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Abstract: Although a state-of-the-art performance has been achieved in pixel-specific tasks, such
as saliency prediction and depth estimation, convolutional neural networks (CNNs) still perform
unsatisfactorily in human parsing where semantic information of detailed regions needs to be
perceived under the influences of variations in viewpoints, poses, and occlusions. In this paper,
we propose to improve the robustness of human parsing modules by introducing a depth-estimation
module. A novel scheme is proposed for the integration of a depth-estimation module and a
human-parsing module. The robustness of the overall model is improved with the automatically
obtained depth labels. As another major concern, the computational efficiency is also discussed.
Our proposed human parsing module with 24 layers can achieve a similar performance as the
baseline CNN model with over 100 layers. The number of parameters in the overall model is less
than that in the baseline model. Furthermore, we propose to reduce the computational burden by
replacing a conventional CNN layer with a stack of simplified sub-layers to further reduce the overall
number of trainable parameters. Experimental results show that the integration of two modules
contributes to the improvement of human parsing without additional human labeling. The proposed
model outperforms the benchmark solutions and the capacity of our model is better matched to the
complexity of the task.

Keywords: human parsing; depth-estimation; computational efficiency; capacity optimization

1. Introduction

Semantic segmentation and human parsing are critical tasks in visually describing humans
under various scenes. Deep Convolutional Neural Networks (CNNs) have brought significant
improvements to human parsing tasks [1-3] thanks to the availability of an increased amount of
training data. Existing works in this field include Path Aggregation (PA) [4], Large Kernel Matters
(LKM) [5], Mask RCNN (MRCNN) [6], holistic models for human parsing [7], and joint pose estimation
and part segmentation [8] with spatial pyramid pooling [9]. Moreover, human parsing aligns well
with other tasks such as group behavior analysis [10], person re-identification [11], e-commerce [12],
image editing [13], video surveillance [14], autonomous driving [3], and virtual reality [15].

However, the performance of existing human parsing methods is still far from robust due to the
heavy reliance on the limited training data. In real-world scenarios, one image is very likely to contain
multiple people with various human interactions, poses, and occlusion. However, very few of the
scenarios can be included in common datasets. For instance, the Pascal Person Part Dataset [7] contains
annotations of less than 10 classes and no more than 4,000 images for training and validation, which is
far from enough to train complex CNNs [16,17] with over 100 layers. What is worse, is that data
augmentation is challenging because labeling an image pixel-by-pixel takes 239.7 s on average [18].
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To reduce the cost in labelling, image-level annotations and bounding boxes have been adopted
by weakly supervised methods to improve segmentation [19-21]. Additionally, scribbles and
points have been introduced in [18,22] as auxiliary supervision. Unlike most weakly supervised
methods, depth information is utilized in this paper as guidance to help distinguish foregrounds from
backgrounds and use the limited capacity of a CNN model more on foreground areas. A module
for depth estimation was trained firstly, then the concatenation of the depth predictions and RGB
images composed the input to the segmentation module during both training and testing processes.
For simplicity, we used the Depth-Module (DM) and Segmentation-Module (SM) to represent the
two modules. The depth annotations from RGB image pairs with overlapping viewpoints could be
obtained automatically [23] with multi-view stereo (MVS). The two modules composed the Overall
Model (OM).

The advantage of integrating a Depth-Model with Segmentation-Module comes in two ways.
Firstly, the training data for depth estimation can cover the variations which seldomly appear in the
training data for human parsing. Robustness is improved in this way. Secondly, depth estimation
and segmentation are closely correlated. The former assigns continuous depth values to pixels while
the latter assigns discrete categorical labels to pixels. The predicted depth maps facilitate hierarchical
descriptions of images which are helpful for segmentation. The learning process is divided into two
stages: (1) To train the DM on the large-scale MegaDepth Dataset [24] collected from Internet photos.
(2) Both the training and testing of SM were based on the predictions from the DM and original RGB
images [2,7]. The strategy introduced in Section 3.3 was applied. As is shown in Figure 1, DM helped
to focus the SM’s limited capacity on the qualified regions and boost the performance of segmentation.
Each input image of the SM had four channels, RGB and the depth prediction from DM.

Overall Model

Input Image —‘—» Depth Module —_— Segmentation Module —— Output Image

Stacked Hourglass Network
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Figure 1. The proposed model for human parsing. The Overall Model (OM) is composed of a Depth
Module (DM) and a Segmentation Module (SM). The DM is based on the hourglass network proposed
in [25] and is trained on the MegaDepth Dataset proposed in [24]. The trained DM is used to pre-process

the training and test images. The training data includes the Pascal Person Part Dataset [7] and the LIP
Dataset [26]. The SM is composed of five stages of convolutional layers.

Existing works on optimizing the capacity of CNNs are divided into three categories. The first
type of work [27,28] explores the sparseness of feature representations within a CNN and keeps only
branches which are useful to tasks. The second type of work [29] makes use of the favorable properties
of a shallow network and improves the performance of the CNN based on novel training strategies.
The third type of work [30] maximizes the representational power of a CNN by maximizing the
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number of inter-connections between the features in different levels. Although the existing methods
have improved computational efficiency, none of them has explored the relationship between depth
and accuracy. This paper proposes a way to match the representational power and capacity of a CNN
to a task by adjusting the depth and width of the CNN and training the CNN with a novel scheme.
Both quantitative and qualitative experiments are conducted on the LIP Dataset [26] and the Pascal
Person Part Dataset [7] to show that the proposed model conducts human parsing in a more effective
and time-efficient manner.

In summary, the contributions of this paper are in three aspects: (1) A model for human parsing is
proposed with integrated DM and SM modules. Moreover, a novel scheme is proposed for training
the modules. The DM is trained on a large amount of automatically labeled images and provides
information which is complementary to the features in the SM. As a result, the OM outperforms the
SM only, especially at the boundaries. (2) A new algorithm is proposed to train the SM with 24 layers,
achieving a similar performance as the baseline model with over 100 layers trained on the currently
largest dataset for human parsing. (3) The influences of depth and width on capacity are studied.
Two methods are proposed to build a SM which is deeper with performance improvement but uses
less parameters. As a result, the performance-complexity ratio is improved and the capacity of the
CNN model is better utilized.

The rest of the paper is organized as follows. Section 2 introduces related work. Section 3 discusses
the details of our proposed model and the method for adjusting the CNN's capacity. Section 4 shows
the details of implementation as well as experimental results. Concluding remarks are drawn in
Section 5.

2. Related Work

Human Parsing Approaches. Human parsing has become an active research topic in the last
few years [7,9,21,26,31-33]. The JPPNet [8] and the Nested Adversarial Network [34] represent the
current state-of-the-art methods. The improvements in the methods, such as those in Reference [8,
23], over traditional methods [9] are achieved by combining pose estimation with semantic part
segmentation. The estimated poses provide the shape prior, which is necessary for segmentation.
Similarly, the authors of Reference [35] proposed to integrate parsing with optical flow estimation.
The authors of Reference [36] incorporated a self-supervised joint loss to ensure the consistency between
parsing and pose. However, the guidance from poses cannot improve borders. As a result, it is still
quite difficult to delineate the boundaries. In our proposed method, it is shown that depth information
can improve the classification of pixels near boundaries. Other work, such as Reference [34], proposed
to integrate three sub-nets which perform semantic saliency prediction, instance-agnostic parsing,
and instance-aware clustering, respectively. The authors of Reference [37] proposed a framework
integrating a human detector and a category-level segmentation module. However, both methods
involve multiple stages. The outputs from earlier stages compose the only inputs to later stages and
misleading outputs from the earlier stages disable the later stages. In our proposed method, the input
to the SM composes not only the output from the DM, but also the original RGB images. The SM is
less dependent on the DM and can function even when the DM fails.

Weakly Supervised Methods. To tackle the lack in training data, three types of research works
have been conducted. The first type involves learning based on bounding boxes, scribbles, image
tags or mixing multiple types of annotations. The labels in the form of bounding boxes and scribbles
indicate the locations and sizes of objects. The BoxSup proposed in [20] and DeepCut proposed
in [38] trained the segmentation model based on iterating between bounding box generation and
training the CNN. The 3D U-Net proposed in Reference [39] performed volumetric segmentation
with a semi-automated setup or a fully-automated setup. The multi-task learning proposed in
Reference [40] adopted image-level and point-level supervision. Image-level supervision shows
whether certain objects are present in an image. Point-level supervision indicates the locations and
rough boundaries of objects. Bounding boxes and scribbles were mixed in Reference [21,41] to facilitate
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better training. However, the methods cannot deal with images containing multiple people or those
with complex backgrounds.

The second type of work focuses on predicting the weights of a model in a target task, such as
image classification using the weights from a source task, such as natural language descriptions or
few-shot examples [42—44]. Among vision tasks, the authors of Reference [45] proposed to transform
the weights in a detection model to those in a segmentation model. Similarly, the LSDA (Large
Scale Detection Through Adaptation) proposed in Reference [46] introduced a way to transform a
classification model to a detection model. The rationality lies in the fact that more training data are
available in source domains. However, the transformation of weights is based on a parameterized
function which is learned on the limited annotations from a target domain. The taskonomy proposed
in Reference [47] re-used the supervision among related tasks. It trains higher-order transfer functions
to map the feature representations from a source task to a target task. However, different types of
annotations need to be present on the same set of images. The requirements on annotations limits the
scale of training data. Different from the above-mentioned methods, our proposed human parsing
model utilizes depth information without learning a parameterized function. The DM can be trained
on large datasets with only depth annotations and provide robust predictions on images with multiple
people or those with complex backgrounds. The SM benefits from the complementary features
provided by the DM and the segmentation performance is improved.

Capacity Optimization. The definition of capacity is introduced in Reference [48]. The term
capacity tends to relate to volumes, quantities or memorization. It measures how complex a function
a neural network can model. Existing work on capacity optimization includes pruning feature
representations [49-51], exploring favorable properties of a shallow network [29], and maximizing
the expressive power of a fixed-size network [16,30]. The first type of work focuses on pruning
convolutional kernels to obtain the most compressed sets of feature representations required for a
task. However, most of the related methods improved the processing speed at the cost of accuracy.
The second type of method replaces the end-to-end training scheme by a sequentially training scheme.
Accuracy is improved without increasing depth. However, the depth of a CNN is not yet well matched
to a task. Our proposed training scheme outperforms the scheme in Reference [29], as will be shown in
Section 4.3. The third type of work [30] tried to improve the performance-complexity ratio, but the
added connections significantly reduced the efficiency in memory accessing. In our proposed scheme,
the depth of a CNN is better matched to the complexity of a human parsing task. Moreover, a deeper
but more efficient module is built to optimize the capacity of a CNN without dropping in accuracy.
Experimental results will demonstrate the superiority of our proposed methods.

3. Methodology

Our proposed model is shown in Figure 1. The complementary nature of the SM and DM
is explored. Besides color, the depth prediction provided by the DM facilitates an extra way to
understand images to improve segmentation. To be more specific, nearby regions belonging to
different instances are predicted to share the same label by the SM because of similar colors and
textures. However, the regions can be differentiated from each other by the DM because of the
difference in their depth values.

As is shown in Figure 2, the results of using the SM only for segmentation and those of integrating
the SM with the DM are compared. It is shown in the first row that the heads of different identities
cannot be distinguished because of the similarity in colors. However, the depth predictions help to
differentiate the instances. In the second row, foreground instances share the same color as backgrounds.
The depth predictions help to segment out foreground instances. Similarly, the lower arms in the
third row can hardly be distinguished from the background with color information only. Successful
segmentation results from depth predictions.
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(b) (c) (d)

Figure 2. The improvement on segmentation is brought by the DM: (a) RGB images which are the

input to both DM and SM; (b) The results of using the SM only for segmentation; (c) The predictions
from the DM; (d) The results of integrating the SM with the DM for segmentation.

3.1. Depth Module

Similar to other network models which output the same resolution as the inputs [37,52], the DM is
also trained end-to-end. It processes and passes information across multiple scales. The design of the
DM is based on the stacked hour-glass network proposed in Reference [25,53]. The symmetric structure
consists of convolutions, pooling layers which are followed by up-sampling layers and convolutions.
The detailed structure was discussed in Reference [54].

The loss function for training the network is the weighted sum of three terms. The first term
denotes the mean square error of predicted depth values.

2
n 1 n

Dvsg = — Y d7 — 2<2d1‘> @
i3 = \iz

where d; denotes the difference between the prediction at the i-th pixel and the corresponding ground
truth depth value. n denotes the number of pixels. The training images are from the large-scale
MegaDepth dataset [24]. Dysg is invariant to the shifts on the mean values of images. The second
term takes into consideration the gradients on the difference map:

1 n

DgradZEZ(‘vxdi‘+|vydi|) (2)
i=1

This term improves the performance on sharp discontinuities and makes depth predictions
smoother. The third term enforces the ordinal depth relations between foreground super-pixels and
background super-pixels:

K
Doy = Z 1Og(1 + exp(—abs (Zik - ka))) ®G)
k=1

K pairs of points are sampled from the depth predictions and ground truth depth maps. iy denotes
the k-th point sampled from the largest foreground super-pixel while ji denotes the k-th point sampled
from the surrounding background super-pixels. z; denotes the depth at point i, and z;, the depth
at point jx. The weight of Dg,,4 in the loss function is set to 0.5 while the weight of D, is set to 0.1.
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The existence of term Equation (3) enforces the predicted depth values of neighboring instances to be
different and ordered. The overall lost function is defined as

D = Dpyse + O-5Dgrad +0.1Dgq 4

3.2. Segmentation Module

In this section, an SM with 24 layers is introduced, which is compared with the baseline model
Deeplab-V2 [9] on the segmentation task.

Figure 3 shows our proposed SM. The architecture is based on the backbone of VGG-16 [55].
The blocks in red denote residual blocks [16].

Stagel~Stage5: Feature Extraction

Stage2 Stage3

convl| [conv2| |conv3 convé4| |conv5| |convb conv7| |conv8| |conv9| |convl0|
P33 | 33 |33 |1i]33 |33 |33 33 | | 3x3 | | 3x3 33 |
f] 64 64 64 i 128 128 128 256 256 256 256 | i

Stagel

Stage4 Stage5
convll| |convl2| |convl3| |convl4 convl5| |convl6| |convl7| |convl8
3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
512 512 512 512 512 512 512 512

(a) Stages for feature extraction

Stage6: Atrous Spatial
Pyramid Pooling

conv19| conv20| |conv2l conv22
3x3 3x3 3x3 3x3
1024 1024 1024 1024

Dilation: ~Dilation: Dilation: ~ Dilation:
12 18 24

!

concat

Stage7: Feature Fusion

conv23 conv24
Ix1 Ix1
1024 number of
classes

(b) ASPP (Atrous Spatial Pyramid Pooling) and feature fusion

Figure 3. Architecture of an SM. Each block denotes one convolutional layer. ReLU nonlinearities are
used throughout, and max pooling occurs between adjacent groups of convolutional layers. The first
line within each block denotes the name of the layer, the second line shows the kernel size, and the
third line shows the number of output channels. (a) The five stages for extracting basic features.
(b) Task-specific stages. A mechanism known as ASPP [9] is adopted to enable 3 x 3 filters to have
different field-of-views. Four parallel filters with different field-of-views are adopted to extract the
features for pixel classification. The kernels in the layers from conv19 to conv22 are with size 3 x 3 but
differ in the distance between weights in the kernels. The heat-maps generated by the four parallel
convolutional layers are fused in Stage 7.
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3.3. Strategy of Combining DM with SM

Solely integrating the predictions from the DM with RGB images during training and testing the
SM only brings slight improvements. However, better strategies can be adopted to fully explore the
complementary nature of color and depth information to contribute more to performance improvement.
In this section, we propose a strategy to better utilize depth information. The strategy is divided into
two steps. An example is shown in Figure 4.

Figure 4. The procedure for combining DM with SM.

In the first step, the DM is trained and used to augment the training data and test data of the SM.
OM segments out foreground objects as one class. To reduce false negatives, dilation is conducted
on the masks produced by the OM. In the second step, the regions which are predicted by Step 1 as
foregrounds are kept unchanged, with remaining parts set to zero. The images produced by Step 2 are
then used for re-training and testing SM. Table 1 compares the performance of three cases: Only using
the SM, direct training and testing of the SM based on the predictions from the DM and applying the
strategy in this section to combine DM with the SM.

Table 1. Mean pixel IOU (mIOU) of human parsing on the PASCAL Person Part Dataset.

Method mIOU (%)
Attention [56] 56.39%
HAZN [57] 57.54%
LG-LSTM [58] 57.97%
Joint pose estimation and part segmentation (with Resnet-101 as backbone) [8] 64.39%
SM pre-trained on ImageNet [59] 61.57%

Our overall model (OM) pre-trained on ImageNet [59]. Directly concatenate DM’s predictions with RGB
images for training and test SM.
Our overall model (OM) pre-trained on ImageNet [59]. Combine DM with SM based on the strategy
introduced in Section 3.3.

62.49%

65.03%

3.4. Capacity Optimization of SM

Each input image is mapped by a CNN from the image space yx to the feature space IF, a CNN learns
the low-dimensional structures of data and represents them using a parametric polyhedral manifold
which is then partitioned into pieces [60]. The more pieces there are, the higher the representation
capability of the CNN becomes. For a ReLU deep neural network, each neuron functions as a
hyperplane and partitions the input manifold into multiple polyhedra. As a result, the number of
pieces is decided by the number of ReLU operations. The bound of the encoding or representation
capability of a ReLU DNN is measured by Rectified Linear Complexity (RL Complexity) N(N). For a
neural network with k hidden layers of widths {wi}i‘(:y the upper bound of RL Complexity is given by

N(N) < I Cw; 1, wy). ®)

wn=(3) (1) (5)(5)

where



Appl. Sci. 2019, 9, 1330 8 0f 18

Only when the RL complexity of a neural network is no less than that of the manifold can the
data be encoded by the neural network. It can be inferred from Equations (5) and (6) that the depth of
neural network contributes much more significantly to the capacity of a neural network than width.
As a result, we have made the CNN in Figure 3a deeper than the backbone [55]. The contribution to
performance improvement from additional depth will be shown in Sections 4.2 and 4.4.

Moreover, we have also developed a scheme for training the CNN in Figure 3a, as is shown in
Algorithm 1. The training is conducted layer by layer because it was discussed in Reference [29] that a
CNN with a fixed number of layers can perform better if it is built sequentially layer by layer instead
of trained end-to-end.

Algorithm 1: Scheme of training SM

Step 1 Train the backbone network [55] without layers conv3, convé, conv10, conv14, conv18 until
convergence.

Step2  Add layer conv18 which is initialized with Gaussian weight matrices.

Step 3 Use the pre-trained layers convl-conv17 to extract the feature vectors from images and use the
feature vectors as the input to train conv18.

Step4  Freeze the weights in all layers in Stage 6 and Stage 7 and train conv18 until convergence.

Step5  Re-train SM until convergence with all layers un-frozen.

Step6  Add layer conv14, conv10, convé, conv3 and go through the same operations from Step 2 to Step 5.

Different from Reference [29] which only trained the added layer each time, for each added layer
in Algorithm 1, the network is trained for two times. In the first time the added layer only is trained
while in the second time, the overall network is trained. As will be shown in Section 4.3 the strategy
of our adding layers has an advantage over both adding all layers together at once and applying
the method in Reference [29]. Moreover, the involvement of the five additional layers has brought
significant improvements in accuracy over the backbone network, as will be shown in Section 4.2.

Different from traditional segmentation models, the feature representations at Stage 6 which
correspond to 4 point-of-views are concatenated and fused by the 1 x 1 convolutions at Stage 7,
as compared to the direct summation in Reference [8]. Feature fusion offers a much more flexible
scheme of combining the features from different point-of-views. The network can learn to add up the
features or combine the features in more complex ways.

Besides improving depth which leads to the increase in computational complexity, we also propose
to exchange width for depth to obtain further improvements in accuracy while reducing the number
of parameters. Two methods have been proposed to reduce the complexity of convolutional layers by
replacing one conventional convolutional layer with a stack of simplified layers. The overall complexity
of stacked simplified layers is less than that of one original convolutional layer. The mechanism is
shown in Figure 5. Figure 5b shows our first proposed way of exchanging width for depth. In one
conventional layer, C;,, independent 3 x 3 convolutional kernels function on C;, channels to obtain one
output channel. In one simplified sub-layer, N (N < C,4t) kernels function on each of the C;;, input
channels and the intermediate representation has NC;,, output channels which are processed by 1 x 1
convolutions. M is the number of sub-layers which are stacked to replace one conventional layer. Even
if one sub-layer is less expressive than one conventional layer with the same C;,, and Cyyt, the stack
of M sub-layers achieves a higher expressive power than one conventional layer without increasing
the overall number of parameters for proper choices of M and N. In Figure 5c, the second way of
exchanging width for depth is introduced. Each conventional layer is replaced by two sub-layers.
The difference lies in that Figure 5b uses 4 sub-layers to replace one conventional layer, while Figure 5¢
uses two sub-layers.
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Figure 5. The proposed way of exchanging width for depth: (a) A conventional convolutional layer;

(b) simplify one conventional layer to sub-layers and concatenate M(M = 4) sub-layers to replace one

conventional layer. Each sub-layer is obtained by decomposing one conventional layer and increasing

the dependency between convolutional kernels; (c) simplify one conventional layer to sub-layers and

stack 2 sub-layers to replace one conventional layer.

The structures introduced in Figure 5b and ¢ will be used to simplify conv17 and conv18 shown
in Figure 3. As will be shown in the experiments, accuracy is kept almost the same with the overall
computational complexity reduced. Deeplab-V2 [9] and joint pose estimation and part segmentation [8]
which is based on Resnet-101 [9] are also trained on the segmentation datasets for comparison.

The initialization of weights in Figure 5b was discussed in Reference [61] and the initializations of

weights in Figure 5c is based on minimizing the reconstruction error:

Cout
argminz W; —
v 0

Cout /2
Y, UV
=1

2

@)
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where W denotes the weights matrix in one layer shown in Figure 5a with size Cyyt X Cijkpky, with
W; denoting the i-th row of W. V denotes the weights in Sub-layer 1 with V; being the i-th row of the
matrix. U denotes the weights in Sub-layer 2 with U;; being the (i, j)-th entry of the matrix.

3.5. Domain Randomization

To reduce the generalization error, it is necessary to bridge the gap between the source domain
(training data) and the target domain (test data). Some methods have been proposed to discuss the
problem [62]. However, these methods mainly focus on other tasks, such as object detection [62], in
which all types of simulated variability at training time are utilized, including positions, textures,
orientations, field-of-views, and lightening conditions. Too many variations may result in a low
convergence rate.

The LIP dataset includes the variations in poses and lightening conditions in the training set. As a
result, we are only concerned with the variations in backgrounds which contribute to the divergence
between domains. We propose to crop the predicted backgrounds from test images, which are then
used to fill the background regions in training images. In this way, an augmented training dataset
is produced to help the SM develop more generalizable representations. The detailed scheme is
introduced in Algorithm 2.

Algorithm 2: Scheme of domain randomization

Step 1 Train SM until convergence and use it to segment out the background regions of test images.

For each training image, find the image from test set with the most similar aspect ratio. Resize the
test image to be with the same size as the training image.

Crop the background regions from the test image and replace the background regions on the

Step 2

Step 3
P training image with those from the test image.

Step 4 Re-train SM and return to Step 1. (Two iterations are adopted.)

Figure 6 shows two examples of domain randomization. The backgrounds in training images are
replaced by those in test images.

Figure 6. Two examples of domain randomization. In each row, the left image denotes the original
image, the middle and the right ones show two modified images with different backgrounds.

4. Results

4.1. Datasets and Implementation Details

The two modules in our proposed model were trained on two datasets. The DM was trained on
the MegaDepth Dataset [24] which involves 130K images from 200 different landmarks. The depth
information in images with over-lapping viewpoints is automatically obtained with SFM (Structure
from Motion) and MVS (Multi-View Stereo). The SM was trained on the images from the PASCAL
VOC 2010 Person Part Dataset for body part segmentation [2,63]. The Person Part Dataset includes
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annotations on 3,533 images where 1,716 images are used for training while the other 1,817 images are
for testing. The ground truth labels are in the form of segmentation masks. There are six annotated
semantic types, that is, head, torso, upper arm, lower arm, upper leg, lower leg, and background.
To evaluate on larger datasets and to demonstrate the improvement on capacity, the SM was also
trained on the LIP (Look into Person) Dataset [26] with 30,462 images for training, 10,000 images for
validation and 10,000 test images. There are 19 annotated semantic types, that is, face, upper clothes,
hair, right arm, pants, left arm, right shoe, left shoe, hat, coat, right leg, left leg, glove, socks, sunglasses,
dress, skirt, jumpsuits, scarf. The capacity of the SM was optimized using the two methods shown in
Figure 5.

4.2. Integration of the Two Modules

As is shown in Figure 1, the DM is used to preprocess an image and predict depth masks.
The predicted masks are concatenated with corresponding input RGB images to produce the input
of the SM during both training and testing. The experiments were conducted to show that the
combination of color and depth information during training and inference improves the performance
of human parsing. The metric for evaluating the performance of human parsing is mean Intersection
Over Union (mIOU) which is proposed in [7]. mIOU is computed by dividing the number of true
positive samples by the summation of true positive, false negative, and false positive samples:
1 N

Mii

mIOU = N; I 8)
where 7;; is the number of pixels of class j which are predicted to class i, and t; = }; nj; is the total
number of pixels belonging to class j. The metric takes into account both false positives and false
negatives. For the Pascal VOC 2010 Person Part Dataset, mIOU is computed for each of the seven
classes and averaged. For instance, the mIOU of head is obtained by regarding head as the foreground
and other six types as the backgrounds. Table 1 shows the results on the test set.

For the LIP Dataset, mIOU is computed in the same way and the experimental results are shown
in Table 2.

Table 2. Mean pixel IOU (mIOU) of human parsing on Look into Person (LIP) Dataset.

Method mIOU (%)
Deep Lab-V2 (VGG-16) [9] 41.56%
Deep Lab-V2 (Resnet-101) [9] 44.96%
SM (24 layers) pre-trained on ImageNet [59] 44.89%
Our overall model (OM) pre-trained on ImageNet [59]. The scheme introduced in Section 3.3 is applied. 46.73%

By comparing the last three rows in Table 1 and the last two rows in Table 2, it can be inferred that
the integration of the DM and the SM outperforms the SM on both large and small datasets. Table 1
shows that the contribution is mainly attributed to the scheme proposed in III-C, which fully explores
the complementary nature of the DM and the SM.

Moreover, it is discussed in Section 3.2 that the backbone of the SM is Deep Lab-V2 (VGG-16) [9]
with 18 layers. Figure 7 shows the changes in accuracy upon increasing the depth of SM from 18 to 24.
With the six added layers, the SM not only outperforms the backbone, but also performs as well as
the baseline model with over 100 layers which is shown in the second row in Table 2. Note that the
number of parameters in the OM is less than that in the baseline model [9]. More importantly, LIP is
the currently largest dataset for human parsing and the number of parameters in SM is much less
than that in the baseline model. The improvement demonstrates that by adjusting the depth of a CNN
model, its capacity is better matched to a task than Reference [8,9].
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Figure 7. The changes in accuracy upon increasing the depth of SM.

4.3. The Advantage of Layer-Wise Training

As is demonstrated by the second and third rows in Table 2, the SM can perform as well as a
model that is much more complex. The advantage results from the layer-wise training scheme which is
proposed in Section 3.4 and shown in Algorithm 1. To demonstrate the advantage of Algorithm 1 over
adding all the layers to the backbone at once, we compare the performance of the SMs trained with the
two schemes and show the results in Table 3. In the scheme where all the layers are added at once and
the SM was trained for one time, the number of iterations during training is 600,000. In the scheme
proposed in Algorithm 1, the SM was trained for 100,000 iterations upon the addition of each layer.
The overall time cost during training is the same. The performance is evaluated on the LIP Dataset.

Table 3. Mean pixel IOU (mIOU) of the Segmentation Module (SM) trained with different schemes.

Scheme mIOU (%)
Directly adding layers to SM and train at once 42.76%
Train using the layer-wise scheme in [29] 44.37%
Train SM with Algorithm 1 44.89%

It can be inferred from Table 3, that layer-wise training significantly outperforms direct training
all layers at once. Different from the layer-wise training in Reference [29], we firstly train each
added layer while keeping other layers fixed for 50,000 iterations and then re-training all layers for
another 50,000 iterations. Compared with training each added layer for 100,000 iterations, Algorithm 1
performs better, as is shown by the last two rows in Table 3.

4.4. The Exchange Between Width and Depth for Capacity Optimization

We have also tried to replace traditional convolutional layers with the stacking of simplified
convolutional layers shown in Figure 5b,c. The N in Figure 5b is chosen to be 3 and the number of
sub-layers M is selected to be 4. We have replaced conv18 in Figure 3 with the stacked simplified layers.
Upon replacing the layer, the SM is re-trained for 100,000 iterations. The changes in performance
and the drop in computational burden is shown in Table 4. The performance is evaluated on the
LIP dataset.

The initializations of the weights in the layers in Figure 5b,c are discussed in Section 3.4.

It can be inferred from Table 4 that the methods shown in Figure 5b,c reduce computational
burdens while maintaining or slightly improving performance.
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Table 4. The influence of exchanging width for depth on the SM. Performance is evaluated with mIOU.

Deduction on the Number of

Method mIOU (%) Floating-Point Multiplications (%)
SM shown in Figure 3 46.73% -
SM with conv18 converted to the stack of layers shown in Figure 5b 46.85% 1.75%
SM with conv18 converted to the stack of layers shown in Figure 5¢ 46.79% 2.42%
SM with conv18 and conv17 converted to the stack of layers shown in Figure 5b 46.89% 3.51%
SM with conv18 and conv17 converted to the stack of layers shown in Figure 5¢ 46.54% 4.85%

4.5. Domain Randomization

We augmented the training data with domain randomization where the backgrounds in training
images were replaced by the counterparts in test images. In the implementation of Algorithm 2, we
cropped the backgrounds from two test images to replace the background of each training image. As a
result, the augmented dataset includes 60,924 images.

It can be inferred from Table 5 that iterative domain randomization improves the generalization
of the SM.

Table 5. The influence of domain randomization on the SM.

Method mIOU (%)
SM trained on the original images from the LIP Dataset 46.73%
SM trained on the augmented LIP Dataset 47.21%

4.6. Examples of Segmentation Results

Besides objective results, some results are shown in Figures 8 and 9 to show the advantages of
integrating the DM with the SM which can be judged subjectively. A comparison between the SM and
the OM is made on multiple cases, including samples with complex gestures in identities, images with
occlusions, and those suffering from darkness.

Figure 8. Cont.
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Figure 8. Performance comparison between the OM and the SM on the validation set. From the top

row to the bottom row are input images, predictions from the SM, predictions from the OM and the
ground truth labels.
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Figure 9. Performance comparison between the OM and the SM on the test set. From the top row to

the bottom row are input images, predictions from the SM and predictions from the OM.
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5. Discussion

In this paper, depth information is combined with color using a novel strategy. The performance
of human parsing is significantly improved. Moreover, depth information is obtained by a module
which is trained on automatically acquired labels, thus saving human labor cost. Secondly, the SM
with 24 layers, which is trained using the scheme in Algorithm 1 achieves a similar performance as the
baseline model with over 100 layers on the currently largest dataset for human parsing. The number of
parameters in the OM is less than that in the baseline model. Thirdly, two methods have been proposed
to optimize the capacity of the SM by increasing depth while reducing parameters, achieving a more
efficient solution with a better performance. Both quantitative and subjective results have shown the
effectiveness of our proposed methods.
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