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Abstract: Tensile strength and fracture toughness are two essential material parameters for the study
of concrete fracture. The experimental procedures to measure these two fracture parameters might
be complicated due to their dependence on the specimen size or test method. Alternatively, based
on the fracture test results only, size and boundary effect models can determine both parameters
simultaneously. In this study, different versions of boundary effect models developed by Hu et al.
were summarized, and a modified Hu-Guan’s boundary effect model with a more appropriate
equivalent crack length definition is proposed. The proposed model can correctly combine the
contributions of material strength and linear elastic fracture mechanics on the failure of concrete
material with any maximum aggregate size. Another size and boundary model developed based
on the local energy concept is also introduced, and its capability to predict the fracture parameters
from the fracture test results of wedge-splitting and compact tension specimens is first validated.
In addition, the classical Bažant’s Type 2 size effect law is transformed to its boundary effect
shape with the same equivalent crack length as Koval-Gao’s size and boundary effect model.
This improvement could extend the applicability of the model to infer the material parameters
from the test results of different types of specimens, including the geometrically similar specimens
with constant crack-length-to-height ratios and specimens with different initial crack-length-to-height
ratios. The test results of different types of specimens are adopted to verify the applicability of
different size and boundary effect models for the determination of fracture toughness and tensile
strength of concrete material. The quality of the extrapolated fracture parameters of the different
models are compared and discussed in detail, and the corresponding recommendations for predicting
the fracture parameters for dam concrete are proposed.

Keywords: boundary effect; size effect; fracture toughness; tensile strength; concrete

1. Introduction

At present, several super-high arch dams have been constructed or are under construction in
Southwest China [1–3]. To ensure the good working performance of concrete dams, one of the
prerequisites is to prevent and control the formation and propagation of concrete cracks that may
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appear during the construction and operation periods. In fact, cracking is a very common, classical,
but also complicated problem in concrete structures in real-life service conditions [4], which has been
studied comprehensively from different perspectives by many researchers [5–9]. In terms of cracking
risk analysis, the true fracture toughness Kc and tensile strength ft of the concrete are the key material
parameters that should be provided. The improper fracture properties may lead to a result with great
deviation from the reality. Many test results showed that the fracture toughness Kc of concrete has
obvious size effect, and tensile strength ft usually depends on the specimen size and test method.
To overcome the problem of size effect in fracture properties, it is often necessary to pour different sizes
of concrete specimens to obtain the stable material parameter values. Thus, the test process is often
complicated, especially for dam concrete, and the stable material parameters can only be measured
from huge specimens [1,10]. In addition, the experimentally measured tensile strength of concrete
varies for different test methods (uni-axial tension test, splitting test, flexure test, etc.) [11,12] due to
the different fracture mechanisms. These size- or test method-dependent fracture parameters increase
the difficulty of structure design and cracking risk analysis. Hence, it is crucial to find out a simple
and relatively more accurate way to measure or predict the real fracture parameters of dam concrete.

Size effect laws (SEL) [13–17] and boundary effect models (BEM) [18,19] are two main asymptotic
approaches to capture the size effect of concrete fracture. With these two kinds of models, the
failure stress of structure with any specimen size or any crack size can be estimated, if the model
parameters are fully known. On the contrary, if the test results of geometrically similar specimens
with constant crack-length-to-height ratios or specimens with different crack to width ratios are
available, size and boundary effect models can predict the material tensile strength ft and fracture
toughness Kc. The applicability of the different size and boundary effect models on the determination
of fracture toughness and tensile strength have been carefully examined with many test results in the
literature [20–23]. It is widely accepted that the size effect laws can provide the fracture toughness
directly based on the geometrically similar fracture tests; however, in order to estimate the tensile
strength, a material characteristic length lch must be assumed in advance [20]. The different versions of
boundary effect models proposed by Hu et al. [19,21,23–25] can directly determine the tensile strength
and fracture toughness. These models can be classified as the local and non-local models, according to
the stress value adopted in the models to predict the failure due to the strength of material. The local
models only use the point stress information at the crack tip, while an average stress information
along a certain length emanated from the crack tip is needed for the non-local boundary effect models.
The Koval-Gao’s size and boundary effect model developed by Gao et al. [26,27] is also a local model,
which adopts the derivative of energy release rate evaluated locally at the crack tip as the parameter
for the study of fracture dominated by the strength of material. The Koval-Gao’s size and boundary
effect model can also predict simultaneously the fracture parameters from the fracture test results.

In this study, the local and non-local versions of boundary effect models developed by
Hu et al. [19,21,23–25] are summarized, and a modified Hu-Guan’s boundary effect model with a
more appropriate equivalent crack length definition is proposed. The proposed modified Hu-Guan’s
boundary effect model considers the effect of maximum aggregate size on the equivalent crack length,
thus changes the contributions of strength of material and linear elastic fracture mechanics (LEFM) on
the specimen failure. This improvement is anticipated to be important when the maximum aggregate
size of concrete getting larger. Another size and boundary effect model developed based on a local
concept is also introduced [26,27], and its capability to predict the fracture parameters from the fracture
test results of wedge-splitting and compact tension specimens is firstly validated. Besides, the classical
Bažant’s Type 2 size effect law is transformed to a shape similar to the boundary effect model by the
authors, which could be easier to be used to determine the fracture parameters from fracture tests on
specimens with any sample size or crack size . The test results of geometrically similar wedge-splitting
and compact tension specimens with constant crack-length-to-height ratios [28–30] and specimens
with different initial crack-length-to-height ratios [31–33] are adopted, to verify the applicability of the
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different boundary effect models on the determination of fracture toughness and tensile strength for
concrete material.

2. Size and Boundary Effect Models

The size and boundary effects of quasi-brittle fracture have been studied systematically in recent
decades [13,18,19,26,27], and some progresses have been achieved in recent years by considering the
effect of aggregate size on the fracture behavior [21–24,34]. These models were developed initially for
the nominal strength prediction of samples with various specimen size and crack size, and later have
been extended to the determination of the real fracture parameters from fracture test results.

In this section, the local and non-local versions of boundary effect models developed by
Hu et al. [19,21,23–25] are summarized. Then, a modified Hu-Guan’s boundary effect model with a new
equivalent crack length definition is proposed. Following by the brief introductions of Koval-Gao’s size
and boundary effect models and Bažant’s Type 2 size effect law. All the models are written as their own
linear forms, which can be used directly to extrapolate experimental results obtained from laboratory
size specimens. The equivalent crack lengths of different models are compared in detail and the method
for the determination of fracture parameters is presented at the end of this section.

2.1. Hu et al. Boundary Effect Models

2.1.1. Hu-Duan’s Boundary Effect Model

The boundary effect models can characterize the effect of crack length on the failure load. Figure 1a
shows a wedge-splitting (or compact tension) specimen with an initial crack length a0 under its failure
load Pmax, and Figure 1b presents the two nominal stresses in the fracture analysis. The nominal
strength σN of the specimen is defined without considering the existence of the initial crack a0, which
can be calculated by the equilibrium conditions of the forces and moments [23]:

σN =
4Pmax

Wt
, (1)

where W is the sample size, t is the thickness of the specimen.
σn1 in Figure 1b represents the stress at the crack tip without considering the stress singularity,

and assuming a linear distribution along the ligament, which reads [23]:

σn1 =
Pmax(4W + 2a0)

t(W − a0)2 , (2)

where a0 is the initial crack length.

maxPmaxP
0a

W

(a)

1n

N N

maxP
maxP

0a

(b)

Figure 1. (a) A wedge-splitting specimen under its peak load and (b) the definition of two nominal
stresses in Hu-Duan’s boundary effect model.

In Hu-Duan’s boundary effect model, the ratio of two nominal stresses σN and σn1 is a
dimensionless factor A1(α) depending only on the initial crack length to sample size ratio α (α = a/W).
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For wedge-splitting (compact tension) specimen, A1(α) can be calculated by relating Equations (1)
and (2).

A1(α) =
σN
σn1

=
2(1− α)2

2 + α
, (3)

The stress criterion adopted in Hu-Duan’s boundary effect model assumes failure happens when
σn1 reaches its critical value, the material tensile strength ft. Thus, one can obtain the nominal strength
σN predicted by the stress criterion by the following expression:

σN = A1(α) ft, (4)

The criterion of LEFM is directly adopted as the energy part of Hu-Duan’s boundary effect model.
The nominal strength predicted by the LEFM criterion can be written as a function of crack length a0:

σN =
Kc

Y(α)
√

πa0
, (5)

where Y(α) is a geometrical factor. For wedge-splitting and compact tension specimen, the expression
of Y(α) is identical [35]. This is because the geometry and loading conditions are the same for compact
tension and wedge-splitting fracture tests [36]. It is given by:

Y(α) =
(2 + α)(0.886 + 4.64α− 13.32α2 + 14.72α3 − 5.6α4)

4
√

πa(1− α)3/2 . (6)

To link Equations (4) and (5), a transition (or reference) crack length a?∞ needs to be introduced,
which reads:

a?∞ =
1

1.122π

(
Kc

ft

)2
. (7)

The transition crack length a?∞ is a material constant proportional to material’s characteristic length
lch [37]. Thus, Equation (5) can be rewritten as:

σN =
ft√

[Y(α)/1.12]2a0/a?∞
, (8)

The Hu-Duan’s boundary effect model for the nominal strength prediction of structure with any
crack length, can be obtained by relating Equations (4) and (8):

σN =
A1(α) ft√

1 + [A1(α)×Y(α)/1.12]2a0/a?∞
=

A1(α) ft√
1 + ae1/a?∞

, (9)

or
σn1 =

ft√
1 + ae1/a?∞

, (10)

where ae1 is the equivalent crack length and depends purely on the geometrical information of the
specimen, which can be calculated by:

ae1 =

[
A1(α)×Y(α)

1.12

]2

a0. (11)

Equation (10) can be further rearranged as follows:

1
σ2

n1
=

1
f 2
t
+

1.122π

K2
c

ae1, (12)
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Once the peak loads are recorded after the fracture tests, the equivalent crack length ae1 and
nominal strength σn1 are known accordingly. hence, the tensile strength ft and fracture toughness Kc

can be calculated from the intercept and slope of the linear regression.

2.1.2. Hu-Guan’s (Hu-Wang’s) Boundary Effect Model

The Hu-Guan’s and Hu-Wang’s boundary effect models [21,23,34] are developed for
wedge-splitting and three-point bending tests respectively, which all assume a constant crack-bridging
stress σn2 within the partially developed fracture process zone or ∆a f ic (see Figure 2a). In contrast
to the local point stress value σn1 (see Figure 1b) defined in Hu-Duan’s boundary effect model, σn2

(see Figure 2a) is associated with the fictitious crack length ∆a f ic, and its value is affected by the choice
of this length, thus becomes a non-local stress parameter. The strain condition along the crack plane,
the equilibrium conditions of bending stress and bending moment were considered to determine this
constant stress σn2 [21,34]. It is given by [23]:

σn2 =
Pmax(3W2 + W1)

6t
/

(
W2

1
6

+
∆a f ic

6
W1 +

W − a0

2
∆a f ic

)
, (13)

with W1 = W − a0 − ∆a f ic and W2 = W + a0 + ∆a f ic.
The advancement from Hu-Duan’s boundary effect model to Hu-Guan’s boundary effect model

is the non-local nominal stress σn2 used in the stress criterion. Thus, the local version of the boundary
effect model was improved as a non-local version. Following the same idea of Hu-Duan’s boundary
effect model, Guan et al. proposed in [23] the way of calculating the tensile strength and fracture
toughness by the following linear relation:

1
σ2

n2
=

1
f 2
t
+

1.122π

K2
c

ae1. (14)

The local stress σn1 is replaced by the non-local stress σn2, and ae1 is the same as the one in
Hu-Duan’s boundary effect model. It is admitted that Hu-Duan’s boundary effect model (∆a f ic = 0)
may overestimate the tensile strength of the material, and Hu-Guan’s boundary effect model can lower
the predicted tensile strength when ∆a f ic increases [22]. This fictitious crack length ∆a f ic was assumed
to be proportional to the maximum aggregate size dmax of concrete [23]:

∆a f ic = β1dmax. (15)

It is concluded in [23] that β1 = 1 is a good approximation when the maximum aggregate size
dmax is the dominant aggregate size of a concrete mix and the W/dmax ratio is below 20 (or even 50).

2.1.3. Hu-Zhang’s Boundary Effect Model

Hu-Zhang’s boundary effect model [24,25] added two more assumptions about the length scale
than Hu-Guan’s boundary effect model. That are, the fictitious crack length ∆a f ic = β2dav ≈ 1.5dav

(see Figure 2b, dav is the average aggregate size) is accurate enough when the ratio of the sample size
and the average aggregate size varies in a certain range, and the transition crack length a?∞ ≈ 3dav is
appropriate to consider the micro-structure influence of granite and fine-grained polycrystalline
ceramics studied in [24,25]. Based on these two assumptions, if the average aggregate size dav

(transition crack length a?∞ ) and tensile strength ft are decided, then one can directly estimate the
fracture toughness Kc by Equation (7).

Since the average aggregate sizes are not known for the concrete fracture tests adopted in this
study, the Hu-Zhang’s boundary effect model will not be used to estimate the tensile strength and
fracture toughness in the next sections.
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Figure 2. The definition of two nominal stresses in (a) Hu-Guan’s boundary effect model and (b)
Hu-Zhang’s boundary effect model.

2.1.4. Proposed Modified Hu-Guan’s Boundary Effect Model

Based on Equation (1) and Equation (13) in Hu-Guan’s boundary effect model, the nominal
strength σN can be rewritten as a function of σn2:

σN = σn2 ×
[

2(1− α)(1− α + 2∆α f ic)

2 + α + ∆α f ic

]
, (16)

with

A2(α, ∆α f ic) =
2(1− α)(1− α + 2∆a f ic)

2 + α + ∆α f ic
. (17)

Unlike A1(α) in Equation (3), A2(α, ∆α f ic) is no longer just geometry-related, but also
material-related by the fictitious crack length ∆a f ic , which is assumed to be proportional to the
maximum aggregate size dmax. In the equivalent crack length calculation, to be more appropriate, it is
recommended in this study to use A2(α, ∆α f ic) instead of A1(α) , thus, the modified equivalent crack
length ae2 would be:

ae2 =

[
A2(α, ∆α f ic)×Y(α)

1.12

]2

a0. (18)

In the linear regression of tensile strength ft and fracture toughness Kc calculation, ae1 should be
replaced by ae2 in this modified Hu-Guan’s boundary effect model:

1
σ2

n2
=

1
f 2
t
+

1.122π

K2
c

ae2. (19)

2.2. Koval-Gao’s Size and Boundary Effect Model

The Koval-Gao’s size and boundary effect model [26,27,38] has two different forms. The second
form is similar to the traditional Type 2 size effect law [14], which can be used to predict the size
effect induced by the specimen size. The first form is close to the boundary effect model proposed
by Hu et al., which can predict simultaneously the tensile strength and fracture toughness from
the fracture test results. The Koval-Gao’s size and boundary effect model was developed initially
for cracked samples [26] by relating the contribution of the tensile strength and fracture energy.
The contribution of the tensile strength is obtained from the derivative of the energy release rate, which
is evaluated locally at the crack tip. While the contribution of the fracture energy is simply quantified
by the LEFM criterion, same as the boundary effect models developed by Hu et al. The Koval-Gao’s
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size and boundary effect model was further improved as a local fracture criterion in [27,38], which can
be easily applied for any geometry. The first form of Koval-Gao’s size and boundary effect model reads:

σN =
1.12 ft

H(α)
√

1 + ae3/a?∞
, (20)

where H(α) =
√

Y2(α) + 2Y(α)× dY(α)/dα× α, and the equivalent crack length ae3 is defined as:

ae3 =
Y2(α)

H2(α)
× a0. (21)

This model can also be written as a linear form:

1
σ2

n3
=

1
f 2
t
+

1.122π

K2
c

ae3, (22)

with

σn3 =
H(α)

1.12
σN . (23)

So, the material tensile strength ft and fracture toughness Kc can be calculated from the intercept
and slope of the linear regression.

2.3. Bažant’s Type 2 Size Effect Law

Bažant’s Type 2 size effect law was originally developed for the size effect study of geometrically
similar specimens [13]. The law reads

σN = B̂ ft

(
1 +

W
W0

)−1/2
, (24)

where B̂ is a geometrical dimensionless constant; W0 is a material constant proportional to lch. B̂ ft and
W0 were given as follows in [15]:

B̂ ft =

√
EGc

g′(α)c f
, (25)

W0 =
c f g′(α)

g(α)
, (26)

where g(α) = K2
I (α)W(t/P)2 = Y2(α)πα is defined as the dimensionless energy release function of

LEFM; the length parameter c f is proportional to lch, which is the effective size of fracture process
zone [15]. g′(α0) can be written as a function of the geometrical correction factor H(α) presented in
Equation (20):

g′(α) = H2(α)π. (27)

After the substitution of Equations (7), (25)–(27) into Equation (24), the type 2 size effect law can
be finally transformed to a shape similar to the boundary effect model:

σN =
1.12 ft

√
a?∞/c f

H(α)

(
1 +

ae3

c f

)−1/2

, (28)

where ae3 shares the same definition as the one presented in Koval-Gao’s size and boundary effect
model. This form of the Bažant’s Type 2 size effect law can be further written as:

1
σ2

n4
=

c f

K2
c
+

1
K2

c
ae3, (29)
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with
σn4 =

√
πH(α)σN . (30)

Thus, the fracture toughness Kc and the effective size of the fracture process zone c f can be
identified from the size effect or boundary effect fracture test results. To obtain the tensile strength
of the material, a ratio γ1 (γ1 = c f /lch) between c f and the material characteristic length lch should
be assumed. It is reported in [20,39,40] that γ1 can be 0.28 or 0.29 for concrete material. Since lch =

1.122πa?∞, another ratio γ2 = c f /a?∞ can also be obtained, which is close to 1 when γ1 ≈ 0.28 or 0.29
(γ2 ≈ 1.10 or 1.14), means the effective size of the fracture process zone may be roughly equal to the
transition crack size.

It is interesting to notice that the effective size of the fracture process zone c f in Bažant’s Type 2 size
effect law might be able to link to the fictitious crack length ∆a f ic proposed in Hu-Guan’ (Hu-Wang’)
boundary effect model (see Section 2.1.2). A reasonable choice of γ1 or γ2 would provide a better
estimation of material tensile strength ft. The theoretical and experimental studies can be done in the
future work to find out the approximate relation between c f and maximum aggregate size dmax or
average aggregate size dav.

2.4. Comparison of Different Equivalent Crack Lengths

Different size and boundary effect models have adopted different expressions for the calculation
of equivalent crack lengths. ae1 (Equation (11)) in Hu-Guan’s boundary effect model depends only
on the crack-length-to-height ratio α, while ae2 (Equation (18)) proposed in modified Hu-Guan’s
boundary effect model believes the equivalent crack length depends on both the crack-length-to-height
ratio α and fictitious crack-length-to-height ratio ∆α f ic, thus becomes geometry- and material-related.
The expression ae3 (Equation (21)) in Koval-Gao’s size and boundary effect model, and Bažant’s Type
2 size effect law is identical, which is only geometry-dependent. To better compare the different
equivalent crack lengths, a wedge-splitting specimen with W = 1000 mm (see Figure 1a) is taken as an
example, and its initial crack length varies from 50 mm to 950 mm. The variations of the equivalent
crack length for different maximum aggregate size dmax with fixed discrete number β1, and variable β1

with fixed dmax are plotted respectively in Figures 3 and 4.
In different constructions, the maximum aggregate size dmax can be very different. For concrete

used in Wudongde and Baihetan super-high arch dams, dmax = 40 mm, 80 mm or 150 mm for different
parts of the dam. Meanwhile for the relatively smaller structures such as piers or beams, the frequently
used dmax is only 10 mm or 20 mm. These possible dmax are all considered in this section, and the
corresponding ae2 are plotted in Figure 3, together with the material (dmax) independent equivalent
crack lengths ae1 and ae3. For the original Hu-Guan’s boundary effect model, ae1 reaches its maximum
value for any dmax when the crack-length-to-height ratio α is around 0.2, means for this ratio, the LEFM
contributes the most to the failure of the specimen, thus should be recommended as the initial ratio
for the fracture test on wedge-splitting specimen. This recommended ratio for Koval-Gao’s size and
boundary effect model, and Bažant’s Type 2 size effect law is 0.3 to 0.4, which is closer to the usual
initial crack-length-to-height ratio reported in the references [1,10]. In terms of ae2 proposed in this
study, it is obvious that it is different from ae1, and this difference becomes larger as the increase of dmax.
Hence, the proposed modified Hu-Guan’s boundary effect model would be more appropriate than its
original version, due to the fact that the two failure mechanisms are correctly combined even for the
fracture analysis of dam concrete with maximum aggregate size reaches 150 mm. However, it should
be admitted that for dmax such as 10 mm or 20 mm, the difference in ae2 and ae1 may has neglectable
effect on the fracture properties estimated by the original and modified Hu-Guan’s boundary effect
model. In addition, the increase of ae2 at the tail part can be observed in Figure 3. This trend appears
naturally due to its definition. An increase ae2 could maintain the validity of the failure mechanism of
LEFM for all the possible crack-length-to-height ratios.
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Figure 3. Equivalent crack length ae versus initial crack length a0 for different maximum aggregate
size dmax when β1 = 1.

Figure 4 shows the equivalent crack length ae versus initial crack length a0 for different discrete
number β1 when dmax = 150 mm. ae1 and ae3 are the same as the ones plotted in Figure 3 since they are
independent on the fictitious crack length. β1 ranges from 0.25 to 2 is considered, which is a reasonable
range for concrete material [23]. As shown in Figure 4, ae2 is strongly affected by the choice of β1

when dmax = 150 mm, thus may provide very different fracture parameters for different boundary
effect models. It should be noted that according to the definition of σn2 (see Figure 2a) in original and
modified Hu-Guan’s boundary effect model, the fictitious crack length ∆a f ic should be smaller than
the length of the ligament, so the Hu-Guan’s boundary effect model cannot be applied directly to some
special cases (the tail part of ae2 in Figure 4) when the ligament is not enough to distribute the stress.
This might be a shortcoming of the non-local models, but in fact, can be rarely encountered in the
analysis of usual fracture test results.
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Figure 4. Equivalent crack length ae versus initial crack length a0 for different discrete number β1

when dmax = 150 mm.

2.5. Method for the Determination of Fracture Parameters

The fracture tests on geometrically similar specimens with constant crack-length-to-height ratios,
and specimens with different initial crack-length-to-height ratios are frequently performed to study
the dependence of fracture behaviors on specimen sizes and initial crack lengths. The test results
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obtained from these two types of specimens can be used to extrapolate the tensile strength ft and
fracture toughness Kc by the size and boundary effect models.

The linear forms of original Hu-Guan’s boundary effect model (Equation (14)), modified
Hu-Guan’s boundary effect model (Equation (19)), Koval-Gao’s size and boundary effect model
(Equation (22)), and Bažant’s Type 2 size effect law (Equation (29)) have presented previously in
this section. Only the maximum loads and geometrical information of the tested specimens are
needed for the linear regression analysis. The nominal stresses in the different linear models can be
calculated by Equation (13) (original and modified Hu-Guan’s boundary effect model), Equation (23)
(Koval-Gao’s size and boundary effect model), and Equation (30) (Bažant’s Type 2 size effect law).
In addition, the different equivalent crack lengths can be calculated by Equation (11) (original
Hu-Guan’s boundary effect model), Equation (18) (modified Hu-Guan’s boundary effect model),
and Equation (21) (Koval-Gao’s size and boundary effect model and Bažant’s Type 2 size effect law).
With these two known values from the test results and specimens’ geometrical information, one can
do the linear regression analysis by the different models. Thus, the intercept and slope obtained from
the best linear fit can be used to predict the material properties.

It should be noted that for the original and modified Hu-Guan’s boundary effect models,
the extrapolated fracture parameters vary together as the adjustment of the discrete number β1.
Thus, special attention should be paid to the regression analysis, to ensure the predicted tensile
strength and fracture toughness are all acceptable. For Bažant’s Type 2 size effect law, as introduced in
Section 2.3, only the fracture toughness Kc and the effective size of the fracture process zone c f can be
obtained from the linear fit. To estimate the tensile strength ft of the material, a ratio γ1 (γ1 = c f /lch)
between c f and the material characteristic length lch should be assumed. Then ft can be calculated
as follows:

ft =

√
γ1K2

c
c f

. (31)

Koval-Gao’s size and boundary effect model is less flexible than the other two models, because the
liner fit is unique for one set of the test results, and one can calculate the tensile strength from the
intercept and fracture toughness from the slope, respectively.

3. Model Verification and Comparison

The test results of geometrically similar wedge-splitting [28,29] and compact tension
specimens [30] with constant crack-length-to-height ratios, and wedge-splitting specimens with
different initial crack-length-to-height ratios [31–33] are adopted, to verify the applicability of
the different size and boundary effect models on the determination of fracture properties for
concrete material.

3.1. Tests of Geometrically Similar Specimens with Constant Crack-Length-to-Height Ratios

3.1.1. Zhang’s Experiments

Zhang et al. [28,29] carried out a series of experiments with geometrically similar wedge-splitting
specimens, to investigate the size effects of concrete with small aggregate size. The height of the
specimens ranges from 150 mm to 1200 mm, with the maximum aggregate size of 10 mm. There were
24 specimens in total, which were divided into 7 groups according to their heights, and each group
had at least 3 samples. The compressive strength at 60 days was 29.56 MPa.

The sample dimensions, test results, equivalent crack lengths and nominal stresses in different
boundary effect models are listed in Table 1. It should be noted that the dimensions of different samples
in one group were slightly different due to the size deviations of the molds.



Appl. Sci. 2019, 9, 1337 11 of 20

Table 1. Geometry, test results and equivalent crack length of wedge-splitting specimens [28,29].

Label W
(mm) a0/W t

(mm)
Pmax
(kN)

ae1
(mm)

ae2
(mm)

ae3
(mm)

σN
(Mpa)

σn2
(Mpa)

WS150-1 150 0.4638 200 4.73405 9.75 14.41 26.89 0.631 2.225
WS150-2 150 0.477 193 5.59249 9.43 14.08 26.27 0.773 2.863
WS150-3 150 0.4868 200 5.22936 9.19 13.84 25.8 0.697 2.683
WS200-1s 200 0.4579 200 7.08092 13.19 17.78 36.2 0.708 2.551
WS200-2s 200 0.4703 200 6.885 12.79 17.36 35.45 0.689 2.601
WS200-3d 200 0.4703 200 6.61111 12.79 17.36 35.45 0.661 2.498
WS400-1 400 0.4527 200 11.37149 26.73 31.19 72.99 0.569 2.155
WS400-2 400 0.4602 198 14.27358 26.23 30.69 72.12 0.721 2.814
WS400-3 400 0.4869 199 12.00834 24.5 28.93 68.78 0.603 2.623
WS600-1 600 0.4618 193 17.82212 39.19 43.6 107.9 0.616 2.48
WS600-2 599 0.4551 200 16.97275 39.78 44.21 108.9 0.567 2.223
WS600-3 600 0.4551 193 16.68785 39.85 44.27 109.08 0.576 2.261
WS600-5 599 0.4551 200 18.22867 39.78 44.21 108.9 0.609 2.387
WS800-1 799 0.4624 196 18.65977 52.11 56.5 143.54 0.477 1.95
WS800-2 800 0.4624 194 22.60376 52.17 56.56 143.72 0.583 2.384
WS800-4 798 0.4539 200 21.62546 53.16 57.56 145.35 0.542 2.143
WS800-5 801 0.4577 200 21.98917 52.86 57.25 145.02 0.549 2.204
WS1000-1 997 0.4521 200 22.14598 66.71 71.1 182.11 0.444 1.757
WS1000-3 997 0.4531 200 23.33836 66.55 70.94 181.82 0.468 1.86
WS1000-4 999 0.4522 196 25.81247 66.83 71.22 182.44 0.527 2.087
WS1000-5 1000 0.4506 200 24.4032 67.16 71.56 183.08 0.488 1.919
WS1200-0 1198 0.4597 200 24.7045 78.66 83.03 216.19 0.412 1.691
WS1200-1 1200 0.4554 201 24.2143 79.64 84.02 218.05 0.402 1.618
WS1200-2 1200 0.4545 200 28.2619 79.82 84.2 218.36 0.471 1.891

To obtain simultaneously the tensile strength and fracture toughness, the linear regressions of
original Hu-Guan’s boundary effect model (∆a f ic = dmax), modified Hu-Guan’s boundary effect model
(∆a f ic = dmax), Koval-Gao’s size and boundary effect model, and Bažant’s Type 2 size effect law
are plotted respectively in Figure 5. The estimated materials parameters (see Figure 5a) for original
Hu-Guan’s boundary effect model (β1 = 1) are: ft = 3.05 MPa, Kc = 1.25 MPa

√
m, a?∞ = 42.9 mm

and lch = 168.9 mm. It should be noticed that the results of Hu-Guan’s boundary effect model are
slightly different from the results presented in [23], because in this analysis, the more accurate sample
dimensions and peak loads are adopted from [28,29]. For modified Hu-Guan’s boundary effect model
(see Figure 5b), when β1 = 1 (∆a f ic = dmax), one can obtain ft = 3.23 MPa, Kc = 1.25 MPa

√
m,

a?∞ = 38.1 mm and lch = 150.0 mm. For Koval-Gao’s size and boundary effect model, ft = 2.36 MPa,
Kc = 1.16 MPa

√
m, a?∞ = 61.6 mm and lch = 242.9 mm can be calculated from the intercept and

slope shown in Figure 5c. Bažant’s Type 2 size effect law (see Figure 5d) gives Kc = 1.16 MPa
√

m and
c f = 61.6 mm (Equation (29)). As already introduced previously in Sections 2.3 and 2.5, in order to
obtain the tensile strength ft of the material, a ratio γ1 should be assumed, then ft can be calculated
by Equation (31). It is obvious that mathematically ft would increase monotonically as the increase
of γ1. For the test results analyzed in this section, γ1 = 0.1 and 1 gives ft = 1.48 MPa and 4.69 MPa,
respectively. If γ1 = 0.28 or 0.29, the corresponding ft = 2.48 MPa or 2.52 MPa, which is close to the
estimation of Koval-Gao’s size and boundary effect model. The transition crack length a?∞ = 55.86 mm
and material characteristic length lch = 220.13 mm can also be calculated for the chosen γ1 = 0.28.
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Figure 5. Test results in [28,29] and the corresponding fitted curves of (a) Hu-Guan’s boundary effect
model with β1 = 1, (b) modified Hu-Guan’s boundary effect model with β1 = 1, (c) Koval-Gao’s size
and boundary effect model and (d) Bažant’s Type 2 size effect law.

The tensile strength was not measured in [29], alternatively, we can estimate it from the measured
compressive strength by ft = 0.24 f 3/2

cu = 2.29 MPa [31], which is only 2.9% difference with the
estimation of Koval-Gao’s size and boundary effect model. The Hu-Guan’s boundary effect model and
its modified version still somehow overestimate the material tensile strength with β1 = 1. However, as
the increase of ∆a f ic, the estimated ft would decrease accordingly, as what has done in [23], to test the
effect of different ∆a f ic on the predicted tensile strength.

For fracture toughness Kc, when the sample size is larger than 600 mm, the nominal fracture
toughness Kc tends to be stable, and its value ranges from 0.93 to 1.13 MPa

√
m, hence, Kc =

1.16 MPa
√

m estimated by the Koval-Gao’s model and Bažant model is acceptable. While for the
original Hu-Guan model and its modified version, the estimated Kc = 1.25 MPa

√
m when ∆a f ic = dmax

seems slightly higher, since the largest measured Kc is only 1.09 MPa
√

m for the largest specimen with
W = 1200 mm, whose failure can be assumed as totally LEFM control. Nevertheless, as the variation
of the value of ∆a f ic (or β1), the best estimations of ft and Kc given by Hu-Guan’s boundary effect
model can be achieved.

It is worthwhile to mention that the adjustment of β1 in original and modified Hu-Guan’s
boundary effect models would alter the predicted ft and Kc values simultaneously, to be more exact,
as the increase of β1, the estimated ft would decrease and Kc would increase. This is simply due to the
model assumption about the competition between two failure mechanisms (strength of material and
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LEFM). A larger fictitious crack length gives a lower non-local stress σn2 (see Figure 2a) distributed
along the fictitious crack, thus reduces the contribution of strength of material on the specimen failure,
and finally leads to the different combination of predicted fracture parameters. This feature may
introduce some difficulties to directly adopt the extrapolated fracture parameters to the numerical
simulation of a real structure, since one may suspend the veracity of the estimated parameters.
Therefore, before using the Hu-Guan’s boundary effect model to extrapolate the fracture parameters,
it is recommended to fix one parameter by tests or give a narrow range to it in advance. In this way,
the other parameter can be more reliable, and a reasonable β1 is naturally obtained.

In terms of fracture parameters extrapolation, Bažant’s Type 2 size effect law is also aided by a
length assumption (c f = γ1lch). However, the different choice of γ1 would change the prediction of
ft only. It is reported in [20,39,40] that γ1 is about 0.28 for concrete material, but as the increase of
maximum aggregate size, especially for the dam concrete with dmax = 150 mm, γ1 ≈ 0.28 should be
better verified by more experiential results. The third model, Koval-Gao’s size and boundary effect
model only provides one set of fracture parameters, which seems to be less flexible than the other
models, but its estimated parameters are acceptable for this case.

3.1.2. Wittmann’s Experiments

Wittmann et al. [30] performed the fracture tests on geometrically similar compact tension
specimens. The heights of the specimens were 300 mm, 600 mm and 1200 mm, with 6 samples
for each specimen size and the maximum aggregate size was 16 mm. The measured compressive
strength at 28 days was 42.9 MPa. The sample dimensions, test results and model parameters are listed
in Table 2. Only the mean value of the maximum loads of each group (6 samples) has been reported
in [30].

Table 2. Geometry, test results and equivalent crack length of compact tension specimens [30].

Series W
(mm) a0/W t

(mm)
Pmax
(kN)

ae1
(mm)

ae2
(mm)

ae3
(mm)

σN
(MPa)

σn2
(MPa)

Small 300 0.5 120 7.30 17.76 42.18 50.27 0.811 2.631
Medium 600 0.5 120 12.60 35.51 58.10 100.54 0.700 2.736

Large 1200 0.5 120 20.70 71.02 92.58 201.09 0.575 2.518

The linear regressions of different size and boundary effect models are plotted in Figure 6. When
β1 = 1, the estimated materials parameters (see Figure 6a) for original Hu-Guan’s boundary effect
model are: ft = 3.83 MPa, Kc = 2.10 MPa

√
m, a?∞ = 76.2 mm, lch = 300.3 mm, and for modified

Hu-Guan’s boundary effect model (see Figure 6b), the extrapolated parameters are: ft = 4.03 MPa,
Kc = 2.09 MPa

√
m, a?∞ = 68.3 mm and lch = 269.3 mm. Koval-Gao’s size and boundary effect model

gives ft = 2.93 MPa, Kc = 1.87 MPa
√

m, a?∞ = 103.3 mm and lch = 407.2 mm (see Figure 6c). Bažant’s
Type 2 size effect law (see Figure 6d) gives Kc = 1.87 MPa

√
m and c f = 103.34 mm. In addition,

the tensile strength ft = 3.09 MPa is obtained for γ1 = 0.28.
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Figure 6. Test results in [30] and the corresponding fitted curves of (a) Hu-Guan’s boundary effect
model with β1 = 1, (b) modified Hu-Guan’s boundary effect model with β1 = 1, (c) Koval-Gao’s size
and boundary effect model and (d) Bažant’s Type 2 size effect law.

The tensile strength can be estimated from the compressive strength by ft = 0.24 f 3/2
cu =

2.94 MPa [31]. Similar to the estimated results of Zhang’s experiments (see Section 3.1.1),
the extrapolated tensile strengths of Koval-Gao’s model and Bažant’s model seem to be more reasonable
than the values given by the original and modified Hu-Guan’s boundary effect models. In terms of
fracture toughness, the difference of the values given by the different models is within 15%, therefore,
the model predictions are all acceptable. However, for the largest tested specimen (W = 1200 mm),
the measured Kc is only 1.521 MPa

√
m. According to the experimental size effect study [1,10], for such

a relatively huge specimen with ligament length (0.5W) to maximum aggregate size (dmax) ratio equals
37.5, the measured fracture toughness should be close to the real material fracture toughness already.
Therefore, the lower fracture toughness prediction given by Koval-Gao’s model and Bažant’s model
might be more appropriate. As already mentioned in Section 3.1.1, a choice of a smaller β1 could
lower the prediction of fracture toughness given by the Hu-Guan’s model, but at the same time, an
unrealistic larger tensile strength would be obtained. This issue of the Hu-Guan’s boundary effect
model should be further studied.
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3.2. Tests of Specimens with Different Initial Crack-Length-to-Height Ratios

3.2.1. Xu’s Experiments

Xu et al. [31] performed the wedge-splitting tests made of concrete with different initial
crack-length-to-height ratios. The maximum aggregate size used was 20 mm. The height and thickness
were fixed for all the specimens (W = 170 mm, t = 200 mm). There were three different initial crack
lengths a0, which were 60 mm, 80 mm and 100 mm, respectively. The measured compressive strength
fcu is 47.96 MPa, and the tensile strength ft was estimated as ft = 0.24 f 3/2

cu = 3.17 MPa by Xu et al. [31].
Details of the specimen dimensions, test results and equivalent crack lengths are listed in Table 3.

Table 3. Geometry, test results and equivalent crack length of wedge-splitting specimens [31].

Label W
(mm) a0/W t

(mm)
Pmax
(kN)

ae1
(mm)

ae2
(mm)

ae3
(mm)

σN
(MPa)

σn2
(MPa)

WS70-1 170 0.353 200 10.71 14.16 23.89 34.05 1.260 2.727
WS70-2 170 0.353 200 9.65 14.16 23.89 34.05 1.135 2.457
WS70-3 170 0.353 200 11.02 14.16 23.89 34.05 1.296 2.806
WS90-1 170 0.471 200 6.56 10.85 20.63 30.1 0.772 2.471
WS90-2 170 0.471 200 6.77 10.85 20.63 30.1 0.796 2.550
WS90-3 170 0.471 200 6.96 10.85 20.63 30.1 0.819 2.621
WS110-1 170 0.588 200 4.09 7.88 17.81 23.11 0.481 2.441
WS110-2 170 0.588 198 4.36 7.88 17.81 23.11 0.513 2.602
WS110-3 170 0.588 199 4.94 7.88 17.81 23.11 0.581 2.948
WS110-4 170 0.588 193 3.98 7.88 17.81 23.11 0.468 2.375
WS110-5 170 0.588 200 4.48 7.88 17.81 23.11 0.527 2.674
WS110-6 170 0.588 193 4.94 7.88 17.81 23.11 0.581 2.948
WS110-7 170 0.588 200 4.97 7.88 17.81 23.11 0.585 2.966
WS110-8 170 0.588 196 4.82 7.88 17.81 23.11 0.567 2.877

Figure 7 presents the test results in [31] and the fitted curves of the different size and boundary
effect models. It should be noted that the low coefficients of determination (R2) are simply due to
the fluctuation of the test results. As shown in Figure 7, the linear trend of the test results is very
clear and therefore, can be used to the prediction of fracture properties. For the original Hu-Guan’s
boundary effect model (see Figure 7a), it is provided in [23] that ft = 2.78 MPa, Kc = 1.73 MPa

√
m,

a?∞ = 97.65 mm and lch = 384.84 mm when β1 = 1. The modified Hu-Guan’s boundary effect model
(see Figure 7b) gives ft = 2.94 MPa, Kc = 1.71 MPa

√
m, a?∞ = 85.63 mm and lch = 337.45 mm when

β1 = 1. For Koval-Gao’s size and boundary effect model, as shown in Figure 7c, one can obtain
ft = 3.08 MPa, Kc = 1.10 MPa

√
m, a?∞ = 32.25 mm and lch = 127.09 mm. The estimated values for

Bažant’s Type 2 size effect law (see Figure 7d) are: Kc = 1.10 MPa
√

m and c f = 32.25 mm. When
γ1 = 0.28, the material tensile strength ft = 3.24 MPa can be obtained by Equation (31), and the
corresponding a?∞ = 29.23 mm and lch = 115.18 mm.

The tensile strength calculated by Koval-Gao’s size and boundary effect model is again within
5% difference with the estimated tensile strength ft = 0.24 f 3/2

cu = 3.17 MPa by Xu et al. [31]. With the
same discrete number β1 , the original Hu-Guan’s boundary effect model gives a lower tensile strength
than its modified one. In terms of fracture toughness, the estimation of Koval-Gao’s size and boundary
effect model is the same as the Bažant’s Type 2 size effect law, and lower than the values given by the
original and modified Hu-Guan’s boundary effect models. However, under current conditions, it is
difficult to decide which model provides the more appropriate fracture toughness. This is because
the tested specimen size W = 170 mm, which is only 8.5 times bigger than the maximum aggregate
size. For such a W/dmax ratio, the failure of the pre-cracked specimen is certainly controlled by the
non-LEFM, and the real fracture toughness of the material should be evaluated by a larger specimen
or estimated by the size and boundary effect models.
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Figure 7. Test results in [31] and the corresponding fitted curves of (a) Hu-Guan’s boundary effect
model with β1 = 1, (b) modified Hu-Guan’s boundary effect model with β1 = 1, (c) Koval-Gao’s size
and boundary effect model and (d) Bažant’s Type 2 size effect law.

3.2.2. Wu’s Experiments

Another series of wedge-splitting tests with different initial crack-length-to-height ratios were
carried out by Wu et al. [32,33]. The maximum aggregate size was 20 mm. The height and thickness
of the specimens were W = 170 mm and t = 200 mm, respectively. The samples were classified
as 5 groups according to the different initial crack-length-to-height ratios ranging from 0.2 to 0.8.
The measured compressive strength fcu was 38.8 MPa, and splitting tensile strength was 3 MPa. Details
of the tests are listed in Table 4, the failure loads Pmax were the mean values of the different groups
provided in [32,33].

Table 4. Geometry, test results and equivalent crack length of wedge-splitting specimens [32,33].

Label W
(mm) a0/W t

(mm)
Pmax
(kN)

ae1
(mm)

ae2
(mm)

ae3
(mm)

σN
(MPa)

σn2
(MPa)

WS1 400 0.2 200 34.20 39.22 47.46 68.95 1.710 2.672
WS2 400 0.4 200 25.20 30.25 39.51 77.94 1.260 3.675
WS3 400 0.5 200 16.00 23.67 32.77 67.03 0.800 3.400
WS4 400 0.6 200 10.80 17.92 26.95 52.63 0.540 3.578
WS5 400 0.8 200 3.20 8.79 19.09 25.94 0.160 3.800
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The linear regressions of different models are plotted in Figure 8. When β1 = 1, the estimated
materials parameters (see Figure 8a) for original Hu-Guan’s boundary effect model are: ft = 4.83 MPa,
Kc = 1.42 MPa

√
m, a?∞ = 22.0 mm, lch = 86.6 mm, and for modified Hu-Guan’s boundary effect model

(see Figure 6b), the extrapolated parameters are: ft = 6.74 MPa, Kc = 1.39 MPa
√

m, a?∞ = 10.8 mm and
lch = 42.5 mm. Koval-Gao’s size and boundary effect model gives ft = 3.90 MPa, Kc = 1.61 MPa

√
m,

a?∞ = 43.1 mm and lch = 169.9 mm (see Figure 6c). Bažant’s Type 2 size effect law (see Figure 6d) gives
Kc = 1.61 MPa

√
m and c f = 43.13 mm. In addition, the tensile strength ft = 4.10 MPa is obtained for

γ1 = 0.28.
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Figure 8. Test results in [32,33] and the corresponding fitted curves of (a) Hu-Guan’s boundary effect
model with β1 = 1, (b) modified Hu-Guan’s boundary effect model with β1 = 1, (c) Koval-Gao’s size
and boundary effect model and (d) Bažant’s Type 2 size effect law.

For this example, the extrapolated tensile strengths of all the models are larger than the measured
splitting tensile strength (3 MPa), this is because the different fracture mechanisms of the splitting
and wedge-splitting tests. The latter one’s failure mechanism is close to the flexure test. Therefore,
the extrapolated tensile strength from the wedge-splitting tests should be close to the tensile strength
measured by the flexure test. Raphael [11,12] concluded from plenty of the experimental results that
the tensile strength measured by the flexure test is around 35% higher than the one measured by the
splitting test. Hence, the extrapolated tensile strengths by the different models are still reasonable.

The fracture toughness values given by the Koval-Gao’s model and Bažant’s model
(Kc = 1.61 MPa

√
m) are higher than the values obtained from the Hu-Guan’s boundary effect model
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(Kc = 1.42 MPa
√

m) when β1 = 1. Since the measured nominal fracture toughness for the specimen
with initial crack-length-to-height ratio equals to 0.4 was 1.45 MPa

√
m, it is recommended that a larger

value of β1 should be adopted, to obtain a more realistic fracture toughness. For instance, one can get
ft = 3.89 MPa and Kc = 1.58 MPa

√
m by Hu-Guan’s boundary effect model when β1 = 1.5. This set

of parameters is close to Koval-Gao’s and Bažant’s models.

4. Conclusions

The local and non-local versions of boundary effect models developed by Hu et al., the modified
Hu-Guan’s boundary effect model proposed in this study, the Koval-Gao’s size and boundary model,
and Bažant’s Type 2 size effect law are all able to capture the effects of crack length and sample size
on the fracture behavior of wedge-splitting and compact tension specimens. The proposed modified
Hu-Guan’s boundary effect model provides a more appropriate definition of equivalent crack length.
This proposed model can correctly combine the contributions of strength of material and LEFM on the
material failure for concrete with any maximum aggregate size. The boundary effect shape of Bažant’s
Type 2 size effect law shares the same equivalent crack length as Koval-Gao’s size and boundary effect
model. This improvement could extend the applicability of the model to extrapolate the material
parameters by the test results obtained from both the geometrically similar specimens with constant
crack-length-to-height ratios and specimens with different initial crack-length-to-height ratios.

The applicability of the different size and boundary effect models on the determination of fracture
toughness and tensile strength for concrete material are verified and compared by test results reported
in the literature. The original and modified Hu-Guan’s boundary effect model is more flexible, because
the two fracture parameters vary together as the adjustment of the discrete number β1. However,
there exists the risk that the reasonable fracture parameters cannot be obtained with one single β1.
Therefore, before using the Hu-Guan’s boundary effect model to extrapolate the fracture parameters,
it is recommended to fix one parameter by tests or give a narrow range to it in advance. In this way,
the other parameter can be more reliable, and a reasonable β1 is naturally obtained. Besides, the
proposed modified Hu-Guan’s boundary effect model would be more appropriate than its original
version, due to the fact that the two failure mechanisms are correctly combined even for the fracture
analysis of dam concrete with maximum aggregate size reaches 150 mm. Nevertheless, for dmax such
as 10 mm or 20 mm, this improvement is neglectable. Bažant’s Type 2 size effect law is less flexible
than Hu-Guan’s boundary effect model, because once the test results are given, the estimated fracture
toughness is decided. The variation of the length scale or γ1 would change the estimated value of
tensile strength only. In terms of Koval-Gao’s size and boundary effect model, only one set of fracture
parameters can be extrapolated from the test results. However, for the test results adopted in this
study, the predictions of the fracture properties given by Koval-Gao’s size and boundary effect model
are all acceptable.

For dam concrete, the specimen size needed to measure the stable tensile strength and fracture
toughness can be huge. Hence, it is recommended to use the size and boundary effect to determine
the two fracture parameters simultaneously. The fracture tests on at least three different sizes of
geometrically similar specimens (e.g., W = 750 mm, 1500 mm, 2250 mm with α0 = 0.4) and one
specimen size with three different initial crack-length-to-height ratios (e.g., W = 1125 mm with
α0 = 0.2, 0.4, 0.6) are encouraged to be performed, for the purpose of the extrapolation of fracture
parameters by the theoretical models. More experimental findings will be reported in the authors’
further coming publications. Comprehensive experimental studies on the wedge-splitting specimens
made of fully graded concrete are currently undergoing. All the specimens are casted in the same
time at the construction sites of Wudongde and Baihetan super-high arch dams. The mechanical and
fracture tests are performed simultaneously, to obtain the reliable and comprehensive test results
for the dam concrete. The further coming experimental evidence will improve the capability of the
different size and boundary effect models on the determination of fracture toughness and tensile
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strength for concrete material, especially the fully graded concrete, whose fracture parameters are
crucial to the dam construction and operation, but not easy to be obtained.
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