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Featured Application: There are many application scenarios for tracking. For example, tracking
can be used to assist driving to improve driving safety. Moreover, tracking can assist the police
to search for suspicious vehicles in massive videos.

Abstract: Accurate visual tracking is a challenging issue in computer vision. Correlation filter
(CF) based methods are sought in visual tracking based on their efficiency and high performance.
Nonetheless, traditional CF-based trackers have insufficient context information, and easily drift
in scenes of fast motion or background clutter. Moreover, CF-based trackers are sensitive to partial
occlusion, which may reduce their overall performance and even lead to failure in tracking challenge.
In this paper, we presented an adaptive context-aware (CA) and structural correlation filter for
tracking. Firstly, we propose a novel context selecting strategy to obtain negative samples. Secondly,
to gain robustness against partial occlusion, we construct a structural correlation filter by learning
both the holistic and local models. Finally, we introduce an adaptive updating scheme by using
a fluctuation parameter. Extensive comprehensive experiments on object tracking benchmark
(OTB)-100 datasets demonstrate that our proposed tracker performs favorably against several
state-of-the-art trackers.
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1. Introduction

Visual object tracking is a crucial research issue in computer vision and has many applications
including video security, traffic monitoring, robotics and human computer interface. In the past decade,
great improvements have been made by some visual tracking algorithms [1–6], meanwhile large visual
tracking datasets and benchmarks, such as the Object Tracking Benchmark (OTB)-50 [7], OTB-100 [8],
Visual Object Tracking (VOT) [9,10], Need for Speed (NfS) [11] and Multi-Object Tracking (MOT) [12]
have sparked the interest of numerous scholars and given impetus to the research area appreciably.
In spite of having made considerable headway in recent decades, the tracking issue is still considered
a big challenge in some scenarios such as illumination variation, scale variation, occlusion, fast motion,
deformation, background clutters, etc.

Lately, correlation filter (CF) based methods [13–15] have been sought in visual tracking based
on their excellent performance. CF-based trackers learn a correlation filter with training samples
obtained by cyclically shifting base samples. For each new frame, the trained filter locates to the new
target position where has the maximum response. At last, the filter is updated by the new location.
By utilizing the circulant construction of training samples, CF-based trackers enable efficient learning
and detecting in the Fourier domain.
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Despite their appealing performance both in accuracy and high frames per second (FPS) rate,
there are some drawbacks that reduce the performance of CF-based trackers. A major drawback is
the boundary effect caused by circularly shifting. To inhibit the boundary effect, a cosine window is
usually employed. But the cosine window limits search areas and thereby the quantity of samples,
specifically the quantity of negative samples, is sharply reduce. Therefore, CF-based trackers usually
have insufficient context and thus readily drift in scenes of fast motion or background clutter.
Moreover, CF-based trackers only learn a holistic model so that they cannot deal with cases of partial
occlusion well.

To further improve the performance of CF-based trackers, several effective methods have been
proposed. By handling large scale changes in complex image sequences, the Scale Adaptive With
Multiple Features Tracker (SAMF) [16], and the Discriminative Scale Space Tracker (DSST) [17] have
achieved state of the art performance. Sum of Template and Pixel-wise LEarners (Staple) trackers [18]
have learned a filter to enhance the robustness of color variations and distortions by combining
two notations easily affected by complementary factors. However, these trackers have not more
effective approaches to mitigate the boundary effect. The Spatially Regularized Discriminative
Correlation Filters (SRDCF) tracker [19] induces boundary effects by adopting spatially regularized
elements in training to punish correlation modulus according to their position. However, solving
this optimization problem of this strategy is time-consuming. Lately, context-aware (CA) [20] and
background-aware [21] CF-based trackers have demonstrated notable enhancement on visual tracking
performance. These methods incorporate global context information into the filter training to add
number of negative samples, the quantity of negative samples will obviously affect tracking results.
However, there are two major problems: (1) context patches are simply selected on fixed positions
around the target, which causes the problem that these selected negative samples are perhaps
non-representative; and (2) only a holistic model is learned, these trackers lack robustness against
partial occlusion.

To tackle the above inherent problems, we propose an adaptive context-aware and structural
correlation filter for visual tracking from the following three perspectives. Firstly, in order to add
informative negative samples to inhibit the boundary effect caused by circularly shifting, we introduce
a novel context selecting strategy to obtain negative samples. We evenly divide the target neighborhood
into four blocks, then the maximum response patch is selected from each block as the context patches
for collecting negative samples. Negative samples selected by this strategy are more informative.
Secondly, to gain robustness against partial occlusion, we construct a structural correlation filter by
learning both the holistic and local model. The final response of the correlation filter can be obtained
by integrating every component with adaptive weight based on the Peak to Sidelobe Ratio (PSR) that is
used to measure the reliability of each component. The new location of target is predicted according to
the final weighted response. Finally, we propose an adaptive updating scheme by using a fluctuation
parameter. The parameter is calculated by the deviation of PSR between two consecutive frames,
which can describe the degree that appearance changing is alleviating or deteriorating. The updating
scheme can adaptively adjust the updating rate for different frames, thereby updating the filter more
accurately. We evaluate our proposed method on OTB-100 benchmark. The benchmark annotated
100 video sequences with 11 sub-categories (including occlusion, background clutter, illumination
variation, scale variation, deformation, motion blur, fast motion, in-plane rotation, out-of-plane
rotation, out-of-view and low resolution) that describe the different challenges in the tracking problem.
The precision plot and success plot are used to carry out quantitative analysis in the benchmark.
The procedure of the adaptive context-aware and structural correlation filter shows in Figure 1.
Extensive comprehensive experiments on OTB-100 datasets demonstrate that our approach performs
favorably against state-of-the-art methods.
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Figure 1. Procedure of the adaptive context-aware and structural correlation filter. For a new frame, 
sampling optimal context patches for holistic and local parts. Then computing the response and Peak 
to Sidelobe Ratio for every filter. Finally, combining confidence maps of each parts with adaptive 
weight to obtain the final confidence map. 

2. Related Works 

Visual tracking is a challenging research issue [22] in computer vision. The existing trackers are 
generally partitioned into two categories [23]. The first category is to achieve the purpose of tracking 
by modeling the target and combining the target detection method, which is called generative [24–
28]. Kwon et al. [2] have proposed a visual tracking decomposition algorithm that employs a diverse 
observation-motion model to explain a comparatively apparent shape change caused by lighting 
variation and fast motion. The algorithm has been further developed to search for proper trackers by 
Markov Chain Monte Carlo sampling [3]. Another category of tracking methods, which is called 
discriminative, is to treat the issue as a classification task of foreground (target) and background, by 
training classifiers in combination with detection and tracking to track target. Discriminative 
methods are usually similar to tracking-by-detection [22]. Tracking-by-detection trackers [1,5,29,30] 
are more popular in current research, because of their the high performance and efficiency. Hare et 
al. [1] propose a Structured Output Support Vector Machine (SVM) and Gaussian kernels that locate 
a target directly. Kalal et al. [5] make use of structural constraints to direct the sampling of a boosting 
method. Zhang et al. [29] propose compressive tracking that learns a Naive Bayesian Model using a 
compressive sensing theory for dimensionality reduction of Haar-like features to accelerate 
calculation. Khattak et al. [31] merge multiple features into tracking to improve robustness. 
Additionally, the Sparsity-based Collaborative Model (SCM) [4] integrates both discriminative and 
generative classifier to generate a more robust tracker. 

2.1. Correlation Filter Based Trackers 

Over the past decade, CF-based trackers [32] have attracted more interest in the research of 
tracking, as well as attained very effective improvements in diverse challenges [9] and benchmarks 
[8]. Traditionally, correlation peaks are typically generated for each patch of interest in a frame while 
producing a low response to the background, which is often used as a detector of the desired model. 

Figure 1. Procedure of the adaptive context-aware and structural correlation filter. For a new frame,
sampling optimal context patches for holistic and local parts. Then computing the response and Peak to
Sidelobe Ratio for every filter. Finally, combining confidence maps of each parts with adaptive weight
to obtain the final confidence map.

The rest of the paper arranged as follows. In Section 2, we discuss recent visual tracking algorithms.
Section 3 elaborates the proposed adaptive context-aware and structural correlation filter exhaustively.
Section 4 evaluates the performance of our proposed tracker by Visual Tracking benchmark [8] datasets,
and compares it with several state-of-art trackers, and Section 5 concludes this paper.

2. Related Works

Visual tracking is a challenging research issue [22] in computer vision. The existing trackers are
generally partitioned into two categories [23]. The first category is to achieve the purpose of tracking
by modeling the target and combining the target detection method, which is called generative [24–28].
Kwon et al. [2] have proposed a visual tracking decomposition algorithm that employs a diverse
observation-motion model to explain a comparatively apparent shape change caused by lighting
variation and fast motion. The algorithm has been further developed to search for proper trackers
by Markov Chain Monte Carlo sampling [3]. Another category of tracking methods, which is called
discriminative, is to treat the issue as a classification task of foreground (target) and background,
by training classifiers in combination with detection and tracking to track target. Discriminative
methods are usually similar to tracking-by-detection [22]. Tracking-by-detection trackers [1,5,29,30] are
more popular in current research, because of their the high performance and efficiency. Hare et al. [1]
propose a Structured Output Support Vector Machine (SVM) and Gaussian kernels that locate
a target directly. Kalal et al. [5] make use of structural constraints to direct the sampling of a
boosting method. Zhang et al. [29] propose compressive tracking that learns a Naive Bayesian
Model using a compressive sensing theory for dimensionality reduction of Haar-like features to
accelerate calculation. Khattak et al. [31] merge multiple features into tracking to improve robustness.
Additionally, the Sparsity-based Collaborative Model (SCM) [4] integrates both discriminative and
generative classifier to generate a more robust tracker.
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2.1. Correlation Filter Based Trackers

Over the past decade, CF-based trackers [32] have attracted more interest in the research of
tracking, as well as attained very effective improvements in diverse challenges [9] and benchmarks [8].
Traditionally, correlation peaks are typically generated for each patch of interest in a frame while
producing a low response to the background, which is often used as a detector of the desired model.
Although tracking issue can be successfully resolved using these filters, they are not suitable for
online tracking as the required training needs. This situation has been changed after the Minimum
Output Sum of Squared Error (MOSSE) [13] filter has been proposed. By an adaptive learning method,
the MOSSE tracker has robust and efficient results in tracking. According to the fundamental theory
of MOSSE, multiple improved algorithms followed. For instance, Henriques et al. [14] improve the
MOSSE filter by adopting the Circulant Structure of with Kernels (CSK). Danelljan et al. [33] employ
Color Name features that can convey color attributes to improve the tracking performance of the CSK
tracker. Since high dimension of color features, the updating scheme [33] is adapted to reduce the
dimension of feature by principal Component Analysis (PCA). An improved Kernelized Correlation
Filter (KCF) [15] employed multi-channel features to replace raw pixels, which is the most prevalent
filter widely adopted since it has good overall performance and high FPS rate. Zhang et al. [34]
formulate a distribution scheme in a Bayesian optimization framework to alleviate drifting.

By further coping to scale variation, SAMF [16] and DSST tracker [17] based on correlation filter
have appealing performance, and have defeated the rest of the participating methods from aspects
of accurateness and robustness in recent competitions. Li et al. [35] introduce a variant of SAMF
based on water flow driven minimum barrier distance (MBD) algorithm. Staple [18] has learned a
model to improve the robustness of both color variations and distortions by combining two notations
easily affected by complementary factors. To induce the boundary effects, SRDCF tracker [19] exploits
spatially regularized elements in training to punish correlation modulus according to their position.
Recently, convolution features have also been used for visual tracking tasks to improve tracking
accuracy and robustness. Deep SRDCF [36] employs deep features of single convolution layer in
Convolutional Neural Networks (CNN) for tracking, and Continuous Convolution Operator Tracker
(C-COT) [37] extends it to multi-layers of convolution.

2.2. Context-Aware Based Trackers

Furthermore, context-aware trackers have demonstrated notable improvement in tracking
performance. Dinh et al. [30] propose a method that automatically explores distractors and
supporters around the tracking object adopting a consecutive random forest classifier. Distractors are
patches which have similar appearance with the target and consistently have high response value.
Xiao et al. [38] utilize contextual information by using multi-level clustering. In more recent research,
Mueller et al. [20] incorporate global context information into the filter training to add a number of
negative samples, and remodel the original regression function, while offering a closed-form solution
for both single and multi-channel features. However, the CA tracker [20] simply samples context
patches on fixed locations around the target, which causes the problem that selected negative samples
are perhaps non-representative. Qie et al. [39] sample patches of top m response value directly on
the whole neighboring region of target and then employ K-means cluster algorithm to select hard
negative samples. Our proposed context selecting strategy is similar to [39]. However, the difference
between these two methods is evident. The method proposed by [39] directly samples patches of
top m response around the target. These patches may be concentrated in a small area, thus ignoring
distractors from other areas. Our method divides the target neighborhood evenly into four blocks and
then selects the maximum response patch from each block. The distractors sampled by our scheme are
more representative. In addition, the clustering process employed by [39] will consumes extra time.
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2.3. Part-Based Correlation Filter Trackers

Jeong et al. [40] propose an adaptive partial block scheme to attenuate the influence by partial
occlusion. Sun et al. [41] propose a framework that employs shape-preserved scheme to overcome
object variations for each individual sub-part. Liu et al. [42] retain the spatial distribution structure
of each sub-part and take advantage of the inherent connection of sub-parts to improve tracking
performance. However, all these trackers [41,42] just focus on local parts, ignoring the relationship
between holistic target and local models. Akin et al. [43] cope with the partial occlusion tasks by
applying coupled interactions between a holistic tracker with some local trackers. Fan et al. [44]
combine holistic and local models to catch the internal structure of target to make to filter more robust
for part-occlusion. Structural models of [43,44] are based on the response value which is perhaps
misleading as the response between the tracking window and the current target that is continuously
adapted by learning from the previous match. Jeong et al. [45] pick the maximum response part from
both global and sub-block as the appointing tracking object, but employing an independent model
isn’t reliable in occlusion tasks. Different from the above methods, we construct a structural correlation
filter by learning both the holistic and local model. The final response of the correlation filter can be
obtained by integrating every component with adaptive weight based on the Peak to Sidelobe Ratio
(PSR) that is used to measure the reliability of each component. And the final location of target is
predicted according to the final weighted response.

2.4. Adaptive Update Schemes

Moreover, in order to ensure long-term tracking, the correlation filter should be updated robustly.
In the process of losing for the object, the updating rate must be reduced to avoid updating much
harmful confusion into appearance model. Several researches have focused on long-term components
for failure tracking strategies. Ma et al. [46] propose an online random fern classifier as re-detection
component for long-term tracking (LCT). Jeong et al. [45] introduce an adaptive learning rate by
calculating the ratio between a value of current frame and a desire result based on the Peak to Sidelobe
Ratio. However, the above schemes neglect the interframe deviation, which can measure the degree
that appearance changing is alleviating or deteriorating.

In this paper, we propose an adaptive context-aware and structural correlation filter for object
tracking. Firstly, we propose a novel context selecting strategy to obtain negative samples, instead
of sampling on fixed locations. Secondly, to gain robustness against partial occlusion, we construct a
structural correlation filter by learning both the holistic and local models. Finally, we introduce an
adaptive update scheme by using a fluctuation parameter.

3. The Proposed Tracker

In this section, we elaborate our proposed adaptive context-aware and structural correlation filter.
Firstly, we review the classical KFC tracker [15], and then a novel context selecting strategy to obtain
negative samples will be introduced. Moreover, we construct structural correlation filter to improve
robustness against partial occlusion. Finally, a fluctuation parameter is proposed to update the model.

3.1. The KCF Tracker

Like other CF-based methods, our proposed method is also based on the KCF tracker. Therefore,
before the exhaustive discussion of our proposed method, we first review the KCF tracker [15]. The KCF
tracker achieves excellent results and high-speed performance on the visual tracker benchmark [8],
despite the idea and implementation of the KCF tracker being very simple. The KCF tracker collects
positive and negative samples around the target using the structure of the circulant matrix, to improve
the discriminative capability of the track-by-detector tracker. The circulant matrix can be diagonalized
with the Discrete Fourier Transform (DFT), enabling a fast dot-product instead of an expensive
Matrix algebra.
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The goal of the KCF tracker is to find a function that minimizes the squared error over data matrix
X and their regression target y,

min
w
‖ Xw− y ‖2 + λ‖ w ‖2 (1)

where the square matrix X contains all circulant shifts of the base sample x, the regression target y is
Gaussian-shaped, and the λ is a regularization parameter to ensure the generalization performance of
the classifier, Equation (1) has the closed-form solution.

w =
(

XTX + λI
)−1

XTy (2)

The circulant matrix X has some intriguing properties [47,48], and the most useful one is that the
circulant matrix can be diagonalized by the Discrete Fourier Transform (DFT) as below:

X = FHdiag(x̂)F (3)

where F is the DFT matrix, and FH is the Hermitian transpose. x̂ denotes the DFT of x, x̂ = F(x) =
√

nFx.
Applying Equation (3) into the solution of linear regression (Equation (2)), we have the solution

as below:
ŵ =

x̂ � ŷ
x̂∗ � x̂ + λ

(4)

where x̂∗ is the a complex-conjugate of x̂. The symbol � and the fraction denote element-wise product
and division respectively.

For detecting the new location of target in the next frame, we can compute the response f(z) for
all candidate patches z, and diagonalize f(z) to obtain as below:

f̂(z) = ŵ � ẑ (5)

The candidate patch with the maximum response is considered as the new location of target.

3.2. Context Selection Strategy for Tracking

Context information of the tracking target has a significant effect on overall performance.
For instance, in the scenery with lots of background clutter, selecting optimal context patches is very
important for successful tracking. Mueller et al. [20] introduced a method based on a context-aware
framework to add contextual information to the filter and got competitive results in some tracking
challenges. However, the conventional CA tracker [20] simply samples context patches on fixed
locations around the target, which causes the problem that these selected negative samples are perhaps
non-representative (see Figure 2). The ideal strategy of selecting context patches is that context patches
are sampled at locations where the filter response is high and spatially far from the maximum.

In this paper, we propose a novel context selecting strategy to obtain negative samples. Firstly,
we divide the surroundings of the tracked object into four areas, each area is twice the target. Then,
patches that have the maximum response value in their respective regions are selected as the context
patches for collecting negative samples (as shown in Figure 3).

The method has two advantages. Firstly the strategy of conventional CA tracker may yield
meaningless negative samples. By contrast, sampled negative patches by our proposed strategy
are more similar with the target. In other words, these context patches will more probably become
background distractors in next frames. Secondly, our method avoids redundancy which led by
sampling patches of top m response value directly on the whole neighboring region of target.
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Next, we learn the correlation filter using the target samples and the negative samples based on
CA [20]. Our goal is to train a filter with a high response on the target patch and closes to zero response
on context patches. The regression function that adds context patches can be written as Equation (6):

min
w
‖ X0w− y ‖2 + λ1‖ w ‖2 + λ2 ∑

i
‖ Xiw ‖2 (6)

where X0 and Xi are the corresponding circulant matrices of target and context patches, respectively.
The parameter λ2 can control context patches to regress to zeros.

We can stack context image patches under the target patch to establish a new data matrix B,
and concatenate y with zeros to construct a new regression function

_
y. The Equation (6) can be

rewritten as below:
‖ Bw− _

y ‖2 + λ1‖ w ‖2 (7)

where B =


X0√
λ2X1
...√

λ2Xk

 and
_
y =


y
0
...
0

.

Because the Equation (7) is convex, it can be minimized by setting the gradient to zero.
The closed-form solution of Equation (7) can be obtained.

w =
(

BTB + λ1I
)−1

BT _
y (8)
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The closed-form solution in the Fourier domain can be calculated by applying Equation (3).

ŵ =
x̂0 � ŷ

x̂∗0 � x̂0 + λ1 + λ2 ∑k
i=1 x̂∗0 � x̂i

(9)

The detection formula is exactly the same as in the standard formulation in Equation (5).

3.3. Structural Correlation Filter

In visual tracking tasks, partial occlusion is one of the major challenges limiting performance
of tracker. The correlation filter based on a single holistic appearance model is sensitive to partial
occlusion, which may reduce the overall performance and even lead to failure in the tracking challenge.
To address this defect, we combine the correlation filters of holistic target and local parts to preserve
the inner spatial structure of the target. We employ effective spatial distributions to divide the target
into two local parts, one for the horizontally and one for the vertically aligned object based on the ratio
of the height and width of the target. The scale and positions of the local parts are strictly confined.
As illustrated in Figure 4.

Appl. Sci. 2019, 9, 1338 8 of 17 

to preserve the inner spatial structure of the target. We employ effective spatial distributions to divide 
the target into two local parts, one for the horizontally and one for the vertically aligned object based 
on the ratio of the height and width of the target. The scale and positions of the local parts are strictly 
confined. As illustrated in Figure 4. 

  
(a) (b) 

Figure 4. Two spatial distributions based on the ratio of the height and width of the target. The red 
rectangle represents holistic part, the green and blue rectangles represent two local parts. (a) 
horizontally aligned object from car4; (b) vertically aligned object from single1. 

In most situations, the relative movement between the holistic target and local parts is limited, 
so we can combine all confidence maps to obtain a robust correlation filter. It is critical to note how 
to combine confidence maps of each part. If we simply sum confidence maps with the same weight, 
the false tracked parts maybe unexpectedly highlighted. Intuitively speaking, the response of reliable 
parts should be given larger weight, while the failure detection part will have less weight. Fortunately, 
the Peak to Sidelobe Ratio (PSR) is a suitable indicator to quantify the reliability of filter. PSR is used 
to measure the sharpness of the correlation peak, the higher PSR score means more confident 
detection. Thence, we adopt PSR to define the weight of every part. 

The PSR is defined as: 𝜌௜ = 𝑚𝑎𝑥(𝒇𝒊(𝒛)) − 𝜇௜𝜎௜  (10) 

where 𝜇௜ and 𝜎௜ are the mean and the standard deviation of i-th confidence map, respectively. 
The final confidence map can be defined as: 

𝒇(𝒛) = ෍ 𝑐௜ ∙ 𝜌௜ ∙ 𝒇𝒊(𝒛)ଷ
௜ୀଵ  (11) 

where 𝑐ଵ = 1 denotes the holistic part, 𝑐ଶ,ଷ = 0.5 denote local parts. 

3.4. Updating Strategy 

During tracking, the appearance of the object will change due to many factors, such as 
deformation and rotation. Furthermore, the target object may be occluded by other objects. A 
conventional CF tracker, such as KCF, used a fixed learning rate to updating the model. If the tracker 
is occluded or drifts, the correlation filter will be contaminated. To tackle this problem, we propose 
an adaptive updating scheme by using a fluctuation parameter. 

In the process of deforming or occluding for the object, we want to gradually reduce the learning 
rate to avoid updating much confusion into model. When the target is restoring, the learning rate 
should gradually increase to adapt the change of model. The deviation of PSR between two 
consecutive frames can describe the degree which appearance changing is alleviating or deteriorating. 
Based on the above motivation, we propose a fluctuation parameter 𝑚, the fluctuation parameter 
can adaptively adjust the updating rate for different frames. Moreover, when PSR score drops to a 
threshold, it is an indication that the object is heavy-occluded or tracking has failed. Therefore, the 
correlation filter shouldn’t be updated when PSR score is less than the threshold. 

Figure 4. Two spatial distributions based on the ratio of the height and width of the target.
The red rectangle represents holistic part, the green and blue rectangles represent two local parts.
(a) horizontally aligned object from car4; (b) vertically aligned object from single1.

In most situations, the relative movement between the holistic target and local parts is limited,
so we can combine all confidence maps to obtain a robust correlation filter. It is critical to note how
to combine confidence maps of each part. If we simply sum confidence maps with the same weight,
the false tracked parts maybe unexpectedly highlighted. Intuitively speaking, the response of reliable
parts should be given larger weight, while the failure detection part will have less weight. Fortunately,
the Peak to Sidelobe Ratio (PSR) is a suitable indicator to quantify the reliability of filter. PSR is used to
measure the sharpness of the correlation peak, the higher PSR score means more confident detection.
Thence, we adopt PSR to define the weight of every part.

The PSR is defined as:

ρi =
max(fi(z))− µi

σi
(10)

where µi and σi are the mean and the standard deviation of i-th confidence map, respectively.
The final confidence map can be defined as:

f(z) =
3

∑
i=1

ci·ρi·fi(z) (11)

where c1 = 1 denotes the holistic part, c2,3 = 0.5 denote local parts.
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3.4. Updating Strategy

During tracking, the appearance of the object will change due to many factors, such as deformation
and rotation. Furthermore, the target object may be occluded by other objects. A conventional CF
tracker, such as KCF, used a fixed learning rate to updating the model. If the tracker is occluded or
drifts, the correlation filter will be contaminated. To tackle this problem, we propose an adaptive
updating scheme by using a fluctuation parameter.

In the process of deforming or occluding for the object, we want to gradually reduce the learning
rate to avoid updating much confusion into model. When the target is restoring, the learning rate
should gradually increase to adapt the change of model. The deviation of PSR between two consecutive
frames can describe the degree which appearance changing is alleviating or deteriorating. Based on
the above motivation, we propose a fluctuation parameter m, the fluctuation parameter can adaptively
adjust the updating rate for different frames. Moreover, when PSR score drops to a threshold, it is
an indication that the object is heavy-occluded or tracking has failed. Therefore, the correlation filter
shouldn’t be updated when PSR score is less than the threshold.

For both holistic and local components, the fluctuation parameter of t-th frame can be computed
as below:

mt
i = exp

(
g
(
ρt

i
)
− g
(

ρt−1
i

))
, t > 1 (12)

g(z) =
1

1 + e−(ρt−THR)
(13)

where the THR denotes the PSR threshold.
Finally, if ρt

i > THR, this component will be updated individually by its own learning rate
γt

i = mt
i β, else its model will be prohibited updating. Where the β is an initial learning rate.

4. Experiments

In this section, we introduce the detail and parameters of implementation, and the experimental
methodology. Moreover, to evaluate the performance of the proposed adaptive context-aware and
structural correlation filter, we implemented our method on the OTB-100 benchmark [8] and VOT2016
with comparisons to several recent state-of-the-art trackers.

4.1. Detail and Parameters

We implement our proposed method on Staple and SAMF trackers, and we name them
Staple_SCA and SAMF_SCA, respectively. Staple_SCA tracker integrates HoG [49] and color histogram,
and the scale scheme is based on DSST like Staple, the more information refer to [18]. Similar
to SAMF tracker [16], SAMF_SCA copes to the scale variation with a scaling pool S, and S =

{0.985, 0.99, 0.995, 1.0, 1.005, 1.01, 1.015}. SAMF_SCA employs HoG and Color-naming [33]
features, using a cell size of 4 × 4 and the number of bin is 9. We also increase the padding
windows from 2.5 times of target object to 3, due to the increased robustness from context patches.
The number of context patches k is set to 4. The regularization factor λ1 is set to e−4. We set the other
regularization factor λ2 to {0.5, 0.4} and the initial learning rate β are {0.015, 0.005} for Staple_SCA and
SAMF_SCA, respectively.

For our proposed method, the PSR score of filter generally ranges between 16 and 34 under normal
tracking conditions. When PSR score drops to around 7, it signifies that the object is heavy-occluded or
tracking has failed. Thus, the threshold THR of PSR is set to 7.

The proposed method is implemented in MATLAB R2014a version. All the experiments are
conducted on an Intel Xeon(R) E3-1226 V3 CPU (3.30 GHz) PC with 32GB RAM. Staple_SCA and
SAMF_SCA trackers run at 24.9 fps and 10.6 fps, which are still within real time range.
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4.2. Experimental Methodology

We select two quantitative evaluation components from the object tracking benchmark [7,8],
including precision and success. Precision estimates the center location error between the bounding
box of the tracked targets and the bounding box of ground truths. In the precision plot, the center
location error in pixel distance varies along the x-axis, and the y-axis represents the percentage of
accurately located bounding window per threshold. The threshold is set at 20 pixels [8] for ranking
trackers. Success is calculated as the intersection-over-union (IOU) of the tracking bounding window
and the labeled ground truths. In the success plot, the IOU overlap rate varies along the x-axis, and the
y-axis represents the percentage of accurately located bounding window per threshold. The final
ranking is determined by the area under the curve (AUC), computed from the mean of the success
rates corresponding to the sampled overlap thresholds from 0 to 1.

4.3. Overall Performances

To indicate the performance improvements of our approach, we compare Staple_SCA
and SAMF_SCA trackers with five recent state-of-art trackers that include STAPLE _CA [20],
SAMF_CA [20], SRDCF [19], DSST [17], KCF [15] on the OTB-100 datasets. Figure 5 shows the
precision and success plots of proposed tracker and other methods.
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Figure 5. Success plots (a) and precision plots (b) of proposed tracker against five state-of-art
trackers [15,17,19,20] on the 100 video sequences in Visual Tracking Benchmark [8].

It is apparent from the success and precision plots of Figure 5 that our proposed trackers have
better comprehensive performance than other state of the art trackers. As shown in Figure 5, the success
rate and precision rate of the Staple_SCA tracker are 61.6% and 83.7% respectively, which demonstrates
the outstanding performance of the proposed method in the visual tracking challenge. Comparing
to KCF tracker [15], the proposed tracker gets a 29.1% and 20.4% improvement for the success rate
and precision rate, respectively. Furthermore, compared with the conventional Context-aware-based
tracker, STAPLE _CA tracker [20], the proposed tracker outperforms it by 3% and 3.3% on success rate
and precision rate, respectively.

For qualitative evaluation, we compared our proposed trackers with five state of the art trackers
in several challenging situations, such as occlusion, background clutters, fast motion, deformation,
motion blur, etc. Figure 6 shows that proposed tracker achieves favorable performance under different
challenging scenarios. Specifically, in Panda sequences (show in Figure 6e), our trackers are the only
two that have completed the tracking task successfully. However, we also observe that our trackers
are unsuccessful in achieving Bird1 sequences, same as other trackers. This failure is caused by the
long-term occlusion, trackers are hard to retrieve long missing target in a limited searching window.
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For attribute-based analysis, we evaluate the overall performance of seven competing trackers
under 11 sub-categories tagged in the OTB-100. Figure 7 shows the precision plots of different
challenging sub-categories on the OTB-100 datasets for seven competing trackers. Impressively,
our proposed Staple_SCA tracker obtains ten the best and one the second places (the first place
in this sub-category is our SAMF_SCA tracker.) in 11 sub-categories tasks. In the background
clutter attribute (Figure 7b), trackers using context-aware framework outperform other trackers.
It demonstrates that incorporating context information into the filter can mitigate the drifting
problem led by background clutter, and our proposed context selection strategy is more effective
than conventional method. Furthermore, the proposed tracker exceeds other trackers obviously in
occlusion task. The result suggests that the proposed structural correlation filter produces the desired
effect in the occlusion challenge.
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Furthermore, in order to compare the effectiveness with the conventional CA method
comprehensively, we apply our method to Staple, SAMF, DCF, and MOSSE trackers like [20]. Figure 8
shows the comparing result. Compared to Staple_CA, SAMF_CA, DCF_CA, and MOSSE_CA,
our method has improved performance by 3%, 4.9%, 3.7%, and 1.6% on the success plots, respectively.
And the precision plots have been improved by 3.3%, 3.5%, 2.7%, and 3.2%, respectively.

Compared to the convention CA method, we divide the target neighborhood evenly into four
blocks, then select the maximum response patch from each block, instead of sampling on fixed locations.
The more representative negative samples enhanced the discrimination of filter. Moreover, the structure
which integrates the holistic and local model, and the updating scheme by using interframe PSR
deviation further improved performance of trackers based on our method.
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4.4. Evaluation on VOT2016

To show the generality of our method, we evaluate the performance of our method on the
VOT2016 [10] datasets. VOT2016 includes 60 challenging video sequences, in which background
clutters are serious and occlusion is common. The trackers comprehensive performance is evaluated by
the expected average overlap (EAO). The EAO combines the raw values of per-frame accuracies and
failures in a principled manner and has a clear practical interpretation. We compare our Staple_SCA
tracker with five baseline trackers (staple, SRDCF, KCF, SAMF, DSST) on VOT2016. Figure 9 shows the
result. Our Staple_SCA tracker with an EAO of 0.298 is superior to other trackersAppl. Sci. 2019, 9, 1338 14 of 17 
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5. Conclusions

This paper presents an adaptive context-aware and structural correlation filter for visual tracking
from the following three perspectives. Firstly, to collect more informative negative samples to enhance
the discrimination of the filter, we proposed a context selecting strategy by selecting the maximum
response value context patch in four neighboring regions around the target. Secondly, we construct a
structural correlation filter that not only divides the target into two local models to overcome partial
occlusion, but also integrates the holistic and local models with adaptive weight to preserve the internal
relationship of the target based on the PSR value, and produces the desired effect in the occlusion
challenge. Finally, we focus on the degree to which appearance changing is alleviating or deteriorating
and exploit the interframe deviation of PSR to update the model, which makes our trackers more
robust. Our proposed trackers Staple_SCA and SAMF_SCA run at 24.9 fps and 10.6 fps, which are still
within real time range. Extensive experiments have been implemented to demonstrate the validity of
our proposed tracker.
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