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Abstract: The increasing complexity and size of cyber-physical systems (e.g., aircraft, manufacturing
processes, and power generation plants) is making it hard to develop centralized diagnosers that are
reliable and efficient. In addition, advances in networking technology, along with the availability of
inexpensive sensors and processors, are causing a shift in focus from centralized to more distributed
diagnosers. This paper develops two structural approaches for distributed fault detection and
isolation. The first method uses redundant equation sets for residual generation, referred to as
minimal structurally-over-determined sets, and the second is based on the original model equations.
We compare the diagnosis performance of the two algorithms and clarify the pros and cons of each
method. A case study is used to demonstrate the two methods, and the results are discussed together
with directions for future work.

Keywords: distributed diagnosis; structural approaches; minimal structural over-determined sets;
residual selection

1. Introduction

As the complexity of industrial systems grows, system monitoring and fault diagnosis systems
are becoming essential to assure system reliability and functional safety; see for example [1,2] and the
references therein. Safety-critical systems must detect and isolate faults quickly and reliably to enable
effective safety maneuvers and fault-tolerant control so as not to endanger operations and human
lives [3].

Traditional approaches have focused on designing centralized diagnosers for complex systems,
e.g., the Aircraft Diagnostic and Maintenance Systems (ADMS) used on modern aircraft systems [4,5].
However, since many industrial applications involve large dynamic systems with many subsystems,
distributed approaches to fault detection and isolation are becoming necessary for a number of
reasons [6]. Centralized diagnosers are less reliable because they create a single point of failure, and
designing centralized diagnosers for large, complex systems may become computationally intractable.
Transferring sensor data from the distributed subsystems to a central fault diagnosis unit can become
error prone, for example because of packet losses and networking delays, which can then affect
the accuracy and timeliness of diagnosis decisions [7]. Furthermore, from a practical point of view,
different subsystems are designed by different manufacturers, who may not be willing to pass along
all of their knowledge of the subsystems to the system integrator to protect their intellectual property.
This makes it difficult for the system integrator to design centralized diagnosers since they to do not
have access to subsystem models.

A number of approaches have been developed for distributed fault detection and isolation in
discrete event systems. In the simplest case, a group of distributed fault detection and isolation
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approaches considers each subsystem as a node that reports its state as “OK” or “faulty” without
providing any details of the nature of the fault and how it was inferred. This approach is prevalent for
wireless sensor networks [8] and computer network [9] diagnosis. For most systems that exhibit hybrid
and continuous behaviors, distributed fault detection and isolation is more complicated. In these
systems, a subsystem has several components, and a fault could occur in a sensor, actuator, or other
components in the subsystem. Therefore, it is not enough to simply declare a subsystem as “OK” or
“faulty,” since the isolation of component faults requires deeper reasoning processes. Shames et al. [10]
used a bank of unknown input observers for distributed Fault Detection and Isolation (FDI) in
time-invariant linear systems. A three-layer distributed diagnosis architecture design was proposed
by [11]. Chanthery et al. [12] proposed a distributed residual generation and computation approach
for distributed diagnosis.

To achieve accurate fault detection and isolation of a known set of potential faults in a distributed
framework, subsystems may have to share data so that the necessary residuals may be derived for fault
isolation. Roychoudhury et al. [13] developed an algorithm that searches for the minimal number of
additional external measurements to add to each local diagnoser in order to make all faults detectable
and isolable in that subsystem. Daigle et al. [14] used a similar approach for distributed fault detection
and isolation in mobile robots. Bregon et al. [15] used breadth-first search to find the minimum
number of measurements to add to each subsystem to make all the faults detectable and isolable by
using information from all local diagnosers. The algorithm guarantees minimum communication
among subsystems; however, it is exponential in the number of system measurements. To address
this problem, we have proposed a greedy search algorithm that is computationally efficient, but
suboptimal. Ferrari et al. [7,16] proposed a similar robust distributed fault detection and identification
approach, but they did not address the problem of determining the minimum number of required
shared variables between the subsystems.

In this paper, we propose two general approaches for designing a set of distributed diagnosers
that together have the same diagnosability performance as centralized approaches: (1) a Minimal
Structurally-Over-determined (MSO)-based approach and (2) an equation-based approach. Some of our
previous work [17,18] presented an initial approach and results for our distributed diagnosis approach.
In this paper, we present the problem formulations, the proposed algorithms, and the accompanying
proofs for the hypotheses on which these algorithms are based in more detail. We compare the
computational complexities and the application of these algorithms to a testbed: the spacecraft electrical
power distribution system [19]. The advantages and disadvantages of each algorithm are discussed to
help the health monitoring engineers select the proper approach for a given application.

The first approach uses Minimal Structurally-Over-determined (MSO) set selection [20] and
provides globally correct diagnosis results while minimizing the number of measurements shared
between different subsystems. Each MSO set used for residual generation represents an analytical
redundancy relation in the system [20,21]; however, the total number of MSO sets is exponential in
terms of the system measurements. To avoid the computational complexity of dealing with a large
number of MSO sets, we propose a second algorithm for designing distributed diagnosers that is
based on system equations. This solution is computationally efficient, and its solution matches the
diagnosability capabilities of a centralized diagnoser. Moreover, the equation-based method does not
require access to the global model for diagnoser design, which makes it applicable to large, complex
systems, where global system models are likely to be unavailable or unknown.

The rest of this paper is organized as follows. Section 2 presents basic definitions and the running
example we use in the paper. Section 3 presents the MSO-based distributed diagnosis approach, and
Section 4 presents the equation-based approach. Section 5 discusses the case study, and Section 6
presents the advantages and disadvantages of each approach along with directions for future work.

2. Basic Definitions and Running Example

This section introduces the basic concepts associated with the distributed diagnosis of
dynamic systems.
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Definition 1 (System model). A system model S is a four-tuple: (V, M, E, F), where V is the set of variables,
M is the set of measurements, E is the set of equations, and F is the set of system faults.

It is assumed that the sets of V and E are sufficient to define the behavior of the system. The system
S is partitioned into n subsystems, S1, S2, ...Sn, where each subsystem model is defined as:

Definition 2 (Subsystem model). A subsystem model Si (1 ≤ i ≤ k) associated with a system model, S, is also
a four-tuple: (Vi, Mi, Ei, Fi), where Vi ⊆ V, Mi ⊆ M, Ei ⊆ E, and Fi ⊆ F. Furthermore, S1 ∪ S2 ∪ ....Sk = S.

We note that a variable can be shared between two or more subsystems describing the connection
between the different subsystems.

Example 1. A four-tank system is used as a running example in the paper; see Figure 1. The system is assumed
to be divided into four non-overlapping subsystems, where each subsystem is constituted of one tank and the
outlet pipe to its right. Two of the subsystems, 1 and 3, also have external inflows into their tanks. Associated
with each subsystem is a set of measurements, {y1, y2, ..., y6}, that are shown as encircled variables in the figure.

The first subsystem, S1, in the running example is described by the following set of equations:

e1 : ṗ1 =
1

CT1
(qin1 − q1 − f1)

e2 : q1 =
p1 − p2

RP1 + f2

e3 : p1 =
∫

ṗ1 dt

e4 : qin1 = u1

e5 : p1 = y1

e6 : q1 = y2.

(1)

E1 = {e1, e2, e3, e4, e5, e6} defines the set of equations; V1 = { ṗ1, p1, p2, qin1, q1} defines the set of subsystem
unknown variables; M1 = {u1, y1, y2} defines the set of subsystem known variables (measurements); and
F1 = { f1, f2} defines the set of faults associated with this subsystem model. It is assumed that the system
parameters (CT1, and RP1 of the first subsystem) are known. This model representation is used to emphasize
the model structure, which is useful, for example, when analyzing structural fault detectability and isolability
properties [2].

Similarly, the three other subsystem models are defined by the following equations:

e7 : ṗ2 =
1

CT2
(q1 − q2 − f3)

e8 : q2 =
p2 − p3

RP2 + f4

e9 : p2 =
∫

ṗ2 dt

e10 : p2 = y3

e11 : q2 = y4︸ ︷︷ ︸
Subsystem S2

e12 : ṗ3 =
1

CT3
(qin2 +q2 −q3)

e13 : q3 =
p3 − p4

RP3 + f5

e14 : p3 =
∫

ṗ3 dt

e15 : qin2 = u2

e16 : q3 = y5︸ ︷︷ ︸
Subsystem S3

e17 : ṗ4 =
1

CT4
(q3 − q4 − f6)

e18 : q4 =
p4

RP4

e19 : p4 =
∫

ṗ4 dt

e20 : p4 = y6.︸ ︷︷ ︸
Subsystem S4

(2)

In the equations, pi represents the pressure in tank i, and qi represents the liquid flow through the connecting pipe
associated with the adjoining tanks. qini represents the inflow into tank i. The capacity of tank i is represented
as CTi, and pipe resistance is given by RPi. The fault parameters are modeled by fi. Fault f1 represents a leak
in Tank 1; f2 represents a clog in the connecting pipe to the right of Tank 1; f3 represents a leak in Tank 2;
f4 represents a clog in the connecting pipe to the right of Tank 2; f5 represents a clog in the connecting pipe to
the right of Tank 3; and f6 represents a leak in Tank 4.

The subsystem equations as described in Example 1 take on a general form; as examples, they may
be expressed as state space equations, implicit differential equations, etc. The following definitions
describe connections between subsystems.
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Figure 1. Running example: four-tank system.

Definition 3 (First order connected subsystems). Two subsystems, Si and Sj, are first order connected if
and only if they have at least one shared variable.

Definition 4 (ith order connected subsystems). Two subsystems, Sk and Sj, are ith order connected if there
exists a subsystem model Sm that is (i− 1)th order connected to Sk and is first-order connected to Sj, or Sm is
(i− 1)th order connected to Sj and is first-order connected to Sk.

Example 2. In the four-tank example, subsystems S1 and S2 are first order connected, and their shared variables
are V1 ∩V2 = {p2, , q1}. Similarly, S1 and S3 are second order connected because both of them are first order
connected to S2.

In this paper, MSO sets are used as the primary approach for FDI and defined as follows [20]:

Definition 5. (Structural over-determined set) Consider a set of equations and its associated variables,
measurements, and faults: (E, V, M, F). This set of equations is structurally over-determined (SO) if the
cardinality of the set {E} is greater than the cardinality of set {V}, i.e., |E| > |V|.

Definition 6. (Minimal Structurally-Over-determined (MSO) set) A set of over-determined equations is
minimal structurally-over-determined if it has no subset of structurally-over-determined equations.

The MSO sets are minimal sets of equations that can be used to generate residuals, for example
by using the Fault diagnosis toolbox developed by Frisk and Krysander [22]. MSO sets represent
redundant equation sets that capture the redundancies in the system: MSOl = (El , Vl , Ml , Fl).
For example, MSO11 = (E11, V11, M11, F11), where E11 = {e1, e3, e4, e5, e6}, V11 = { ṗ1, p1, qin1, q1},
M11 = {u1, y1, y2}, and F11 = { f1} represent an MSO set in subsystem S1 (1) of our running example.
For brevity and simplification, we simply say a specific equation, variable, measurement, or fault is
a member of an MSO in the rest of the paper, e.g., f ∈ MSOl . Each MSO set represents a part of the
system model that can be used to design a residual that is only sensitive to certain faults. A set of MSO
sets can be used to generate residuals that together can isolate a set of faults.

To discuss the fault detectability and isolability properties of the global system and its subsystems,
we define global and local fault detectability and isolability as follows.

Definition 7. (Globally-detectable fault) A fault f ∈ F is globally detectable in system S if there is a minimal
structurally over-determined set MSOl in the system, such that f ∈ MSOl .

Definition 8. (Locally-detectable fault) A fault f ∈ Fi is locally detectable in subsystem Si if there is a minimal
structurally over-determined set MSOl in the subsystem such that f ∈ MSOl .
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Example 3. Fault f1 in (1) is locally detectable because f1 ∈ MSO11. However, f2 is not locally detectable
because there is no MSO set in this subsystem that includes f2. To detect f2 locally, the diagnosis subsystem
requires additional measurements.

Definition 9. (Globally-isolable fault) A fault fi ∈ F is globally isolable from fault f j ∈ F if there exists a
minimal structurally-over-determined set MSOi in the system S, such that fi ∈ MSOi and f j 6∈ MSOi.

Definition 10. (Locally-isolable fault) A fault fi ∈ Fi is locally isolable from fault f j ∈ F if there exists a
minimal structurally-over-determined set MSOi in subsystem Si, such that fi ∈ MSOi and f j 6∈ MSOi.

Note that if a fault f j is locally detectable in a subsystem Si, it is globally detectable as well, and if
a fault f j is locally isolable from a fault fk, it is globally isolable from fk, as well.

3. MSO-Based Distributed Fault Detection and Isolation

3.1. Problem Formulation

The objective in this work is to design a set of distributed diagnosers that together have the same
diagnosability as a centralized diagnoser. This means that a distributed approach should detect any
fault that is globally detectable and isolate any pair of faults that are globally isolable. In the ideal case,
there are enough MSO sets in each subsystem to detect and isolate all of its faults, Fi. In that case, no
exchange of information is necessary between the different diagnosers. If the independence among
diagnosers does not hold, the different subsystems need to share some sensor data with each other to
be able to detect and isolate the faults.

To address this problem in an efficient way, an integrated approach is derived to select a set of MSO
sets for each subsystem that guarantee full diagnosability and minimum exchange of measurements
among subsystems. The general idea is to augment each subsystem with additional measurements
that are typically acquired from the (nearest) neighbors of the subsystem, such that all of the faults
associated with the extended subsystem model are detectable and isolable. In the worst case, all of
the measurements from another subsystem may have to be included to make the current subsystem
diagnosable. When such a situation occurs, we say the two subsystems are merged and represented by
a common diagnoser; therefore, the total number of independent distributed diagnosers may be less
than k.

LetMSO = {MSO1, MSO2, . . . , MSOr} denote the set of candidate MSO sets for the system
S. For each subsystem Si, the objective is to develop an algorithm to select a subset ofMSOs that
guarantees maximal structural detectability and isolability for faults Fi associated with the subsystem,
while using a minimum number of measurements from the other subsystems in the system to assure
the equivalence of local and global diagnosability, i.e.,

∀Si; 1 ≤ i ≤ k

Select MSOSi ⊂MSO
s.t. min

Mo⊆M
|Mo|

Di(Mi ∪Mo) = Di(M),

Ii(Mi ∪Mo) = Ii(M),

(3)

where Mo represents the set of measurement we need to communicate to the subsystem Si and Mo ∪Mi
represents the set of measurement subsystem Si that will be used to diagnose all faults associated
with it. M represents the set of all measurements in the system. For a given set of measurements, X,
Di(X) ⊆ Fi represents the set of detectable faults, and Ii(X) ⊆ Fi represents the set of isolable faults in
Fi and Fi ⊆ F.
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3.2. MSO Set Selection for Distributed Fault Detection

For the situation in which the global model is known, M = {m1, m2, ..., ml} in Equation (3) is
the set of all system measurements. Let us assume we can generate r MSO sets given M: MSO =

{MSO1, MSO2, . . . , MSOr}.
Our goal is to design an algorithm that selectsMSOi ⊆MSO in a way that requires a minimum

number of additional measurements Mo ⊆ M, Mi ∩ Mo = ∅, i.e., measurements from the system
not belonging to subsystem Si, to make all its faults globally detectable and isolable, if possible.
Note that this is equivalent to the set-covering problem, which is NP-complete. In the past, heuristic
search methods have been adopted for solving this problem, for example a Temporal Causal Graph
(TCG) approach was used in [13]. In this paper, the problem is formulated as a Binary Integer Linear
Programming (BILP) problem [23]:

min cTx

s.t. Ax ≤ b

∃xb ⊂ x

∀xk ∈ xb ⇒ xk ∈ {0, 1},

(4)

where vector c represents the cost weights, matrix A and vector b define linear constraints, x represents
the variables, xb represents the binary variables, and xk ∈ xb represents a scalar binary variable [24].

There are several tools available for solving this problem, e.g., branch and bound algorithms [25] and
branch and cut algorithms [26] (see, for example, http://www.mathworks.com/help/optim/ug/mixed-
integer-linear-programming-algorithms.html in the MATLABTM linear integer programming toolbox).

To formulate the problem (3) as a BILP problem, a binary variable x(k): 1 ≤ k ≤ l is defined for
measurement mk in the system as follows:

x(k) =

{
1 if mk ∈ Mi ∪Mo

0 if mk /∈ Mi ∪Mo,
(5)

where Mo is the answer to Problem (3). An additional binary x(k + l): 1 ≤ k ≤ r, is used for MSO set
MSOk in the system as follows.

x(k + l) =

{
1 if MSOk ∈ MSOi
0 if MSOk /∈ MSOi.

(6)

Minimizing the number of measurements used from the other subsystems, this is formulated in
the following cost function c as:

c(k) =

{ 0 if mk ∈ Mi
1 if mk ∈ M\Mi
0 if l < k ≤ l + r,

(7)

where l is the number of system measurements and r is the number of MSO sets in the system.
To determine the set of measurements and selected MSO sets in each distributed diagnoser, a BILP
algorithm with l + r binary variables should be solved for the subsystem.

Consider subsystem Si with local faults Fi and the set of system faults, F. Each local fault f j ∈ Fi
has to be locally detectable. Given Definition 8, local detectability of all the faults f j ∈ Fi is achieved
using the following constraints in the optimization problem (4).

http://www.mathworks.com/help/optim/ug/mixed-integer-linear-programming-algorithms.html
http://www.mathworks.com/help/optim/ug/mixed-integer-linear-programming-algorithms.html
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A(j, k) =

{ 0 if k < l
−1 if f j ∈ MSOk−l
0 otherwise.

(8)

By considering b(j) = −1 for 1 ≤ j ≤ g, where g is the number of faults in Fi, the solution will contain
at least one MSO set to detect each fault.

The following constraint is added:

A(j + g, k) =

{ 0 k < l
−1 f j ∈ MSOk−l , fh /∈ MSOk−l
0 otherwise.

(9)

is used to isolate f j ∈ Fi from another fault fh ∈ F. Setting b(j) = −1 for g < j ≤ g ∗ h, where h is the
number of faults in the system, h = |F|, will make sure that there is at least one MSO set to isolate each
of the subsystem faults from the other faults in the system.

Using an MSO set is equivalent to using the measurements that are included in the MSO set.
For example, using MSO11 from the water tank example in a subsystem diagnoser requires three
measurements M11 = {u1, y1, y2} transmitted to that subsystem. Therefore, a set of constraints is
included that capture the relationship between the measurements and MSO sets in the distributed
diagnosis system.

Equation (10) represents this set of constraints in the A matrix.

A(j + g ∗ h, k) =

{ −1 if mk ∈ MSOj
|Mj| if k = j + |M|

0 otherwise,
(10)

where |Mj| is the cardinality number of the set of measurements in MSOj and |M| is the number of
measurements in the system. Furthermore, b(j) = 0 for g ∗ h < j ≤ g ∗ h + r, where r is the number of
MSO sets in the system.

Example 4. The water tank system has 165 MSO sets. The entire system includes eight measurements,
where subsystem S1 includes three measurements. S1 has two faults of interest, and the goal is to be able to
isolate them from the other six faults in the complete system. For the optimization problem (4) for S1, matrix
A ∈ R177×165, i.e., two local detectability constraints, 10 local isolability constraints, and 165 constraints to
capture the relationship between the MSO sets and the measurements and 173 columns corresponding to the
eight measurements and 165 MSO sets.

Table 1 shows the set of measurements to add for each of the subsystem diagnosers to achieve maximum
possible detectability and isolability. To find the optimum measurements, the optimization problem (4) has been
solved for each subsystem.

Table 1. Set of augmented measurements for each subsystem model.

Subsystem Set of Augmented Measurements

S1 y3
S2 u2, y2, y6
S3 y4, y6
S4 y5

Subsystem S1 initially has three measurements M1 = {u1, y1, y2}. To achieve global diagnosability for its
faults, y3 must be shared with its diagnoser from subsystem S2. Subsystem S2 is the only subsystem that shares
a variable with a second order connected subsystem. All the other subsystems only need to communicate with
their first order connected subsystems.
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In general, the worst case scenario for a system with connected subsystems will typically require
a large number of measurements from other subsystems to be communicated to each subsystem
diagnoser. In those situations, distributed subsystem diagnosers help overcome the single point of
failure problem, but each subsystem diagnoser may require a large number of measurements to be
communicated to it from all of the other subsystems.

Even though there are efficient algorithms to solve BILP problems, this approach will not scale
up for larger systems, since the search space is exponential in the number of MSO sets 2r, even if the
subsystem diagnoser design is performed off-line. In addition to the computational complexity, the
availability of global models for large, complex systems is unlikely because of the issues discussed in
Section 1. To overcome this problem, a heuristic search strategy is proposed based on an incremental
search algorithm that works with the original system equations instead of MSO sets.

4. Equation-Based Distributed Fault Detection and Isolation

To avoid the computational complexity of the MSO-based algorithm, in the previous section, a
distributed diagnosis method that works directly with the system of equations is proposed. To recap
from earlier work [27], a structural model representation is used. A structural model describes which
variables are included in which model equations. A useful tool is the Dulmage–Mendelsohn (DM)
decomposition that decomposes a system model into three parts: (1) under-determined, (2) exactly
determined, and (3) over-determined. The over-determined part introduces redundancy in the
system description and forms the basis for fault detection and isolation [2]. Figure 2 shows the
DM decomposition of subsystem S1 in the running example.

1p 1p 1inq

X

X

X

X

X

X

X
X

X

X

X

1q2p

𝑓1 → 𝑒1

𝑓2 → 𝑒2

𝑒5

𝑒4

𝑒3

𝑒6

𝑆1
0

𝑆1
+

Figure 2. Dulmage–Mendelsohn (DM) decomposition of the first subsystem model.

The figure represents the set of equations in the just determined part, S1
0, the set of equations in

the over-determined part, S1
+, and the set of unknown variables in each equation.

The shared variables are shown as encircled variables in the figure. Without loss of generality, it is
assumed that every fault parameter is included in exactly one equation, i.e., each fault f appears in
one equation e f . This is not a restricting assumption because if a fault is included in more than one
equation, we can replace the fault signal by a new variable and add a new equation where the new
variable is equal to the fault. Similar to the definitions of detectability and isolability for a structural
model in, e.g., [20], local detectability and isolability can be defined as:

Definition 11. (Locally detectable) A fault f ∈ Fi is locally detectable in subsystem Si if e f ∈ Si
+, where Si

+

is the over-determined part of subsystem Si.

Definition 12. (Locally isolable) A fault fi ∈ Fi is locally isolable from fault f j ∈ F if e fi
∈ (Si\e f j

)+, where
(Si\e f j

)+ is the over-determined part of subsystem Si without equation e f j
.
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Note that these definitions are equivalent to Definitions 8 and 10 since an MSO set is an
over-determined equation set.

Consider Definition 11 and Figure 2. Fault f1 is locally detectable because e1 ∈ S1
+, but f2 is not

locally detectable since e2 /∈ S1
+. To expand the over-determined part and make f2 detectable, the

diagnosis subsystem needs to include at least one additional equation. The extension to the original
subsystem is defined as:

Definition 13. (Augmented subsystem) Given subsystem Si and a set of equations, Ek, the augmented
subsystem model SiEk = (Si|Ek) is (ViEk , MiEk , EiEk , FiEk ), where ViEk is the union of Vi and the unknown
variables that appear in Ek, MiEk is the union of Mi and the known variables that appear in Ek, EiEk is the union
of Ei and Ek, and FiEk is the union of Fi and the possible faults associated with Ek.

Example 5. Consider the running example. S1e10 = (S1|e10) = (V1e10, M1e10, E1e10, F1e10), where V1e10 =

{ ṗ1, p1, p2, qin1, q1}, E1e10 = {e1, e2, e3, e4, e5, e6, e10}, M1e10 = {u1, y1, y2, y3}, and F1e10 = { f1, f2}. Note
that e10 did not add any new unknown variables or faults to the subsystem model. Figure 3 represents the DM
decomposition of the augmented subsystem, S1e10. This figure shows that e2 ∈ S1e10

+, and therefore, f2 is locally
detectable for the augmented subsystem S1e10.

1p 1p 1inq

X

X X

X

X

X

X

X

X

X

X

1q
2p

𝑓1 → 𝑒1

𝑓2 → 𝑒2

𝑒3

𝑒4

𝑒10

𝑒6

(𝑆1|𝑒10)
+

X

𝑒5

Figure 3. DM decomposition of S1e10 = (S1|e10).

Figure 4 shows DM decomposition of the S1e10 \ e1. Equation e2 is in the over-determined part of the
augmented subsystem model; therefore, f2 is locally isolable from f1 in the augmented subsystem.

1p
1p1inq 1q2p

𝑓2 → 𝑒2

𝑒3

𝑒4

𝑒10

𝑒6 (𝑆1𝑒10\𝑒1)
+

𝑒5

𝑋

𝑋𝑋

𝑋 𝑋 𝑋

𝑋

𝑋

𝑋

(𝑆1𝑒10\𝑒1)
0

Figure 4. DM decomposition of S1e10 \ e1.
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4.1. Problem Formulation

An equation-based solution approach is formulated for designing a distributed diagnoser. For the
given set of subsystems S1, S2, · · · Sn, when there are faults that are not locally detectable or isolable in
one or more subsystems, it is necessary to consider the following cases:

1. fk ∈ Fi is not locally detectable.
2. fl ∈ Fi and fm ∈ Fi are not locally isolable from each other.
3. fn ∈ Fi is not locally isolable from fo ∈ Fj and fo /∈ Fi.

The last case represents a scenario where a subsystem fault is not locally isolable from a fault
outside of the subsystem. This scenario can happen because a fault occurrence can have consequences
beyond the original subsystem. Designing distributed diagnosers that account for these three scenarios
is the focus in this section. After addressing each of these situations, we derive an integrated approach
to distributed FDI and derive algorithms that apply to complex, dynamic systems made up of a number
of subsystems.

For each subsystem, it might be necessary to augment the subsystem model with additional
equations that are typically acquired from the neighbors of the subsystem, such that all of the faults
associated with the augmented model are locally detectable and isolable. A set of equations is minimal
if there is no subset of equations that provides the same detectability and isolability. More formally,
the problem of designing a diagnoser for a particular subsystem Si can be described as follows.

Consider NSi = {S1, S2, . . . , Sl} \ Si as the set of neighboring subsystems to subsystem Si.
To address the three situations mentioned above, an algorithm is to be developed to find a minimal
equation set Eo in NSi that guarantees maximal structural detectability and isolability for subsystems
faults Fi, i.e., that solves the optimization problem:

minEo⊆El |Eo|
s.t. D(Si|Eo) = D(Si|El),

I(Si|Eo) = I(Si|El),

(11)

where El represents the set of all the equations in NSi, D represents the set of detectable faults in Fi,
and I represents the set of isolable faults in Fi from the system faults F.

Example 6. Consider the first subsystem of the running example S1, e10 makes f1 and f2 detectable and isolable
from all the other faults in the system. Therefore, A1 = {e10} is a minimal solution to the problem.

In this section, we present a method to make all the faults in a subsystem locally detectable
(Situation (1) above). We also discuss the solution to the fault isolability problem (Situation (2) above)
and prove that if we address the first situation, the third situation is automatically taken care of.

4.2. Maximum Detectability

Example 7. Consider subsystem S1 in the four-tank example whose equations are listed in (1). The DM
decomposition of this subsystem is shown in Figure 2. f2 is in the just determined part of the subsystem; therefore,
the fault is not locally detectable. However, p2 is a shared variable with Subsystem 2. Therefore, an equation from
subsystem 2 can be selected, e10, to make f2 locally detectable in the augmented subsystem, S1e10 (see Figure 3).
Adding measurement equation e10 makes p2 known and, therefore, makes the subsystem over-determined.

Note that a variable that only appears in one subsystem (for example ṗ1 in S1) cannot
become known by adding equations from other subsystems. Therefore, our ability to increase fault
diagnosability is limited to the shared variables in the subsystem. More formally, we can prove the
following theorem.
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Theorem 1. Consider local subsystem model Si = {Vi, Mi, Ei, Fi} and Vishared ⊂ Vi the set of shared variables
in the subsystem. If a fault f ∈ Fi is not locally detectable in a new subsystem Sj = {Vi −Vishared, Mi ∪Vishared,
Ei, Fi} where all the shared variables are known, f is not globally detectable.

Proof. If e f remains in the just determined part or under determined part of the subsystem when all
the shared variables have became known, there is no additional equation in the system that can make
any of the variables in e f known. Therefore, the equation cannot be moved to the over-determined
part of the structural decomposition.

Therefore, the maximum detectability that can be achieved in each subsystem cannot be more than
the detectability when all the shared variables are known. Using Theorem 1, we develop Algorithm 1
and Algorithm 2 to find an upper bound for the number of detectable faults and isolable fault pairs
in each subsystem, respectively. Note that our algorithms do not require any information from the
neighboring subsystems.

Algorithm 1 Detectable faults.

1: input: Vishared
2: input: Si = {Vi, Mi, Ei, Fi}
3: Let DF be {}
4: Let SDF be {Vi −Vishared, Mi ∪Vishared, Ei, Fi}
5: for each f ∈ Fi do

6: if f ∈ (SDF)
+ then

7: DF = DF ∪ { f }
8: return DF

Algorithm 2 Isolable faults.

1: input: Vishared
2: input: Si = {Vi, Mi, Ei, Fi}
3: Let IF be {}
4: Let SIF be {Vi −Vishared, Mi ∪Vishared, Ei, Fi}
5: for each f j ∈ Fi do

6: for each fk ∈ Fi do

7: if fi ∈ (SIF \ e fk)
+ then

8: IF = IF ∪ { f j, fk}
9: return DF

Adopting the following strategy, a minimal set of shared variables can be found that guarantees
maximum detectability.

• We assume all the shared variables are known. If a fault is not locally detectable when all the shared
variables are known, that fault is removed from the list of detectable faults (see Algorithm 1).

• Each shared variable is removed from the list of known variables to the unknown variables one
at the time, to evaluate the list of detectable faults. If removing the shared variable from the
known variables decreases the number of faults in the list of detectable faults, the shared variable
is added back to the list of minimal required shared variables. Otherwise, the shared variable is
not needed.

Algorithm 3 presents our method to find a minimal set of required shared variables. The algorithm
is initialized with the subsystem model and the set of shared variables (for subsystem S1, p2 and q1 are
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unknown shared variables), and this provides a minimal subset of shared variables that makes all the
faults detectable in the subsystem. For Subsystem 1, V1m = {p2} is a possible answer.

Algorithm 3 Minimal shared variables.

1: input: Si = {Vi, Mi, Ei, Fi}
2: Let Vishared be the set of shared variables in Si
3: DF = Detectable-Faults(Vishared, Si)
4: Let Vim be Vishared
5: for each vis ∈ Vim do

6: Let Vim be Vim/vis
7: if Detectable-Faults(Vim, Si) not equal DF then

8: Vim = Vim ∪ {vis}
9: return Vim

Note that all of the shared unknown variables may not be measured. However, in some cases, it
is possible to transfer a set of equations from the neighboring subsystems that can be used with the
equations in the subsystem to compute the unknown variables.

4.3. Equation-Based Fault Detection Approach

Given a minimal set of required shared variables, we present our proposed approach to find a
minimal set of equations from the neighboring subsystems in order to achieve the maximum possible
fault detectability. The procedure is illustrated by solving this problem for subsystem S2, presented in
Equation (2), of the running example, and then generalizing this approach by developing a general
algorithm to solve this problem.

Example 8. The corresponding structural decomposition of S2 is shown in Figure 5.

Figure 5. DM decomposition of S2.

Subsystem S2 is just determined; therefore, none of the faults are locally detectable. However, q1 and
p2 are shared variables with subsystem S1, and q3 and p3 are shared variables with S3. Algorithm 3 finds
V1m = {q1, p3} as a minimal set of shared unknown variables, which if transferred from neighboring subsystems,
can provide maximum detectability performance.Therefore, to make f3 and f4 locally detectable, the neighboring
subsystems are explored to find equations that make the variables q1 and p3 known.

To find a minimal set of just determined equations that includes q1, we start with all equations in S1 that
have q1. These equations are e1, e2, and e6, as is shown in Figure 6.

Then, for the additional variables in each equation that are not already in S0
2, additional equations are

included. For equation e1, two additional equations are needed, one with qin1 and the other one with ṗ1. Finally,
another equation is needed where p1 is included. Since p2 ∈ S2

0, the variable is not considered in this step.



Appl. Sci. 2019, 9, 1286 13 of 25

𝑒3:{𝑝1, ሶ𝑝1}
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𝑒1: { ሶ𝑝1, 𝑞𝑖𝑛1, 𝑞1}

{𝑞𝑖𝑛1, ሶ𝑝1}
new 

variables

new 

variable
{𝑝1}

𝑒5:{𝑝1}𝑒2:{𝑞1, 𝑝1, 𝑝2}

𝑝2 ∈ 𝑆2
0

𝐴2 = 𝑒1, 𝑒2, 𝑒3, 𝑒4

𝐴3 = 𝑒1, 𝑒3, 𝑒4, 𝑒5

𝑒2: {𝑞1, 𝑝1, 𝑝2}

{𝑝1}
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variable

𝑝2 ∈ 𝑆2
0

𝑒5:{𝑝1}𝑒3 :{𝑝1, ሶ𝑝1}

𝐴4 = 𝑒2, 𝑒5{ ሶ𝑝1}
new 

variable

𝑒1: { ሶ𝑝1, 𝑞𝑖𝑛1, 𝑞1}

{𝑞𝑖𝑛1}
new 

variable

𝑒4:{𝑞𝑖𝑛1}

𝐴2 = 𝑒1, 𝑒2, 𝑒3, 𝑒4

𝑒6: {𝑞1}

𝐴5 = 𝑒6

Figure 6. Finding the minimal sets of equations in S1 to compute q1.

To find the other minimal sets in the example, we keep adding the relative equations to the
other sets using the same approach described above. As is shown in Figure 6, by sequentially adding
equations to the system, we eventually achieve four sets of minimal constraints: A2 = {e1, e2, e3, e4},
A3 = {e1, e3, e4, e5}, A4 = {e2, e5}, and A5 = {e6}. Figure 6 represents a matching algorithm. In the
previous work in [28], a matching algorithm was introduced for finding a minimal set of equations for
detecting each discrete mode change during the hybrid system’s operation. In this paper, a similar
approach was applied to find a minimal set of equations from neighboring subsystems for computing
each required shared variable as presented as Algorithm 4.

Algorithm 4 Count matchings.

1: input: current matchingM
2: input: sets of determined variables D and undetermined variables U , set of equations E
3: if U = ∅ then

4: returnM as a feasible (minimal) matching.
5: for each x ∈ U do

6: for each e ∈ E, which can determine x do

7: LetM′ beM∪{e→ x}
8: Let D′ be D ∪ {x}.
9: Let U ′ be U \ {x}.

10: Let E′ be E \ {e}.
11: Add all the undetermined variables of e to U ′.
12: COUNT-MATCHINGS(M′,D′,U ′, E′)

If we initialize the algorithm with the set of unknown variables (in Figure 6, q1 is the unknown
variable), this provides a set of complete matching of variables and equations in the neighboring
subsystems that includes the unknown variables.

Example 9. Figure 7 shows that augmenting A2 with S2 makes f3 detectable. To make f4 locally detectable as
well, Algorithm 4 is used to find a minimal set of equations in the neighboring subsystems that includes p3 and
augment S2|A2 with those equations.
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Figure 7. DM decomposition of (S2|A2).

Subsystem S2 is just determined, but a subsystem can have an under-determined part as well. For example,
consider subsystem S3 in Equation (2) where the DM decomposition is shown in Figure 8. Fault f5 is in the
under-determined part of the structure.

Figure 8. DM decomposition of S3.

qin2 and q3 are in the just determined part of the system, and we can compute them using e15 and e16,
respectively. However, to compute the other four variables in the subsystem, p3, q2, ṗ3, and p4, we only have
three constraints, which makes complete matching between constraints and variables impossible. To make this
part of the subsystem just determined, we need to augment a set of equations from the neighboring subsystems.

Unlike previous work [18] where an algorithm was developed for subsystems with under-determined parts,
Algorithm 3 automatically takes care of this. Using Algorithm 3 gives Vm3 = {q2, q3} as a minimal set of
required shared variables to make f5 detectable. Having the set of required shared variables, Algorithm 4 gives
A6 = {e11, e17, e18, e19} as a minimal sets of equations from neighboring subsystems can be used to augment S3

to make f5 locally detectable. Figure 9 shows the DM decomposition of (S3|A6).

Figure 9. DM decomposition of (S3|A6).
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In some cases, it is possible that an augmented minimal set, Ai, also adds a set of faults FAi to
the subsystem model Si. These faults can be sensor faults or faults in other equations. The following
theorem states that these faults are locally detectable in subsystem model Si.

Theorem 2. Consider local subsystem model Si = {Vi, Mi, Ei, Fi} and Ek a set of minimal equations that
makes set of faults Fi detectable in the augmented subsystem (Mi|Caugments) = {Vj, Cj, Fj}, then the set of
faults Fj in the augmented subsystem (Si|Ek) is locally detectable.

Proof. The proof of this theorem is straight forward, since the minimal set makes a part of the system
that includes the fault over-determined, and the set itself should be in the over-determined part as
well. This means the associated faults in the set are detectable.

For example, f6 is locally detectable in (S3|A6); see Figure 9. As long as fault detection is considered,
the augmented faults do not cause any problem. The fault detection algorithm is summarized in
Algorithm 5.

Algorithm 5 Detectability.

1: input: subsystem Si
2: input: subsystem model neighbors NSi
3: M = {}
4: Vd = set of determined variables in Si
5: if ∀ f ∈ Fi therefore e f ∈ Si

+ then

6: return
7: U = Minimal-Shared-Variables(Si)
8: D = Vd \ U
9: Ed = Count-Matchings (M, D, U, NSi)

4.4. Equation-Based Fault Isolation Approach

In this subsection, it is assumed that the set of minimal equations to make all the faults
locally detectable have been derived as described in the previous subsection. It is clear that the
locally-detectable faults in each subsystem are locally isolable from the faults in the other subsystems
not included in the augmented subsystem.

Theorem 3. Consider local subsystem Si = {Vi, Mi, Ei, Fi}. If fi ∈ Fi is locally detectable in Si, then fi is the
locally-isolable form f j if f j /∈ Fi.

Proof. Since fi is detectable, we have e fi
∈ Si

+, and since f j /∈ Fi, we can say e f j
/∈ Si

+. Therefore,
Si

+ = (Si\e f j
)+ and e fi

∈ (Si\e f j
)+.

Considering Theorem 3, it is straight forward to address the isolability problem. For each fault
fi ∈ Fi, we remove the associated equation e fi

from Ei and all the neighboring subsystems. Then, we
use Algorithm 5 to make all the remaining faults in Fi detectable.

Example 10. In (S3|A6) in Figure 9, f5 is isolable from f1, f2, f3, and f4 because they are not in the augmented
subsystem and f5 is detectable in this augmented subsystem. To make f5 isolable from f6, we remove e17 from
(S3|A6) and S4. Applying Algorithm 5 to S4\e7 gives {e20} as a minimal set that can make f5 detectable.

The augmented subsystem (S3|A6 ∪ {e20}) will detect f5 and isolate it from all the other faults in
the global system S. Algorithm 6 summarizes the method discussed above.
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Algorithm 6 Diagnosability.

1: input: subsystem model Si
2: input: subsystem model neighbors NSi
3: Ed = Detectability(Si, NSi)
4: Si = (Si|Ed)
5: for each f ∈ Si do

6: S̄i = Si \ ( f and e f )
7: Ed = Detectability(S̄i, NSi)
8: Si = (Si|Ed)

Our proposed approach considers the first order neighboring subsystems of subsystem Si and
augments minimal constraints from them to maximize diagnosability. If the set of first order neighboring
subsystems does not have required redundancies to achieve maximum diagnosability, the search process
continues to the next higher order of neighboring subsystems, as illustrated in Figure 10. The expansion
process will stop when the distributed approach achieves maximum diagnosability, which in the worst
case will result in a centralized diagnoser for the whole system. Thus, it is guaranteed that the method
will find a distributed set of subsystem diagnosers that achieves the same diagnosability performance as
the best centralized diagnoser for the same set of measurements. Algorithm 7 summarizes this approach.

mS

jS

kS

oS

nS

pS

qS

wS

lS

sS

tS

vS

rS

First order 
connected 
subsystems 

Second 
order 

connected 
subsystems   

iS

Figure 10. Expanding the search environment to the higher order connected subsystems.

Algorithm 7 Distributed diagnosis.

1: input: subsystem Si
2: input: subsystem model neighbors NSi
3: Let Vishared be the set of shared variables in Si
4: DF = Detectable-Faults(Vishared, Si)
5: IF = Isolable-Faults(Vishared, Si)
6: Eo = Diagnosability(Si, NSi)
7: if D(Si|Eo) = DF and I(Si|Eo) = IF then

8: return
9: NSi =NSi ∪ (neighboring subsystems of NSi)

10: DistributedDiagnosis(Si, NSi)
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The set of equations and measurements that each subsystem in the running example needs from
its neighbors to achieve maximum possible detectability and isolability using the equation-based
approach are presented in Table 2. Table 2 shows that all the subsystems of the water tank example
share measurements with their first order connected subsystems. This is a practical advantage of this
algorithm because usually, the subsystems with shared variables are physically closer to each other
(corresponding to our definition of nearest neighbors).

Table 2. Set of augmented constraints and measurements for each subsystem model.

Subsystem Augmented Equations Augmented Measurements

S1 e10 y3
S2 e6, e12, e14, e15, e16 y2, u2, y5
S3 e11, e17, e18, e19, e20 y4, y6
S4 e16 y5

Another advantage of this algorithm is that not only do we not need a global model for detecting
and isolating the faults, but also, we do not use the global model in the design process of the supervisory
system. This makes the approach suitable for large, complex systems, such as aircraft and power
plants where the global systems models are likely to be unavailable or are unknown.

4.5. Computational Complexity

The time complexity of Algorithm 5 is mostly governed by Algorithm 4 (Count-Matchings) that
has exponential complexity O(|U | × |EN |!), where |U | is the number of required unknown variables
in the subsystem and |EN | is the number of equations in the neighboring subsystems. Algorithm 6
calls Algorithm 5 for every fault in the subsystem. Therefore, Algorithm 6 has O(|Fi| × |U | × |EN |!)
time complexity for subsystem Si, where |Fi| is the number of faults in the subsystem. Note that
in the case that no globally-accurate diagnoser can be derived using neighboring subsystems, the
solution gradually expands to include all subsystems. Therefore, the time complexity of our proposed
method in Algorithm 7 for subsystem i is O(|Fi| × |U | × |E|!), where |E| is total number of equations
in the system.

In practice, Algorithm 4 finds the answer much faster. For example, consider Figure 6 where
Algorithm 4 is searching for a set of equations to solve q1. As soon as the algorithm reaches an equation
that does not have the required unknown variable, the algorithm discards that equation and, therefore,
avoids enumerating the rest of the candidate equations in that branch. To achieve even faster solutions,
we can sort the equations by the number of their unknown variables before the search. In this way,
the algorithm starts with equations with fewer unknown variables and, therefore, has to expand fewer
branches on average.

The equation-based solution is exponential in terms of the number of equations in the system.
The MSO-based solution is exponential in terms of the number of MSO sets in the system. The total
number of MSO sets for fault detection and isolation grows exponentially as the number of
measurements increase [29]. Consider Definition 1. The total number of redundancies introduced
into the system model is equal to the number of measurements, |M|. Theoretically, each MSO set can
include anything from one to |M|measurements. Therefore, the total number of MSO sets, NMSO, is
proportional to all possible combinations of the measurements:

NMSO ∝
|M|

∑
i=1

(
|M|

i

)
= 2|M| (12)

In general, there are many more MSO sets in a system than equations. For example, the running
example in this paper has 20 equations, and the fault diagnosis toolbox generated 165 MSO sets for
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this system. Therefore, we expect the equation-based approach to solve the problem in a more efficient
way, which is demonstrated next.

5. Case Study

The ADAPT-Lite system is designed to emulate the operation of generic spacecraft electrical
power distribution systems [30]. The system has five subsystems: (1) the battery, (2) the Direct Current
(DC) electric load, (3) the inverter, (4) the Alternating Current (AC) resistive electric load, and (5)
the electric fan as a second inductive load for the AC system (see Figure 11). Seven measurements
are made on the system: yE240, yE242, and yE281 represent DC voltage measurements in the system;
yIT240 represents the battery current; yE265 represents the inverter AC output voltage; yIT267 is the
inverter AC output current; and yST516 is the fan rotational speed. Six faults are considered in the
system: fE240 and fE242 are sensor faults in yE240, and yE242, respectively; fdc represents a fault in the
DC load; f INV models inverter faults; fac represents a fault in the AC load; and f f an is a fan fault.
The ADAPT-Lite system has several Circuit Breakers (CB236, CB262, CB266, and CB280), and relays
(EY244, EY260, EY281, EY272, and EY275) and, therefore, operates as a hybrid system with multiple
modes (configurations).

Figure 11. ADAPT-Lite subsystems [30]. CB, Circuit Breaker.

In previous work [28], we discussed structural diagnosis for hybrid systems. In this paper, we
focus on distributed diagnosis. Therefore, we assume all the circuit breakers and relays are on and
there is no mode change in the system. The set of equations in each subsystem is derived as follows.

Subsystem 1 (battery): The set of equations:

ea1 : v̇0 =
1

C0
(−iB) ea5 : vB = v0 − vs ea9 : yE240 = v1 + fE240

ea2 : v0 =
∫

v̇0dt ea6 : v1 = vB ea10 : yE242 = v2 + fE242

ea3 : v̇s =
1

Cs
(iBRs − vs) ea7 : v2 = v1 ea11 : yIT240 = iB,

ea4 : vs =
∫

v̇sdt ea8 : v3 = v2

(13)

where Va1 = {v̇0, v0, iB, v̇s, vs, vB, v1, v2, v3} is the set of unknown variables in this subsystem, the set of
measurements is Ma1 = {yE240, yE242, yIT240}, Fa1 = { fE240, fE242} represents subsystem faults, and C0,
Cs and Rs are the component parameters in the subsystem. The battery is directly connected to the
second subsystem (DC load).

Subsystem 2 (DC load): The DC load is modeled by an electric resistance, Rdc. The set of equations
for this subsystem is:

ea12 : v3 = vdc ea14 : idc = fdc
vdc
Rdc

ea13 : iB = idc + iinv ea15 : yE281 = vdc,
(14)
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where Va2 = {v3, vdc, iB, idc, iinv} are unknown variables, Ma2 = {yE281} are measurements,
Fa2 = { fdc} are faults, and Rdc is a component parameter in the subsystem. Subsystems 1 and 2
are first order connected, and their shared variables are Va1 ∩V2 = {v3, iB}.

Subsystem 3 (inverter): The inverter converts DC power to AC. When there is no fault in the
subsystem and the input voltage, vin, is above 18 V, the output voltage, vrms, stays at 120 V. Rinv
represents the internal resistance in the inverter, and e is the inverter efficiency coefficient. The set of
equation for the subsystem is:

ea16 : vin = vdc ea18 : iinv =
vrms.irms

e.vin
+

vinv
Rinv

ea17 : vrms = 120.(vin > 18). f INV ea19 : yE265 = vrms,
(15)

where Va3 = {vin, vdc, vrms, iinv, irms} are unknown variables, Ma3 = {yE265} is a measurement,
Fa3 = { f INV} is a fault, and {e, Rinv} are parameters of the subsystem. Subsystems 2 and 3 are
first order connected, and their shared variables are Va2 ∩Va3 = {vdc, iinv}. Subsystems 1 and 3 are
second order connected because they have no shared variable, and they are both first order connected
to the second subsystem.

Subsystem 4 (AC load): Like the DC load, the AC load is modeled as an electric resistance, Rac.
The set of equations for this subsystem is:

ea20 : v4 = vrms

ea21 : iac = fac
v4

Rac

ea22 : irms =
1√
2
|
√

2i f an(cosφ + jsinφ) +
√

2iac|

ea23 : yIT267 = irms,

(16)

where Va4 = {v4, vrms, iac, irms, i f an} are unknown variables, Ma4 = {yIT267} is the measurement,
Fa4 = { fac} is a fault, and {Rac, φ} are parameters of the subsystem. Subsystems 3 and 4 are first order
connected, and their shared variable is Va3 ∩Va4 = {vrms}.

Subsystem 5 (electric fan): The fan rotational speed, ω, is a function of the fan current, i f an. The last
subsystem equations are:

ea24 : i f an = f f an
v4

R f an

ea25 : ω̇ =
1

J f an
(

i f an

B f an
−ω)

ea26 : ω =
∫

ω̇dt

ea27 : yST516 = ω,

(17)

where Va5 = {i f an, v4, ω̇, ω, i f an} are unknown variables, Ma5 = {yST516} is a measurement, and
Fa5 = { f f an} is a fault of the subsystem. Fan electrical resistance, R f an, fan inertial, J f an, and fan
mechanical resistance, B f an, are the parameters. Subsystems 4 and 5 are first order connected, and
Va4 ∩Va5 = {i f an, v4} is the set of shared variables among these subsystems.

5.1. Distributed Diagnoser Using the MSO-Based Method

For the ADAPT system, there are 258 MSO sets. To find the minimal number of shared
measurements, the global MSO set selection algorithm solves an optimization problem for each
subsystem. Table 3 shows the set of measurements that needs to be add for each of the subsystem
diagnosers to achieve maximum possible detectability and isolability. In the first subsystem, all the
faults are locally detectable and isolable, and therefore, this subsystem does not require any additional
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measurements from the other subsystems. For each of the other subsystems, we have to transfer
exactly one measurement to achieve maximum diagnosability.

Table 3. Set of augmented measurements for each ADAPT subsystem using the global method.

Subsystem Set of Augmented Measurements

Subsystem 1 -
Subsystem 2 yIT267
Subsystem 3 yE281
Subsystem 4 yST516
Subsystem 5 yE265

Table 4 shows the set of MSO sets for each local diagnoser. Note that the global MSO sets’ selection
method only minimizes the number of shared variables, but the subsystems may require equations
from the other subsystems. For example, the first subsystem in ADAPT does not require any additional
measurement to detect and isolate its faults locally; however, as we can see in Table 4, this subsystem
requires several equations from the other subsystems to generate residuals.

Table 4. Set of Minimal Structurally-Over-determined (MSO) sets for each local diagnoser using the
MSO-based method.

Subsystem Set of MSO Sets

1 MSOa11 = {ea7, ea9, ea10}
MSOa12 = {ea8, ea10, ea11, ea12, ea13, ea14, ea16, ea17, ea18, ea20, ea21, ea22, ea24}

MSOa13 = {ea7, ea8, ea9, ea11, ea12, ea13, ea14, , ea16, ...
ea17, ea18, ea20, ea21, ea22, ea24}

2 MSOa21 = {ea1, ea2, ea3, ea4, ea5, ea6, ea7, ea8, ea12, ea13, ea14, ea15, ea16, ...
ea18, ea20, ea21, ea22, ea23, ea24}

MSOa22 = {ea1, ea2, ea3, ea4, ea5, ea6, ea7, ea8, ea12, ea13, ea14, ea15, ea16, ...
ea17, ea18, ea23}

3 MSOa31 = {ea15, ea16, ea17, ea19}

4 MSOa41 = {ea21, ea22, ea23, ea24, ea25, ea26, ea27}
MSOa42 = {ea1, ea2, ea3, ea4, ea5, ea6, ea7, ea8, ea12, ea13, ea14, ea16, ...

ea17, ea18, ea20, ea21, ea22, ea23, ea25, ea26, ea27}

5 MSOa51 = {ea19, ea20, ea24, ea25, ea26, ea27}

The total time for finding all MSO sets and solving the optimization problems to find a set of MSO
sets for each subsystem with minimum shared variables was 118 s, when the experiment was run on a
desktop with an Intel Core i7-4790 3.60-GHz processor.

5.2. Distributed Diagnoser Using the Equation-Based Method

Instead of generating all the MSO sets and selecting a subset of MSO sets for each local diagnoser,
Algorithm 7 is used.

The results are shown in Table 5, summarizing the set of equations to augment each subsystem
to achieve maximum possible detectability and isolability. In some cases, the first order neighboring
subsystems were not enough to detect and isolate all the faults, and the algorithm had to extend to
include higher order neighbors. For example, for Subsystem 2, the algorithm cannot find any solution
when it considered the first order neighbors (Subsystem 1 and Subsystem 3). Therefore, it extended
the search to a second order neighboring subsystem (Subsystem 4).

Table 5 also represents the set of additional measurements that we need to transfer to each ADAPT
subsystem. As mentioned earlier, the equation-based algorithm does not guarantee globally-minimum
communication. For example, Subsystem 2 required three measurements from other subsystems (see
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Table 5). However, Table 3 shows that complete diagnosability was achievable by adding only one
additional measurement. To detect and isolate faults in each subsystem, the augmented subsystem
equations were used to generate MOS sets. Table 6 shows the set of MSO sets for each local diagnoser
using the equation-based method. The experiment was run on the same desktop where total execution
time was 0.32s. This demonstrates the computational advantage of this method.

Table 5. Set of augmented equations and measurements for each subsystem model using the equation-
based approach.

Subsystem Augmented Equations Augmented Measurements

Subsystem 1 - -
Subsystem 2 ea11, ea16, ea18, ea19, ea23 yIT240, yE265, yIT267
Subsystem 3 ea15 yE281
Subsystem 4 ea19, ea25, ea26, ea27 yE265, yST516
Subsystem 5 ea19, ea20 yE265

Table 6. Set of MSO sets for each local diagnoser using the equation-based approach.

Subsystem Set of MSO Sets

1 MSOb11 = {ea7, ea9, ea10}
MSOb12 = {ea1, ea2, ea3, ea4, ea5, ea6, ea9, ea11}

MSOb13 = {ea1, ea2, ea3, ea4, ea5, ea6, ea7, , ea10, ea11}
2 MSOb21 = {ea11, ea13, ea14, ea15, ea16, ea18, ea19, ea23}
3 MSOb31 = {ea15, ea16, ea17, ea18, ea19}
4 MSOb41 = {ea19, ea20, ea21, ea22, ea23, ea25, ea26, ea27}
5 MSOb51 = {ea19, ea20, ea24, ea25, ea26, ea27}

5.3. Designing the Diagnosers

After the augmented subsystem models have been selected, computational tools, for example the
fault diagnosis toolbox [22], can be used to generate the set of residuals to be used for each subsystem.
For example, the fault diagnosis toolbox generates the following residual from MSOa11.

ra11 = yE240 − yE242. (18)

Each residual is sensitive to a set of faults, and the set of residuals for each subsystem can detect all the
globally-detectable faults and isolate all the globally-isolable faults in the subsystem. For example,
ra11 in (18) is sensitive to fE240 and fE242 and, therefore, can be used to detect these faults. In realistic
situations, sensor noise and model uncertainties can have a negative impact on each diagnoser’s
performance. For example, consider the case where each sensor in the ADAPT-Lite system has an
additive noise with a normal distribution, N(0.0.1). Figure 12 shows that because of noise, residual
ra11 is not zero even when there is no fault in the system.

Figure 12. Residual ra11 for 24 h when each sensor in the ADAPT-Lite system has an additive noise
with a normal distribution, N(0.0.1), and the system is in normal operation.
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This can impact fault diagnosis performance negatively by increasing false positive rates.
Moreover, noise can hide the effect of faults on the residuals and lead to high false negative rates.
Figure 13 shows residual ra11 when an additive fault fE240 = 0.25 occurs at t = 20 h. Sensor noise
conceals the fault signal and makes fault detection and isolation more challenging.

Figure 13. Residual ra11 for 24 h when each sensor in the ADAPT-Lite system has an additive noise
with a normal distribution, N(0.0.1), and fE240 = 0.25 occurs at t = 20 h.

To achieve acceptable performance in practice, it is necessary to design a set of hypothesis tests,
such as the Z-test [31], to distinguish faults from noise and uncertainty and determine what residual
outputs are significant enough to reject the normal operation assumption and trigger the alarms.
Figure 14 shows that a simple hypothesis test can achieve a zero false positive rate and detect fE240 in
less than 5 min using residual ra11.

Figure 14. A hypothesis test can achieve a zero false positive rate and detect fE240 in 4′:48′′ using
residual ra11. The step function represents the detection time.

5.4. Discussion

The two proposed algorithms for designing distributed diagnosis systems provide a solution
with maximum possible detectability and isolability that can be achieved for a system given a set
of measurements. Unlike previous work, such as [14,15], our proposed methods were based on
system models expressed as equations and, therefore, did not need to use the temporal response and
event ordering in the diagnosis, all of which are derived properties and, therefore, require additional
computation. Using a purely structural approach reduced the overall diagnosability of the system for
the given set of measurements. However, it also reduced the number of assumptions we needed to
make about the fault characteristics, such as the order of events in the diagnoses subsystems (which
can be error-prone), and we did not have to analyze in detail the subsystem dynamics.

The total number of MSO sets was exponential in terms of the system measurements, and the
MSO set selection was equivalent to the set covering problem. Therefore, the MSO-based algorithm
had high computational cost especially for large-scale systems. The algorithm guaranteed that the
subsystems shared a minimum number of measurements between the subsystems, implying that we
minimized the communication of measurement streams across subsystems of the global system. This
is important because sending data between subsystems is costly in large-scale systems. Moreover, it is
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straight forward to extend the MSO-based approach to robust distributed diagnosis by considering
residuals’ robustness performance in the selection process [32,33].

The equation-based algorithm found a minimal set of equations from neighboring subsystems
that guaranteed the maximum possible detectability and isolability that can be achieved for the system
given a set of measurements. The number of equations was significantly smaller than the number of
MSO sets. Therefore, the second algorithm was computationally more efficient. Moreover, the second
algorithm did not need to use the global model in the design process of the supervisory system. This
makes the algorithm very feasible for large-scale complex systems. However, it did not guarantee that
the number of shared variables among the subsystems was globally minimum.

6. Conclusions

Two algorithms are proposed for designing distributed diagnosers where the number of sensor
data shared between different local diagnosers is minimized. The first method generates the MSO sets
for the given global system and selects a subset for each subsystem with minimum required shared
variables. Having all the MSO sets computed in advance makes robustness analysis possible for robust
distributed MSO set selection. The second algorithm used a heuristic equation-based approach, which
is computationally more efficient and makes it suitable for large-scale systems. The ADAPT system
case study was used to compare the two algorithms and illustrate the advantages of each method. In
future work, we will consider noise and uncertainty in the design step and will extend the distributed
diagnosis design problem to robust distributed fault detection and isolation using different methods
for decoupling noise and uncertainties.
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