initial values are usually selected by
designer’s experiences, so it is challenging to employ them in practice.

Based on the works mentioned above, this paper presents an adaptive backstepping sliding mode
control for position tracking control of a hydraulic manipulator including actuator dynamics. Because
the actuator dynamics are considered in the control design, the system will include both the unmatched
uncertainties in the manipulator dynamics and matched uncertainties in the actuator dynamics.
Furthermore, the uncertainties usually contain both the unsmooth and smooth functions. Then,
this paper will employ two adaptive mechanisms based on sliding mode control and backstepping
technique. The main contributions of the paper are presented as follows:

- Since the adaptive approximators are developed based on the neural network and the Taylor
series expansion, they can adapt not only the weighting vector, but also the mean and
standard derivative of the gaussian function in the neural network to estimate the smooth
functions effectively.

- The adaptive switching gain laws are provided to handle the unsmooth function without the
predefined boundary of uncertainties. When it works together with the adaptive approximators,
these adaptive mechanisms will help to improve the accuracy.

- The backstepping technique and Lyapunov approach theoretically prove the stability of the whole
system with the existence of the matched and unmatched uncertainties.

- Finally, some simulations and experiments are carried out and compared with PID and
backstepping sliding mode control to verify the efficiencies of proposed control.

The paper is organized as follows: Section 2 presents an electro-hydraulic manipulator dynamic,
and it consists of a manipulator dynamic and an electro-hydraulic dynamic. The control design and
the proof of stability and robustness are depicted in Section 3. Some simulation results, and some
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discussions are shown in Section 4. Some conclusions and future works are provided in Section 5.
Additionally, the appendixes present the definitions of some matrices and vectors.

2. Robot Manipulator Dynamics

2.1. Manipulator Dynamic without Actuators

The electro-hydraulic manipulator which is depicted in Figure 1 is a 3-DOF robot manipulator
driven by two hydraulic rotaries in the link ith(i = 1, 2) and one cylinder in the last link.

Figure 1. The structure of the 3-DOF manipulator.

Firstly, the manipulator dynamics in the joint coordinate are expressed by:

M(θ)
..
θ + C

(
θ,

.
θ
) .

θ + G(θ) + d(t) = τ (1)

where θ,
.
θ,

..
θ ∈ R3 are position, angular velocity and angular acceleration vectors of each joint,

respectively, M(θ) ∈ R3×3 is the symmetric and positive definite matrix of inertia, C
(

θ,
.
θ
)
∈ R3×3

denotes the Coriolis and Centrifugal term matrix, G(θ) ∈ R3 is the gravity term, τ is torque acting
on joints,

.
M(θ)− 2C

(
θ,

.
θ
)

is a skew-symmetric matrix [29], that is given as θT
( .

M(θ)− 2C
(

θ,
.
θ
))

θ =

0, and d(t) stands for the disturbance induced in the hydraulic actuator and external factor
while operating.

In fact, the robot dynamic parameters are not well known. Its dynamic is affected by the mass
distribution, oscillation in the process of operation. Let’s define M = M0 + ∆M, C = C0 + ∆C,
G = G0 +∆G where (.) represents for estimated parameters which are clearly presented in Appendix A
and ∆(.) acts as uncertainties of the model. Suppose that all ∆(.) are bounded, i.e., ‖∆‖.‖‖∞ ≤ ξ(.),
then the dynamic equation of the manipulator in (1) can be rewritten as:

M0(θ)
..
θ + C0

(
θ,

.
θ
) .

θ + G0(θ) + ∆U + d(t) = τ (2)

where ∆U = ∆M(θ)
..
θ + ∆C

(
θ,

.
θ
) .

θ + ∆G(θ) denotes the uncertainties of the system.
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2.2. Electro-Hydraulic Dynamics

Let xa =
[

x1a x2a x3a

]T
=
[

θ1a θ2a d3

]T
∈ R3×1 represents the actuator space that is

related to the robot joint-space as [Chapters 6–29]

xa = h(θ)
.
xa = J(θ)

.
θ

(3)

where h(θ) ∈ R3×1 denotes the forward kinematics of the actuator and J(θ) = ∂h
∂θ ∈ R3×3 represents

the differentiable actuator Jacobian matrix as shown in Appendix B.
The torque vector is calculated as follows [30]:

τ = J(θ)Fa = J(θ)(A1P1 − A2P2) (4)

where Ai(i=1,2) = diag(Ai1, . . . , Ai3) ∈ R3×3 are an area matrix of piston head part and an area matrix

of rod part. Pi(i=1,2) =
[

Pi1 · · · Pi3

]T
are the pressure vector of two chambers of each actuator.

The hydraulic actuator pressure dynamics can be presented as follows [31]:

.
P1 = βV−1

1 (xa)

[
−A1

∂xa

∂θ

.
θ + χ1[P1, U[u]]U[u]

]
− ζ1(t) (5)

.
P2 = βV−1

2 (xa)

[
A2

∂xa

∂θ

.
θ − χ2[P2, U[u]]U[u]

]
+ ζ2(t) (6)

where β is the effective bulk modulus, Vi(θ)(i=1,2) = diag(Vi1(θ), . . . , Vi3(θ)) ∈ R3×3 are volume

matrix of two chambers, Vij = Vij0 + (−1)i+1xja Aij, (i = 1, 2; j = 1, 2, 3), Vij0(i = 1, 2; j = 1, 2, 3) is
initial volumes of two chambers, ζi(t)(i=1,2) ∈ R3×1 are the lumped disturbances of two chambers

(internal/external leakage, modelling error), U =
[

u1 u2 u3

]T
is a control voltage vector,

χi(Pi, U)(i=1,2) = Kqidiag(ξi1, . . . , ξi3) ∈ R3×3, and Kqi = diag
(
kqi1, . . . , kqi3

)
∈ R3×3 are flow gain

coefficients matrices in orifice equations of the actuators.{
ξ1i{i=1,...,3 =

√
Ps − P1i, ui ≥ 0

ξ1i{i=1,...,3 =
√

P1i − Pr, ui < 0{
ξ2i{i=1,...,3 =

√
P2i − Pr, ui ≥ 0

ξ2i{i=1,...,3 =
√

Ps − P2i, ui < 0

(7)

where Ps and Pr are the supply pressure and the tank pressure, respectively.

2.3. State Space Form

Define the state variable vector: xi(i = 1, 2, 3) ∈ R3×1, x = [x1, x2, x3]
T ∆
=
[
θ,

.
θ, [1P1 − A2P2]

]T
∈

R9×1. Then, the state space system is derived as follows:

.
x1 = x2
.
x2 = Mo

−1(−Co(x1, x2)x2 − Go(x1)− ∆U − d + τ)
.
x3 = −(κ1(x1)A1 + κ2(x1)A2)

∂xa
∂x1

x2 + (κ1(x1)ξ1(P1, U) + κ2(x1)ξ2(P2, U))U + ∆2(t)
(8)

where κi(x1) = βAiV−1
i (x1) ∈ R3×3(i = 1, 2), ∆1(t) = ∆U + d, and ∆2(t) = A1ζ1(t)− A2ζ2(t).
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The Equation (8) can be rewritten as follows

.
x1 = x2
.
x2 = Mo

−1(−Co(x1, x2)x2 − Go(x1)− ∆1(t) + J(x)x3)
.
x3 = F1x2 + F2U + ∆2(t)

(9)

where F1 = −[κ1 A1 + κ2 A2]
∂xa
∂x1
∈ R3×3, and F2 = κ1ξ1(P1, U(u)) + κ2ξ2(P2, U(u)) ∈ R3×3.

Remark 1. In practice, det(ξ1(P1, U(u))) and det(ξ2(P2, U(u))) are both seldom zero when the system is
operating smoothly, since P1 and P2 are rarely close to Ps and Pr. In the seldom case that det(ξ1(P1, U(u)))
and det(ξ2(P2, U(u))) equal to zero (e.g., due to the noise in P1 and P2) it is set to a small positive number to
avoid the problem of dividing zero.

3. Control Design

3.1. Sliding Mode Control with a Backstepping Technique

In this research, a robust control via the backstepping approach [19] and sliding mode control [32]
is designed to control the position of the manipulator. The proposed control is divided into two
control loops to control the manipulator dynamic and regulate the hydraulic dynamic. One control is
a conventional sliding model [33] which handles the manipulator dynamic to generate the desired
torque for the hydraulic control. In the hydraulic dynamic, an ISMC is employed to control torques
under the presence of the uncertainties and the nonlinear terms.

Step 1: The sliding mode control for the manipulator dynamics.
Definite state variable errors e = x1 − x1d ∈ R3×1,

.
e = x2 − x2d ∈ R3×1, and

..
e =

.
x2 −

.
x2d ∈ R3×1.

The sliding variable vector s1 =
[

s11 s12 s13

]T
∈ R3×1 is chosen as follows:

s1 =
.
e + λ1e (10)

where λ1 = diag(λ11, λ12, λ13) is a positive-definite matrix.
The reference state of the manipulator is defined as{

x2s = x2 − s1 = x2d − λ1e ∈ R3×1
.
x2s =

.
x2 −

.
s1 =

.
x2d − λ1

.
e ∈ R3×1 (11)

The derivative of the sliding variable with respect to time is expressed as follows:

.
s1 =

..
e + λ1

.
e (12)

Replacing (10)–(12) into the 2nd equation of (9) yields:

M0(q)
.
s1 = J(x1)x3 − ∆1(t)−M0(x1)

.
x2s − C0(x1, x2)x2s − G0(x1)−

1
2

.
M0(x1)s1 (13)

The desired torques are chosen as follows:

x3d = J(x1)
−1(C0(x1, x2 x2s + G0(x1 + M0(x1

.
x2s −K1s1 − ηtanh

s1

ψ1

))
(14)

where K1 = diag(k11, . . . , k13) ∈ R3×3 is the positive definite matrix, η1 = diag(η11, . . . , η13) ∈
R3×3 is the positive definite matrix, it is chosen how to η1i > |∆1i|t||(i = 1, . . . , 3), and ψ1 =[

ψ11 ψ12 ψ13

]T
∈ R3×1 is a width vector, and tanh

(
s1
ψi

)
is defined in Appendix C.
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Definite the torque error vector
e3 = x3 − x3d (15)

with e3 =
[

e31 e32 e33

]T
∈ R3×1.

To prove to the stability and robustness of the manipulator, the Lyapunov candidate function is
chosen as follows:

V1(s1) =
1
2

s1
T M0s1 (16)

The derivative of the Lyapunov functions is presented as follows:

.
V1(s1) = s1

T M0
.
s1 +

1
2

s1
T

.
M0s1 (17)

Putting the Equations (14)–(16) into Equation (17) can yield to:

.
V1(s1) = s1

Te3 − s1
TK1s1 + s1

T
(

∆1(t)− η1tanh
(

s1

ψ1

))
(18)

The sliding variable, s1, will converge to zero when the derivative of the Lyapunov function
will be a negative semi-definite function. To ensure this condition, a robust control for the hydraulic
dynamic is developed to guarantee that the torque error, s2, will be bounded by ε.

Step 2: Design the control, to assure the torque error is as small as possible. The integral sliding
mode control is chosen as

s2 = e3 + λ2z3 (19)

where λ2 = diag(λ21, λ22, λ23) ∈ R3×3 is an arbitrary positive matrix, and z3 =
∫ t

0 e3(t)dt ∈ R3×1.
The differential of the ISMC is

.
s2 =

.
x3 −

.
x3d + λ2e3

= F1(x) + F2(x)U(u) + ∆2(t)−
.
x3d + λ2e3

(20)

The control vector is chosen

u = F−1
2 (x)

( .
x3d − F1(x − K2s2 − λ2e3 − s1 −η2tanh

s2

ψ2

))
(21)

where K2 = diag(k21, k22, k23) ∈ R3×3 is an arbitrary positive matrix, η2 = diag(η21, η22, η23) ∈ R3×3

is a robust gain positive diagonal matrix of the sliding mode control s2, it is chosen how to η2i >

|∆2i|t||(i = 1, 2, 3), ψ2 =
[

ψ21 ψ22 ψ23

]T
∈ R3×1 is a width vector, and tanh

(
s2
ψ2

)
is defined in

Appendix C.

Assumption 1. The perturbation, ∆2(t), varies with respect to time, and it is bounded ‖∆2i‖t‖‖ ≤
η2i(i = 1, . . . , 3).

Consider the Lyapunov function candidate

V2(s1, s2) = V1(s1) +
1
2

sT
2 s2 (22)

The derivative of the Lyapunov function (22) is

.
V2(s1, s2) =

.
V1(s1) + sT

2
.
s2(t) (23)
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Replacing (21), and (18) into (23), the derivative of the Lyapunov function can be rewritten as
follows:

.
V2(s1, s2) =

.
V1(s1) + sT

2
.
s2 = −

2

∑
i=1

(
sT

i Kisi + sT
i (∆i(t)− ηi tanh(s2))

)
− zT

3 λ2s1 ≤ −ζTΞζ + δ (24)

where ζ =

 s1

z3

e3

 ∈ R9×1 and

Ξ =

 K1 − 1
2 λ2 0

− 1
2 λ2 λT

2 K2λ2 K2λ2

0 λT
2 K2 K2

 ∈ R9×9.

To guarantee the stability and robustness of the controlled system, the
.

V2(ζ(t)) is a negative-
definite function. The parameters K1, K2, and c2 are chosen how the matrix Ξ is a positive
definite matrix.

3.2. Proposed Control

3.2.1. Adaptive Approximation Based on RBFNN

As presented in Section 2, the uncertainties always exist in the system dynamics. They are smooth
uncertanties and unsmooth uncertainties. This section presents two approximations via the Radial
Basis Function Neural Network [18] to compensate the smooth uncertainties in the mechanical and
hydraulic dynamics.

The RBFNN has three layers which are the input layer, hidden layer, and the output layer, which
is employed to implement the approximations. The inputs and the output of the RBFNN are the
tracking errors and the control input, respectively. The function of each layer is presented as follows:

The input layer rescaled the input variables, ei(i = 1, . . . , m) to the next layers.
The hidden layer derives the input values with the Radius Basis function, Gaussian function,

as follows:

µijk = exp

−
(

Ei −meijk

)T(
Ei −meijk

)
σ2

ijk

,(i=1,2;j=1,2,3;k=1,··· ,n) (25)

where Ei =
[

ei1 · · · eim

]T
∈ Rm×1 is the input vector, meijk ∈ Rm×1, and

σijk(i = 1, 2; j = 1, 2, 3, k = 1, . . . , n) ∈ Rm×1, respectively, are the mean vector and the standard
derivation of the Gaussian functions of the node ij in the hidden layer.

The output layer presents the compensation signals for the mechanical dynamic and the hydraulic
dynamic as follows:

Di =
[

di1 di2 di3

]T
= WT

i µi (26)

with Wi =

 ωi11 · · · ωi1n 0 0 0 0
0 0 0 · · · 0 0 0
0 0 0 0 ωi31 · · · ωi3n


T

∈ R3n×3, µi =

[
µi11 · · · µi1n µi21 · · · µi2n µi31 · · · µi3n

]T
∈ R3n×1, (i = 1, 2) Each adaptive

approximation includes RBFNNs and its adaptive laws and the online-tuning RBFNN is deployed
to eliminate the smooth uncertainties in the mechanical dynamic and the hydraulic dynamic.
These approximations reduce the chattering effects and improve the precisions. The adaptive laws
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are derived from the Lyapunov approach. The approximations will compensate the mechanical
uncertainties and the hydraulic uncertainties such that

Di = D∗i + εi = W∗i
Tµi(m∗ei, σ∗i ) + εi, (i = 1, 2) (27)

where εi =
[

εi1 εi2 εi3

]T
, (i = 1, 2) are reconstructed errors; and Wi

∗, (i = 1, 2),
m∗ei, (i = 1, 2), and σ∗i , (i = 1, 2) are optimal parameters of Wi, (i = 1, 2), mei =[

mei11 · · · mei1n mei21 · · · mei2n mei31 · · · mei3n

]T
, (i = 1, 2) ∈ R3nm×1 and

σi =
[

σi11 · · · σi1n σi21 · · · σi2n σi31 · · · σi3n

]T
∈ R3nm×1 , (i = 1, 2) respectively,

in the RBFNN. The approximation is expressed as the following form:

D̂i = ŴT
i µ̂i(m̂ei, σ̂i), (i = 1, 2) (28)

where Ŵi, m̂ei, σ̂i are the estimated parameters of the RBFNN. An approximation error vector D̃i is
defined as follows:

D̃i = Di − D̂i = D∗i + εi − D̂i = W∗Ti µi
∗ − Ŵi

Tµi + εi = W̃iµi
∗ + Ŵiµ̃i + εi (29)

where W̃i = Wi
∗ − Ŵi and µ̃i = µi

∗ − µ̂i. The RBFs are transformed into partially linear form by the
Taylor series expansion, and the µ̃ can be represented as:

µ̃i =


µ̃i1
µ̃i2
...

µ̃i[3n]

 = µmim̃ei + µσiσ̃ + υi (30)

where m̃ei = mei
∗ − m̂ei; σ̃i = σi

∗ − σ̂i; υ ∈ R3n is a vector of

higher order terms; µmi =
[

∂µi1
∂mei

∂µi2
∂mei

· · · ∂µin
∂mei

]T
∣∣∣∣
m=m̂

∈ R3n×3nm; and

µσi =
[

∂µi1
∂σi

∂µi2
∂σi

· · · ∂µi[3n]
∂σi

]T
∣∣∣∣σi=σ̂ i ∈ R3n×3nm . The equation can be rewritten as follows:

µi
∗ = µ̂i + µmim̃i + µσi σ̃i + υi (31)

Replacing (31) into (29), it is presented that

D̃i = W̃i
T µ̂i + Ŵi

Tµmim̃i + Ŵi
Tµσiσ̃i + φi (32)

where φi = W̃i
Tµmim̃i + W̃i

Tµσiσ̃i + Wi
∗Tυi + εi

3.2.2. Adaptive Sliding Mode Control with a Backstepping Technique Based on RBFNN (ABSMC)

The virtual control (14) is represented as follows:

x3d = J(x1)
−1
(

C(x1, x2)x2s + G(x1) + M0(x1)
.
x2s − K1s1 + D̂1 − η1tanh

(
s1

ψ1

))
(33)

Additionally, the control input (21) is also rewritten as follows:

U = F2
−1(x)

(
.
x3d − F1(x)− K2s2 − λ2e3 − s1 − D̂2 − η2tanh

(
s2

ψ2

))
(34)
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Then the Lyapunov function candidate is defined as

V3 = V2 +
1
2

(
2

∑
i=1

trace
(

W̃i
TΓ−1

1i W̃i

)
+ m̃T

eiΓ
−1
2i m̃ei +

2

∑
i=1

σ̃T
i Γ−1

3i σ̃i

)
(35)

where Γij ∈ R3n×3n, (i = 1, . . . , 3, j = 1, 2) are positive definite matrices.

Assumption 2. The reconstructed errors, φi = W̃T
iµmm̃ + W̃i

Tµσσ̃ + Wi
∗Tυ + εi, (i = 1, 2), in the

mechanical dynamics and hydraulic dynamics are bounded by ‖φi‖1 < η̂i.

Theorem 1. The hydraulic manipulator is presented by (9), the indirect adaptive backstepping sliding mode
control is designed by (33), (34), and the adaptive laws for the RBFNN parameters are chosen as (36)–(38) such
that all the tracking error states (s1 and s2) converge to zero in a finite time. The stability and robustness of the
proposed control and the adaptive laws are guaranteed via the Lyapunov theory.

.
Ŵi = tr

(
Γ1i

(
(−1)i+1µ̂isT

i + Λ1i W î

))
; (i = 1, 2) (36)

.
m̂ei = Γ2i

(
(−1)i+1µT

miŴisT
i + Λ2im̂ei

)
; (i = 1, 2) (37)

.
σ̂i = Γ3i

(
(−1)i+1µT

σiŴisT
i + Λ3iσ̂i

)
; (i = 1, 2) (38)

where Γ1j ∈ R3n×3n, Λ1j ∈ R3n×3n, (j = 1, 2), Γij ∈ R3nm×3nm, Λij ∈ R3nm×3nm, (i = 2, 3, j = 1, 2) are
positive definite matrices, and

tr




a11 · · · a1n · · · · · · · · · · · · · · · · · ·
· · · · · · · · · a21 · · · a2n · · · · · · · · ·
· · · · · · · · · · · · · · · · · · a31 · · · a3n


T =


a11 · · · a1n 0 0 0 0 0 0

0 0 0 a21 · · · a2n 0 0 0

0 0 0 0 0 0 a31 · · · ω3n


T

The differential Lyapunov function candidate (35) is expressed as follows:

.
V3 =

.
V2 −

2
∑

i=1
trace

( .
Ŵ

T

i Γ−1
1i W̃i

)
−

2
∑

i=1
ˆ
T
eiΓ
−1
2i m̃ei −

2
∑

i=1
σ̂

T
i Γ−1

3i σ̃i

= −
2
∑

i=1

(
sT

i Kisi +

(
trace

(
Ŵ

T
i Γ−1

1i W̃i − (−1 i+1siµ
T
i W̃i

+

(
.

m̂
T
ei Γ−1

2i m̃ei − (−1)i+1siŴT
i µimm̃ei

)
+

(
.
σ̂

T
i Γ−1

3i σ̃i − (−1)i+1siŴT
i µiσσ̃i

)
+φi − ηitanh si

ψi

))
si

) (39)

Replacing (36), (37), and (38) into (39), we have

.
V3 = −ζTΞζ −

2

∑
i=1

(
trace

(
W̃T

i Λ1iŴi

)
+ m̃T

eiΛ2im̂ei + σ̃T
i Λ3iσ̂i +

(
φi − ηi tanh

(
si
yi

))
si

)
(40)

Since −
∼
(.)

T

i Λij
ˆ(.)i = −

∼
(.)

T

i Λij

(
(.)∗i +

∼
(.)i

)
and −

∼
(.)

T

i Λij(.)
∗
i ≤ 1

2

(
∼
(.)

T

i Λij
∼
(.)i + (.)∗Ti Λij(.)

∗
i

)
, so

we have −
∼
(.)

T

i Λij
ˆ(.)i ≤ − 1

2

∼
(.)

T

i Λij
∼
(.)i +

1
2 (.)

∗T
i Λij(.)

∗
i . Equation (40) can be represented as follows:

.
V3 = −ζTΞζ − 1

2

2
∑

i=1

(
trace

(
W̃T

i ΛiW̃i + m̃T
eiΛim̃ei + σ̃T

i Λiσ̃i

+φi − ηistanh si
ψi

))
si + traceW∗Ti ΛiW∗ i

)
+ m∗Tei Λim∗ei + σ∗Ti Λiσ

∗
i

)
≤ −κV2 + Cε

(41)
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where κ = min
(

λmin(Ξ), λmin

(
M−1

1 K1

)
, λmin(K2), λmin

(
ΓijΛij

))
, , (i = 1, 2, 3, j = 1, 2) and Cε =

1
2 (φi − ηisign(si))si +m∗Tei Λim∗ei +

1
2 trace

(
W∗Ti ΛiW∗ i

)
+ 1

2 σ∗Ti Λiσ
∗
i .

From (41), and [34], we can conclude that the controlled system is ultimately uniformly bounded.

3.2.3. Switching Adaptive Laws

In this section, an adaptive law is developed on the robust gains to reject the unsmooth
uncertainties. The adaptive laws are selected as follows:

.
η̂i(t) =


κiΓ4idiag{|si|t|| i f η̂i{t ≥ 0 and ‖si‖ > εi

−κi{Γ4idiag{|si|t|| −1 i f η̂i{t > 0 and
εi0 ≤ ‖si‖ ≤ εi

0 otherwise

(42)

where εi are threshold values of the adaptive laws, κi ∈ R3×3 and Γ4i ∈ R3×3 are positive diagonal
matrices, η̃i = ηi − η̂i, and η̂i is estimated robust gains.

The adaptive robust gain laws (42) do not require knowledge of the upper boundary of the
uncertainties. When the sliding variables stay out of a region that is smaller than εi, the robust gains
will quickly increase to force these variables to reach to the region. Otherwise, when the variables
stay in the areas, the gains will decrease rapidly. These behaviors of the robust gain can reduce the
chattering effects and ensure the robustness of the system.

Proof. The final Lyapunov function is modified as follow

V0 = V3 +
1
2

2

∑
i=1

γ−1
i η̃T

i Γ−1
4i η̃i (43)

The derivative of the Lyapunov function (43) is expressed as:

.
V0 =

.
V −

2

∑
i=1

γ−1
i η̃T

i Γ−1
4i η̂i ≤ −ζTΞζ −

2

∑
i=1

(
η̃T

i

(
|si| − γ−1

i Γ−1
4i η̂i

))
(44)

We consider two cases: ∃‖si‖ ≥ εi and ∀‖si‖ < εi. When ∃‖si‖ ≥ εi, applying (42) into (44), the
derivative of a Lyapunov function is derived as follows:

.
V0 ≤ −ζTΞζ (45)

It means that the Lyapunov function (43) is decreasing and bounded because 0 ≤ V0(t) ≤ V0(0) ≤ ∞.
When all sliding variables approach the small vicinity of the sliding manifold, ∀‖si‖ ≤ εi, the

derivative of a Lyapunov function is represented as:

.
V0 ≤ −ζTΞζ +

2

∑
i=1

(
η̃T

i

(
|si|+ Γ−1

4i Γ−1
4i |si|−1

))
(46)

The sliding variable si(t) will move away from the region |si| < εi when the derivative Lyapunov
function (14) becomes positive. Then, it will become negative again when the sliding variables leave the
regions and the variables are driven back toward the regions. So, we can conclude that the controlled
system is uniformly asymptotically stable [34].
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4. Numeral Simulation and Experimental Studies

4.1. Numerical Simulations

We conduced some simulations in MATLAB2018a with sampling time of 10−4 s and solver of
ODE3. The manipulator dynamics is shown in Appendices A and B. The simulation structure is shown
in Figure 2.

Figure 2. Simulation structure.

The parameters of the hydraulic manipulator are shown in Table 1.

Table 1. Parameters of the hydraulic manipulator.

Symbol Value Unit Symbol Value Unit

mi ,i=1,...,3 5 kg Aij(i,j=1,2) 15.10−4 m2

l1 0.1 m A13 15.10−4 m2

l2 0.5 m A23 10−3 m2

l3 0.2 m Ps 100 bar
g 9.81 m/s2 Pr 3 bar
d0 0.2453 m kqij(i,j=1,2) 2.16 × 10−8 m3/

√
Pa.s.V

d1 0.2471 m kqi3(i=1,2) 3.5 × 10−8 m3/
√

Pa.s.V
d2 0.036 m β 1.25 × 109 Nm−2

To verify the effectiveness of the proposed control, some simulations are implemented under
the presence of the unknown variant payload, the unknown frictions and the unknown leakages in
mechanical dynamics and hydraulic dynamics. They present not only the unmatched and matched
uncertainties, but also the smooth and unsmooth uncertainties. Additionally, a backstepping sliding
mode control (BSMC) and PI control are also carried out and their results are compared to the proposed
control (ABSMC).

The unknown frictions are expressed as:

τf = bv
.
θ + bcsign

( .
θ
)
∈ R3×1 (47)

where bv ∈ R3×3 is a vicious positive matrix with bv = diag
(
[4, 4, 4]T

)
, and bc ∈ R3×3 is a coulomb

positive matrix with bc = diag
(
[4, 4, 4]T

)
.
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The leakages in hydraulic dynamics are derived by

QLI i = vi(Pi1 − Pi2), (i = 1, 2, 3) (48)

where vi is leakage coefficients with v = 1e−11[20, 15, 1.5]T .
The payload is alternated as shown in Figure 3.

Figure 3. Payload performance.

The reference trajectories of the hydraulic manipulator are selected as xd =

[30 sin[0.4πt , 20[1 + sin[0.4πt + π/2 , 50 + 30 sin0.4πt + π]]T .
Each approximation in the position control has three inputs, 10 nodes in the hidden layer, and

one output, and each approximation in the torque control has two inputs, 10 nodes in the hidden layer,
and one output.

The parameters of the controllers are chosen by trial error method and shown in Table 2.

Table 2. Control Parameters.

Controller Parameters

PID
KP = [60, 24, 15]T , KI = [32, 10, 8]T ,
KD = [0.4, 0.2, 0.1]T

BSMC
c1 = diag([60, 60, 40]), c2 = diag([250, 1000, 50]),
η1 = 50eye(3), η2 = 102eye(3),
K1 = diag([30, 25, 30]), K2 = diag

([
103, 103, 5.104]);

ABSMC

Γ11 = 2eye(30), Λ11 = 2, 2.10−3eye(30),
Γ21 = 10.eye(90), Λ21 = 10−6.eye(90),
Γ31 = 10−6eye(90),
Λ31 = 10−5eye(90), ε1 = 10−4[200, 1, 1]T ,
ε10 = 10−2ε1 Γ41 = 6.103eye(3),
κ1 = diag([40, 40, 28]),
Γ12 = 20e−4eye(30), Λ12 = 4.4e−3eye(30),
Γ22 = 10eye(60), Λ22 = 10−6eye(60),
Γ32 = 10−6eye(60),
Λ32 = 10−5eye(60), ε2 = [1, 1, 1]T , ε20 = 10−2ε2,
Γ42 = 6.103eye(3), κ2 = diag([0.2, 0.2, 0.14]).

Remark 2. In order to show the ability of the proposed control, the parameters of control are designed with
payload 20 N and keep with other payloads.
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Remark 3. The proposed control is developed from the BSMC, so some parameters of SMCs in the proposed
control are inherited from the BSMC.

Figures 4 and 5 plots the position responses and the position errors of the joints with three
controllers, PID, BSMC, and ABSMC. The results showed that the nonlinearities, uncertainties and
variant payloads impacted the accuracy of the controlled system with PID control. The nonlinearities
which are caused by variant payloads are dealt by the BSMC. However, the remained errors are still
significant. The proposed control with adaptive laws compensated the uncertainties and improved the
accuracy of the controlled system, essentially.

Figure 4. Joint responses of PID, BSMC, and ABSMC in (a) joint 1, (b) joint 2, (c) joint 3.

Figure 5. Cont.
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Figure 5. Joint errors of PID, BSMC, and ABSMC in (a) joint 1, (b) joint 2, (c) joint 3.

Figures 6 and 7 respectively show the torque performances and torque errors at each joint of the
two controllers which are the BSMC and the proposed control. The virtual torques were calculated
by (14) and (33) with the BSMC and the proposed control, respectively. The estimated torques were
computed based on pressures from two chambers. The results proved that the proposed control with
the adaptive mechanisms regulated the torque responses better than the BSMC. Figure 8 shows the
control signals of the BSMC and the proposed controller.

Figure 6. Cont.
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Figure 6. Torque responses with (a) BSMC, and (b) ABSMC.

Figure 7. Torque errors with (a) BSMC, and (b) ABSMC.

Figure 8. Cont.
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Figure 8. Control signals of (a) BSMC, and (b) ABSMC.

Remark 4. The simulation results proved that the proposed control compensated all uncertainties more
effectiveness than the PID control and BSMC. The RBFNNs exhibited the approximately ability with the smooth
uncertainties and the adaptive switching gains also demonstrate their ability for compensating the unsmooth
uncertainties. However, the learning rates of adaptive laws have not mentioned in this paper. They will be
intensively study in future work.

4.2. Experimental Results

Furthermore, the proposed controller and backstepping controller are practically conducted on
the hydraulic manipulator with load and without load of 20 N. The test bench includes a hydraulic
power, a computer and a 3-DOF manipulator as shown in Figure 9. The hydraulic flow rates which are
supplied to the actuator from the hydraulic power unit are driven by the servo valves. The computer
is equipped PCI cards such as PCIE 6363, and Quad04 to provide the control signal to the servo valves
and read the pressure sensors and encoder sensors at each joint. The control algorithms are practically
carried out in MATLAB Simulink with the Real-time Windows target toolbox at sampling time of 10 ms.

Figure 9. Structure of the test bench.
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The control parameters are set to be backstepping sliding mode control: c1 = diag([60, 70, 35]),
c2 = diag([250, 850, 45]), η1 = 5eye(3), η2 = 102eye(3), K1 = diag([30, 25, 30]), K2 =

diag
([

103, 103, 5.104]); proposed control: Γ11 = 2eye(30), Λ11 = 2, 2.10−3eye(30), Γ21 = 10.eye(90),
Λ21 = 10−6.eye(90), Γ31 = 10−6eye(90), Λ31 = 10−5eye(90), ε1 = 10−4[200, 1, 1]T , ε10 = 10−2ε1

Γ41 = 5.103eye(3), κ1 = diag([40, 40, 28]), Γ12 = 20e−4eye(30), Λ12 = 4.4e−3eye(30), Γ22 = 10eye(60),
Λ22 = 10−6eye(60), Γ32 = 10−6eye(60), Λ32 = 10−5eye(60), ε2 = [1, 1, 1]T , ε20 = 10−2ε2, Γ42 =

5.103eye(3), κ2 = diag([0.2, 0.2, 0.14]).

Remark 5. The initial weighting vectors of the RBFNNs are selected to be zero. Additionally, because the
proposed control is developed based on the backstepping sliding mode control, some parameters of the proposed
control are inherited from the backstepping sliding mode control.

Remark 6. The parameters of the controllers are adjusted when the manipulator operates without load. The
parameters are kept in other case.

Figures 10–12 shows the joint responses, errors responses and control signals of the BSMC and
proposed control when the hydraulic manipulator works without payload. In Figure 10, sinusoidal
signals, x1d = [30 sin[0.628t], 20[1 + cos[0.628t]], 20[2− sin[0.628t]]](Deg.), are set up as trajectories in
the joints of the hydraulic manipulator and each subfigure presents for each joint response in the
manipulator. The results show that the output responses of the BSMC and the proposed control track
the reference signals. In Figure 11, the error performances of joints are provided in subfigures. The
results demonstrate that the proposed control approximate the uncertainties to enhance accuracy of
the control performance. The Figure 12 presents the control signals of the controllers.

Next experiments, the controllers are conducted on the hydraulic manipulator when the
manipulator carry a payload of 20 N. The references are still sinusoidal signals as mentioned in
previous case. Figures 13 and 14 present the error performances and control signals of the BSMC and
the proposed control. The results in Figure 13 again prove that the adaptive approximators in the
proposed control compensate not only the uncertainties such as unknown friction, modeling error and
leakage but also the variant payload.

Figure 10. Cont.
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Figure 10. Joint responses of BSMC and proposed control in (a) joint 1, (b) joint 2, (c) joint 3 without load.

Figure 11. Cont.
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Figure 11. Error performance of BSMC and proposed control in (a) joint 1, (b) joint2, and (c) joint 3
without load.

Figure 12. Cont.
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Figure 12. Control efforts of (a) BSMC and (b) Proposed control without load.

Figure 13. Cont.
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Figure 13. Error responses of BSMC and proposed control in (a) joint 1, (b) joint 2, and (c) joint 3
with load.

Figure 14. Control efforts of (a) BSMC and (b) proposed control with load.
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5. Conclusions

In this paper, an adaptive backstepping sliding mode control was proposed regarding tracking the
position of the hydraulic manipulator including actuator dynamics under the presence of the unknown
functions, the unknown variant payload, and leakages in mechanical and hydraulic dynamics. The
uncertainties which present for the matched and unmatched uncertainties in the hydraulic manipulator
are smooth and unsmooth functions. So, the proposition was developed based on backstepping sliding
mode control, switching adaptive laws, and adaptive approximations. The adaptive approximators
were developed based on RBFNN to deal with the smooth uncertainties. Specially, because the Taylor
series expansion was used to analyze the RBFNN, so both the weighting vectors and parameters of
the RBFs were tuning online to achieve the ideal parameters. The adaptive switching gains were
provided to estimate the boundary of the unsmooth uncertainties without the predefined knowledge.
The Lyapunov approach and backstepping technique were utilized together to prove the stability and
robustness of the controlled system with the presence of all uncertainties. Finally, some simulations
and experiments were implemented, and the results were compared to other controllers to demonstrate
the effectiveness of the proposed control.
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Appendix A

According to Figures 1 and 2, the dynamic equations of a three-link robotic manipulator can be
expressed as follows:

M0(θ)
..
θ + C0(θ,

.
θ)

.
θ + G0(θ) + ∆(t) = τ (A1)

with M0(θ) =

 m11 0 0
0 m22 m23

0 m32 m33

, C0

(
θ,

.
θ
)
=

 C11 C12 C13

C21 C22 C23

C31 C32 C33

,

m11 = m3l23s2
23+2m3l2l3s2s23+(m2+m3)l22s2

2.
m22 = (m2+m3)l22 +2m3l2l3c3+m3l23.
m23 = m32 = m3l23 +m3l2l3c3.
m33 = m3l23.

C11 = m3l2
3c23s23

( .
θ2 +

.
θ3

)
+ (m2 + m3)l2

2s2c2
.
θ2

+m3l2l3
[
s2c23

.
θ2 + c2s23

( .
θ2 +

.
θ3

)]
C12 = m3l2

3s23c23
.
θ1 + m3l2l3s2c23

.
θ1

+(m2 + m3)l2
2s2c2

.
θ1 + m3l2l3c2s23

.
θ1

C13 = −c31 = m3l3
.
q1(2l3s23c23 − l2s3 + l2s23c2 + l2s2c23)/2

,


C21 = −m3l2

3s23c23
.
θ1 −m3l2l3s2c23

.
θ1

−(m2 + m3)l2
2s2c2

.
θ1 −m3l2l3c2s23

.
θ1

C22 = −m3l2l3s3
.
θ3

C23 = −m3l2l3s3

( .
θ2 +

.
θ3

)


C31 = −m3l3
.
q1(2l3s23c23 − l2s3 + l2s23c2 + l2s2c23)/2

C32 = m3l2l3s3
.
θ2

C33 = 0
, G0(θ) =

 0
−m3l3gs23 − (m2 + m3)gl2s2

−m3l3gs23

,

θ = [θ1, θ2, θ3]
T ,

.
θ =

[ .
θ1,

.
θ2,

.
θ3

]T
,

..
θ =

[ ..
θ1,

..
θ2,

..
θ3

]T
, τ = [τ1, τ2, τ3]

T , mi are the weights of the ith link
(i = 1, 2, 3) with s(.) = sin((.)), c(.) = cos((.)), sij = sicj + cisj, cij = cicj − sisj.

Appendix B

The relationship among the rotational motion of the joint in joint space and of its actuator space
with the motion of the end-effector in Cartesian space is examined. According to Figure A1, the
rotational motion is driven by the movement of the cylinder can be expressed by:

d3 = −
√

d1
2 + d22 − 2d1.d2 cos(π − θ3)− d0 (A2)
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where d0 is an initial length in case of maximum retracting, d3 is the length variable when the cylinder
moves, d1 and d2 are fixed length of the hinge joints. Then taking derivative of the Equation (A2), we
can obtain the correlational velocity between the joint motion and the cylinder motion:

.
d3 =

∂d3

∂θ3

.
θ3 =

d1d2 sin(π − θ3)√
d1

2 + d22 − 2d1d2 cos(π − θ3)

.
θ3 = J3(θ3)

.
θ3 (A3)

with J3(θ3) is the Jacobian vector of the 3rd joint.

Figure A1. The mechanical structure between the cylinder and the joint 3rd.

Then the torque acting on the 3rd joint can be deduced by:

τ3 = JT
3 (θ3)F3 (A4)

The relationship between the actuator space and the joint space is shown as the below equations: θ1a
θ2a
d3

 =


θ1

θ2

−
{√

d1
2 + d22 − 2d1.d2 cos{π − θ3 − d0

(A5)

with θia are angle of the actuators in the ith (i = 1,2) joint.
The Jacobian matrix between the joint space and actuator space is depicted as follows:

J =


1 0 0
0 1 0
0 0 d1.d2. sin[π−θ3]√

d1
2+d2

2−2.d1.d2. cos[π−θ3]

 (A6)

Appendix C

The tan hyperbole functions are defined as follows:

tanh
(

si
ψi

)
=
[

tanh
[

si1
ψi1

]
tanh

[
si2
ψi2

]
tanh

[
si3
ψi3

] ]T
(A7)

where ψij, (i = 1, 2; j = 1, 2, 3) are width values.
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