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Abstract: Tensor Robust Principal Component Analysis (TRPCA) plays a critical role in handling high
multi-dimensional data sets, aiming to recover the low-rank and sparse components both accurately
and efficiently. In this paper, different from current approach, we developed a new t-Gamma tensor
quasi-norm as a non-convex regularization to approximate the low-rank component. Compared to
various convex regularization, this new configuration not only can better capture the tensor rank but also
provides a simplified approach. An optimization process is conducted via tensor singular decomposition
and an efficient augmented Lagrange multiplier algorithm is established. Extensive experimental results
demonstrate that our new approach outperforms current state-of-the-art algorithms in terms of accuracy
and efficiency.
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1. Introduction

An array of numbers arranged on a regular grid with a variable number of axes is described
as a tensor. As the dimensionality reaches beyond 3D, conventional data representations such as
vector-based and matrix-based become insufficient, and highly dimensional data sets are usually
formulated as tensors [1–3].

Robust Principal Component Analysis (RPCA) [4–8], aiming to recover the low-rank and sparse
matrices both accurately and efficiently, has been widely studied in data compressed sensing and
computer vision. It is of great use when we try to solve the problem of subspace learning or
Principal Component Analysis (PCA) in the presence of outliers [9]. Especially RPCA is a very
useful tool in foreground detection, which is the first step in video surveillance system to detect
moving objects [10,11]. Tensor Robust Principal Component Analysis (TRPCA) extends the RPCA
from matrix to the tensor case, that is, to recover a low-rank tensor and a sparse (noise entries) tensor.

Tensor rank [12] essentially characterizes the intrinsic "dimension” or “degree of freedom” for
highly dimensional data sets. In order to make the rank characteristic be more transparent, one
can make use of tensor Singular Value Decomposition (t-SVD) developed recently by Kilmer and
Martin [13], rendering the tensor rank approximation approachable. The key for their framework is
the well-defined t-product that leads to the 3rd-order tensor space to be an inner product space so that
approximation becomes more effective such as in image processing [14,15]. t-SVD allows to define
tensor tubal-rank, which appears to be much more approachable such as in the study of image analysis
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than previous rank definitions [16–18]. The characteristic of a low tensor tubal-rank implies that a
3rd-order tensor can be significantly compressed (Theorem 4.3 of [13]), which is particularly important
in applications.

Mathematically, TRPCA based on t-SVD [19,20] aims to recover the low tubal rank component
L0 and sparse component E0 from noisy observations X = L0 + E0 of size N1 × N2 × N3 by
convex optimization

min
L,E

‖L‖TNN + λ‖E‖`1 (1)

s.t. X = L+ E . (2)

λ is a Lagrange multiplier, E is sparse if the tensor `1 norm ‖E‖`1 is small. It is well-known
that the t-SVD-based tensor nuclear norm (TNN, III.B of [21]) has been proven to be the tightest
convex relaxation to `1-norm of the tensor multi-rank (Theorem 2.4.1 in [15] or Theorem 3.1 in [19]).
However, TNN treats the singular values in t-SVD equally to pursue the convexity of the objective
function, while the singular values associated with a practical image may emphasize its different
properties and should be handled differently, in particular, when some singular values are very large.
Due to the gap between the tensor rank function and its lower convex envelop, the adoption of tensor
nuclear norm may lead to the approximation of the corresponding tensor tubal-rank being inaccurate.
Therefore, a new development of tensor tubal-rank approximation becomes necessary to reflect these
fundamental characteristics.

To make the the necessity of a new tensor tubal-rank approximation instead of TNN more
transparent, we consider the the matrix RPCA [4] first. Now the goal becomes to recover a low-rank
matrix L from highly corrupted observations X = L + S, by minimizing ‖L‖∗ + λ‖S‖`1 . Here ‖L‖∗ is
the summation of the singular values of L. It is easy to see that

1 +
σ2

σ1
+ · · ·+ σN

σ1
=

1
σ1
‖L‖∗ ≤ rank(L).

Hence, when σ1 is very large, for example, and the rest are relatively small, we may have
1
σ1
‖L‖∗ << rank(L). Then the minimization of ‖L‖∗ will attempt to minimize σ1 that leads to

over-penalizes σ1, and consequently it generates undesirable solution L with small σ1. Recall that our
goal is to find a low-rank L, whose largest singular value is not necessarily to be small. In addition, it
is worth mentioning that in practice the matrix RPCA problem is very sensitive to small perturbations
and this problem can be addressed by relaxing the equality constraints. The authors in [22,23] propose
an alternative optimization approach that appears to be suitable to deal with robustness issues in the
“Sparse Plus Low-rank” decomposition problem. It has long been noticed that the nuclear norm is
not always satisfactory [24], since it over-penalizes large singular values, and consequently may only
find a much biased solution. Since the the nuclear norm is the tightest convex relaxation of the rank
function [25], a further improvement under the convex setting in general is limited, if it is still possible,
in particular when their gap is not very small. In order to alleviate the above problem, the Gamma
quasi-norm for matrices is introduced in [26] in RPCA, which results in a tighter approximation of
the rank function. For L ∈ Rm×n and the singular values of L, denoted by σ1(L), . . . , σmin{m,n}(L),
the Gamma quasi-norm of L is defined as

||L||γ =
min{m,n}

∑
i=1

(1 + γ)σi(L)
γ + σi(L)

, γ > 0.

It is not difficult to see
(1 + γ)σi(L)

γ + σi(L)
<

1 + γ

γ + M
σi(L),
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when σi(L) > M > 0 and ||L||γ ≤ (1 + γ) rank(L). So it overcomes the imbalanced penalization
by different singular values in convex nuclear norm. In addition, when γ goes to 0, the limit of the
Gamma quasi-norm is exactly the matrix rank. The Gamma quasi-norm has nice algebraic properties,
i.e., unitarily invariant and positive definiteness. Thanks to the unitarily invariance [27], the Gamma
quasi-norm minimization problem for A ∈ Rm×n:

min
Z∈Rm×n

||Z||γ +
µ

2
‖Z− A‖2

F

can be solved very effectively (Theorem 1 of [26]). Moreover, experimental results in [26] show that
Gamma quasi-norma-based RPCA outperforms several other convex/non-convex norma-based RPCA
in both accuracy and efficiency.

In this paper, inspired by the success of the non-convex rank approximation [26], we proposed tensor
Gamma quasi-norm via t-SVD to seek a closer approximation and to alleviate the above-mentioned
limitations resulted from the tensor nuclear norm, which has not been used for TRPCA yet in literature.

The main contributions of this paper are illustrated as follows:

1. We develop new non-convex tensor rank approximation functions that can be used as desirable
regularization for the optimization process, which appears to be more effective than current
existing approaches in literature.

2. An efficient algorithm based on the alternating direction method of multipliers (ADMM) is
developed to solve the equivalent optimization problem in the Fourier domain, which is also
suitable for general TRPCA problem. In addition, we provided the convergent analysis of the
augmented Lagrange multiplier based optimization algorithm.

3. Extensive evaluation of the proposed approach on several benchmark data sets has been
conducted, and detailed comparison with most recent approaches are provided. Experimental
results demonstrate that our proposed approach yields superior performance for image recovery
and video background modeling.

The rest of the paper is organized as follows. In Section 2, we roughly describe some related
works. Then Section 3 provides factorization strategies for 3rd-order tensors and its relationship
to the corresponding tensor approximation problem. And then we present the main results on
t-Gamma quasi-norm of 3rd-order tensors. Section 4 introduces our non-convex TRPCA framework
and the convergent analysis of the augmented Lagrange multiplier based optimization algorithm.
Experimental analysis and results are shown in Section 5 to verify the proposed algorithm. Finally, the
paper ends with concluding remarks in Section 6.

2. Related Works

Recently, many authors observed the limitations of t-SVD-based TRPCA [15,19]. It was pointed
out in [28] that the classical TRPCA methods based on t-SVD fails to utilize the low rank structure
in the third mode. To further exploit the low-rank structures in multiway data, they defined a new
TNN that extends TNN with core matrix and proposed a creative algorithm to deal with TRPCA
problems. In addition, the authors of [29] presented that there are some weak points in the existing
low-rank approximation approaches, for example, people need to predefine the rank values or fail
to consider local information of data (e.g., spatial or spectral smooth structure). So they proposed a
novel TNN-based low-rank approximation with total variation regularization, which uses the TNN to
encode the global low-rank prior of tensor data and the total variation regularization to preserve the
spatial-spectral continuity in a unified framework.

It has been noticed by others that TNN is not always satisfactory. For instance, to seek a closer
approximation of tensor rank, Kong et al. in [30] introduced t-Schatten-p tensor quasi-norm to
replace the TNN. The t-Schatten-p norm is convex when p ≥ 1, but non-convex when 0 < p < 1.
In addition, they proved multi-Schatten-p norm surrogate theorem to convert the non-convex
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t-Schatten-p tensor quasi-norm for 0 < p < 1 into a weighted sum of convex functions. Then based on
the multi-Schatten-p norm surrogate, they proposed a novel convex tensor RPCA model.

Besides above, a recent paper [31] developed randomized algorithms for tensor low-rank
approximation and decomposition, together with tensor multiplication. Their proposed tubal focused
algorithms employ a small number of lateral and/or horizontal slices of the underlying 3rd order
tensor, that come with relative error guarantees for the quality of the obtained solutions.

Besides the above-mentioned methods based on t-SVD, there are many other TRPCA methods
mainly applied CP (CANDECOMP/PARAFAC) or Tucker decompositions methods in their
optimization models. We need to mention that recently Driggs et al. [32] studied TRPCA using
a non-convex formulation of the CP based tensor atomic-norm and identified a class of local minima
of this non-convex program that are globally optimal.

Presently, background subtraction become more and more important for visual surveillance
systems and several subspace learning algorithms based on matrix and tensor tools have been used to
perform the background modeling of the scenes. Recently, Sobral et al. [33] developed an incremental
tensor subspace learning that uses only a small part of the entire data and updates the low-rank model
incrementally when new data arrives and in [34] the authors proposed an online stochastic framework
for tensor decomposition of multispectral video sequences. In particular, it is worth mentioning that
Bouwmans et al. [35] gave a systematic and complete review of the "low-rank plus sparse matrix
decomposition" framework of separating moving objects from the background.

However, all those above mentioned t-SVD-based TRPCA algorithms solve the TRPCA
optimization problem under convex regularization. In addition, most analyses of ADMM algorithms
are in the convex setting [36]. In our work, we explore the TRPCA method based on the non-convex
t-Gamma quasi-norm of 3rd-order tensors. Due to the non-convex nature of our TRPCA model,
the convergent analysis of algorithm is difficult to justify. In addition, the analysis of non-convex
augmented Lagrangians is not easy, but this compels us to make efforts of clarity and pedagogy. Also
it should be noted that there are few works on t-SVD-based TRPCA achieve background modeling.
Thus experiments are provided in our paper on two computer vision applications, which are image
recovery and video background modeling.

3. Notations and Definitions

Throughout this paper, all boldface Euler script letters (X ) denote tensors, uppercase characters
(X) denote matrices, and lowercase letters (a) denote scalars. The field of real numbers is denoted
as R. We denote Ni, i = 1, 2, 3 as the index set associated with a given tensor. For 3rd-order
tensors X = [aijk] ∈ RN1×N2×N3 , we use X (i, :, :), X (:, i, :), X (:, :, i) to denote the i-th horizontal,
lateral, and frontal slice, respectively. For simplicity, we denote the frontal slice X (:, :, i) as Xi.
The inner product between X and Y of size N1 × N2 × N3 is defined as 〈X ,Y〉 = ∑N3

i=1 tr(XT
i Yi).

The Frobenius norm of a tensor is defined as ‖X ‖F =

√
∑i,j,k

∣∣∣aijk

∣∣∣2. The `1 norm of a tensor is

defined as ‖X ‖`1
= ∑i,j,k

∣∣∣aijk

∣∣∣. In this paper, the adopted basic definitions and notations follow the
references [13,21,37] for the purpose of an easier comparison.

Definition 1 (Transpose p. 10 of [13]). For X ∈ RN1×N2×N3 , the transpose tensor X T is an N2 × N1 × N3

tensor obtained by transposing each frontal slice of X and then reversing the order of the transposed frontal
slices 2 through N3.

Similar to matrices whose elements can be grouped by rows or by columns, higher dimensional
tensors can be viewed forming by slices along the third mode. For X = [X1| · · · |XN3 ] ∈ RN1×N2×N3

with N1 × N2 frontal slices X1, . . . , XN3 . Then the block circulant is created from the frontal slices in a
form of
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bcirc(X ) =


X1 XN3 XN3−1 · · · X2

X2 X1 XN3 · · · X3
...

...
...

...
...

XN3 XN3−1 · · · X2 X1

 ,

where Xi = X (:, :, i) for i = 1, . . . , N3. It is important to notice that the block circulant matrix bcirc(X )

keeps the order of frontal slices of X in an appropriate way, and thus it better maintains X ’s structure
in terms of the frontal direction, compared with the direct tensor unfolding along the third mode.

Definition 2 (t-product p. 11 of [13]). Let X ∈ RN1×N2×N3 , we define the matvec and fold operators as
matvec(X ) =

[
X1; X2; · · · ; XN3

]
is an N1N3 × N2 matrix and fold(matvec(X )) = X .

Let A ∈ RN1×N4×N3 , and B ∈ RN4×N2×N3 . Then the t-product of 3rd-order tensors is defined as

A ∗ B = fold(bcirc(A)matvec(B))

which is a tensor of size N1 × N2 × N3.

Definition 3 (Identity, orthogonal and diagonal tensor p.10 of [13]). The identity tensor I ∈ RN1×N1×N3

is a tensor whose first frontal slice is the N1 × N1 identity matrix and all other frontal slices are zero. A tensor
Q ∈ RN1×N1×N3 is orthogonal ifQT ∗Q = Q∗QT = I , where ∗ is the t-product. A tensor is called f-diagonal
if each of its frontal slices is diagonal matrix.

It is well known that circulant matrices can be diagonalized by the FFT (21.11 of [38]), similarly,
block-circulant matrices can also block-diagonalized as(

F̃N3 ⊗ IN1

)
· bcirc(X ) ·

(
F̃∗N3
⊗ IN2

)

=bdiag(X̂ ) =

X̂1
. . .

X̂N3

 ,

where F̃N3 = 1√
N3

FN3 , FN3 denotes the N3×N3 fast Fourier transform matrix, F∗N3
denotes its conjugate,

and the notation ⊗ denotes the standard Kronecker product. In addition, X = A ∗ B if and only if
X̂n3 = Ân3 B̂n3 for 1 ≤ n3 ≤ N3 (p.4 of [19]).

Since F̃N3 ⊗ IN1 , F̃N3 ⊗ IN2 are unitary matrices, we have

‖ bdiag(X̂ ) ‖2
F= tr bcirc(X )Tbcirc(X ) = N3||X ||2F.

Then we have ‖ X ‖F=
1√
N3
‖ bdiag(X̂ ) ‖F.

Definition 4 (Tensor multi-rank p. 10 of [37]). For tensor X ∈ RN1×N2×N3 with N1 × N2 frontal slices
X1, . . . , XN3 , the multi-rank of X is a N3-vector [rank(X̂1), . . . , rank(X̂N3)], consisting of the ranks of all the
X̂1, . . . , X̂N3 .

Please note that the matrix SVD [39] can be performed on each frontal slice of X̂ , The matrix X̂n3

has the following Singular Value Decomposition (SVD) X̂n3 = Ûn3 Σ̂n3 V̂T
n3

, Ûn3 ∈ O(N1), V̂n3 ∈ O(N2)

(here O(Ni) stands for the set of orthogonal Ni-by-Ni matrices) and Σ̂n3 is an N1 × N2 diagonal matrix
with diagonal entries σ1(X̂n3), . . . , σmin{N1,N2}(X̂n3) in descending order.
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Definition 5 (t-SVD, Theorem 4.1 in [13]). The tensor Singular Value Decomposition (t-SVD) of X is
given by X = U ∗ Σ ∗ VT, where U and V are orthogonal tensors of size N1 × N1 × N3 and N2 × N2 × N3

respectively. Σ is an f-diagonal tensor of size N1 × N2 × N3, and ∗ denotes the t-product.

Definition 6 (Tensor tubal rank III.B of [21]). The tensor tubal rank is defined as the number of nonzero
singular tubes of f-diagonal tensor Σ, which is the maximum of the number of nonzero {Σ̂n,n,n3 , 1 ≤ n ≤
min(N1, N2)} for 1 ≤ n3 ≤ N3.

Definition 7 (Tensor nuclear norm III.B of [21]). The nuclear norm for a given 3rd-order tensor X ∈
RN1×N2×N3 is defined to be

‖ X ‖TNN=
1

N3

N3

∑
n3=1
||X̂n3 ||∗,

which is equal to
min(N1,N2)

∑
n=1

N3

∑
n3=1

1
N3

Σ̂n,n,n3 .

Here X̂n3 is the n3-th frontal slice of X̂ = fft(X , [ ], 3) = [X̂1| · · · |X̂N3 ] ∈ RN1×N2×N3 obtained by
applying FFT on X̂ along the third mode.

In this paper, to overcome the disadvantages of the tensor nuclear norm, we propose smooth
but more effective, though being non-convex, t-SVD-based non-convex rank approximation to the
data sets represented by 3rd-order tensor. This will make the larger singular values be shrunk less
in order to preserve their characteristics. Moreover, under our framework, we establish explicit
solutions to the corresponding non-convex tensor norm minimization problems that is not available in
current literature.

Definition 8 (Gamma quasi-norm for matrix [26]). Let X ∈ Rm×n and the singular values of X, denoted
by σ1(X), . . . , σmin{m,n}(X). We could introduce the Gamma norm of X, which is defined as ||X||γ =

∑min m,n
i=1

(1+γ)σi(X)
γ+σi(X)

, γ > 0.

Definition 9 (t-Gamma tensor quasi-norm). The Gamma tensor quasi-norm for a given 3rd-order tensor
X ∈ RN1×N2×N3 is defined to be

||X ||t-γ =
1

N3

N3

∑
n3=1
||X̂n3 ||γ,

which is equal to

1
N3

N3

∑
n3=1

(
min{N1,N2}

∑
n=1

(1 + γ)Σ̂n,n,n3

γ + Σ̂n,n,n3

)
.

Here X̂n3 is the n3-th frontal slice of X̂ = fft(X , [ ], 3) = [X̂1| · · · |X̂N3 ] ∈ RN1×N2×N3 obtained by
applying FFT on X̂ along the third mode.

Remark 1. It is not hard to see the t-Gamma tensor quasi-norm is unitarily invariant, that is ||X ||t-γ =

||U ∗ X ∗ VT ||t-γ, where U and V are orthogonal tensors of size N1× N1× N3 and N2× N2× N3 respectively.
In addition,

lim
γ→0
||X ||t-γ = tubal rank of X ; lim

γ→∞
||X ||t-γ = ||X ||TNN .
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Lemma 1 (Theorem 1 of [26]). Let A = UΣAVT be the SVD of A ∈ Rm×n and ΣA = diag(σA) are singular
values of A. Let F(Z) = f ◦ σ(Z) be a unitary invariant function and µ > 0. Then an optimal solution to the
following problem

min
Z

F(Z) +
µ

2
‖Z− A‖2

F , (3)

is Z∗ = UΣ∗ZVT, where Σ∗Z = diag(σ∗) and σ∗ = prox f ,µ(σA). Here prox f ,µ(σA) is the Moreau-Yosida
operator [40], defined as

prox f ,µ(σA) := argmin
σ≥0

f (σ) +
µ

2
‖σ− σA‖2

2. (4)

Now let us consider the tensor t-Gamma quasi-norm minimization problem:

Theorem 1 (t-Gamma tensor rank minimization). Let us consider a 3rd-order tensor X ∈ RN1×N2×N3 ,
which has t-SVD X = U ∗ Σ ∗ VT as in Definition 5. If Z∗ minimizes

1
2
‖X −Z‖2

F + τ ‖ Z ‖t-γ,

then
Z∗ = U ∗ΩZ ∗ VT,

where ΩZ ∈ RN1×N2×N3 is a f-diagonal tensor. For 1 ≤ n ≤ min(N1, N2), 1 ≤ n3 ≤ N3, let Σ̂ = [Σ̂n,n,n3 ] =

fft(Σ, [ ], 3), Ω̂Z = [Ω̂n,n,n3 ] = fft(Ω, [ ], 3), then Ω̂n,n,n3 is the limit point of Fixed Point Iteration

Ω̂(k+1)
n,n,n3 = (Σ̂n,n,n3 − τ

γ(1 + γ)

(γ + Ω̂(k)
n,n,n3)

2
)+.

Remark 2. Theorem 1 provides the connection of the optimal solution between the original domain and the
Fourier domain. More importantly, it shows that the minimization problem under our framework is tractable.
After the original tensor X is transformed to X̂ in the Fourier domain, an equivalent minimization problem
could be solved by using Lemma 1 for each slice X̂n3 , 1 ≤ n3 ≤ N3 in the Fourier domain. Then the optimal
solution Z∗ in the original domain can be obtained by the inverse Fourier transform Ẑ∗ → Z∗, whose detailed
approach can be found from the proof in Theorem 1.

Proof of Theorem 1. Let f (Z) = 1
2‖X − Z‖2

F + τ||Z||t-γ, then it can be reformulated as matrix
objective function in Fourier domain:

f̂ (Ẑ) = 1
2
‖bdiag(X̂ − Ẑ)‖2

F + τ ‖ bdiag(Ẑ) ‖γ=
N3

∑
n3=1

1
2
‖X̂n3 − Ẑn3‖2

F + τ ‖ Ẑn3 ‖γ .

Without loss of generality, for each diagonal block Ẑn3 of Ẑ , 1 ≤ n3 ≤ N3, let us consider

Ẑ∗n3
= arg min

Ẑn3

1
2
‖X̂n3 − Ẑn3‖2

F + τ ‖ Ẑn3 ‖γ .

From Lemma 1, Ẑ∗n3
= ÛX ,n3 Ω̂Z ,n3 V̂T

X ,n3
, and

Ω̂n,n,n3 = arg min
ω>0

1
2
(ω− Σ̂n,n,n3)

2 + τ
(1 + γ)ω

γ + ω
.

Following the DC programming algorithm used in Theorem 1 of [26] (similar method has been
used in Section III of [41]), we can solve it efficiently using a local minimization method.
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Let f (ω) = (1+γ)ω
γ+ω , it can be approximated using first order Taylor expansion (with Big “O”

truncation error) as

f (ω) = f (Ω̂(k)
n,n,n3) +

γ(1 + γ)

(γ + Ω̂(k)
n,n,n3)

2
(ω− Ω̂(k)

n,n,n3) + O((ω− Ω̂(k)
n,n,n3)

2).

Now we consider

Ω̂(k+1)
n,n,n3 = arg min

ω>0

1
2
(ω− Σ̂n,n,n3)

2 + τ
γ(1 + γ)

(γ + Ω̂(k)
n,n,n3)

2
|ω|,

and it admits a closed-form solution

Ω̂(k+1)
n,n,n3 = (Σ̂n,n,n3 − τ

γ(1 + γ)

(γ + Ω̂(k)
n,n,n3)

2
)+,

where (x)+ = max{x, 0}. Here Ω̂(k+1)
n,n,n3 is the solution obtained in the (k + 1)-th iteration. Let

g(Ω̂n,n,n3) = (Σ̂n,n,n3 − τ
γ(1 + γ)

(γ + Ω̂n,n,n3)
2
)+, 0 ≤ Ω̂n,n,n3 < Σ̂n,n,n3 ,

it can be easily seen that |g′(Ω̂n,n,n3)| < 1, when 2τ(1 + γ) < γ2. The Fixed Point Iteration Ω̂(k+1)
n,n,n3 =

g(Ω̂(k)
n,n,n3) converge to the local minimum Ω̂n,n,n3 after several iterations (Chapter 1 of [42]), and the

proof is thus completed.

4. Tensor Robust Principal Component Analysis with Non-Convex Regularization

A TRPCA model using non-convex regularization can be formulated as

min
L,E

‖L‖t-γ + λ‖E‖`1

s.t. X = L+ E .
(5)

Its augmented Lagrangian function is Lβ(L, E ,M) = ‖L‖t-γ + λ‖E‖`1 +
β
2 ‖X − L− E −

M
β ‖

2
F +

C, whereM is the Lagrangian multiplier, β is the penalty parameter for the violation of the linear
constraints, and C is a constant.

Then, the problem arg minL,E ,MLβ(L, E ,M) can be updated as:



Lk+1 = arg min
L
‖X − Ek −

Mk
β
−L‖2

F +
2
β
‖L‖t-γ,

Ek+1 = S λ
β

(
X −Lk+1 +

Mk

β

)
,

Mk+1 =Mk + β(X −Lk+1 − Ek+1),

(6)

where the tensor non-negative soft-thresholding operator Ev(·) [43] is defined as

Sv(B) = B̄

with

b̄n1n2n3 =

{
sgn(bn1n2n3)(|bn1n2n3 | − v), |bn1n2n3 | > v,

0, |bn1n2n3 | ≤ v.
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Algorithm 1 shows the pseudocode for the proposed non-convex tensor robust component
analysis method.

Algorithm 1 Solve the non-convex TRPCA model (5) by ADMM.

Input: The observed tensor X ∈ RN1×N2×N3 , the set of index of observed entries Ω, parameter λ,
stopping criterion ε.

Initialize: L0
ω>0 = Xω>0, L0

ΩC = rand(N1×N2×N3)ΩC , E0 =M0 = zeros(N1×N2×N3), β = 10−4,
βmax = 1010, η = 1.2.

1: while not converged do
2: Lk+1 ← UX−Ek−

Mk
βk

∗ΩL ∗ VT
X−Ek−

Mk
βk

using the local minimum in Theorem 1 with τ = 1
βk

3: Ek+1 ← S λ
βk

(
X −Lk+1 +

Mk
βk

)
4: Mk+1 ←Mk + βk(X −Lk+1 − Ek+1)

5: βk+1 ← min{βkη, βmax}
6: Check the convergence conditions ‖Lk+1 − Lk‖∞ ≤ ε, ‖Ek+1 − Ek‖∞ ≤ ε, ‖Lk+1 + Ek+1 −

X‖∞ ≤ ε

7: end while
Output: The low rank tensor L and the sparse tensor E

Theorem 2 (Convergent Analysis). Suppose that Pk = {Lk, Ek,Mk} is generated from the proposed
Algorithm 1, then {Pk} is bounded. In addition, the accumulation point {L∗, E∗,M∗} of {Pk}+∞

k=1 is a KKT
stationary point, which satisfy the KKT conditionsM∗ ∈ ∂||L||t-γ, L∗ + E∗ = X , M∗ ∈ ∂||E ||`1 .

Proof of Theorem 2. Ek+1 satisfies the first-order necessary local optimality condition,

0 ∈ ∂E Lβk (Lk+1, E ,Mk) |Ek+1

=∂
(
λ‖E‖`1

)
|Ek+1

+Mk + βk (Lk+1 −X + Ek+1)

=∂
(
λ‖E‖`1

)
|Ek+1

+Mk+1.

(7)

For ‖E‖`1 case, since ||E ||`1 is nonsmooth at Eijk = 0, we redefine subgradient
[
∂‖E‖`1

]
ijk = 0 if

Eijk = 0. Then 0 ≤ ‖∂‖E‖`1‖
2
F ≤ N1N2N3, hence ∂(λ‖E‖`1)|Ek+1

is bounded. Thus {Mk} is bounded.
With some algebra, we have the following equality

Lβk (Lk, Ek,Mk)

= Lβk−1 (Lk, Ek,Mk−1) +
βk − βk−1

2
‖Lk −X + Ek‖2

F + tr[(Mk −Mk−1)(Lk −X + Ek)]

= Lβk−1 (Lk, Ek,Mk−1) +
βk + βk−1

2(βk−1)2 ‖Mk −Mk−1‖2
F.

Then, Lβk (Lk+1, Ek+1,Mk) ≤ Lβk (Lk+1, Ek,Mk) ≤ Lβk (Lk, Ek,Mk) ≤ Lβk−1 (Lk, Ek,Mk−1) +
βk+βk−1
2(βk−1)2 ‖Mk −Mk−1‖2

F.
By induction, we could obtain

Lβk (Lk+1, Ek+1,Mk) ≤ Lβ0

(
L1, E1,M0

)
+

k

∑
i=1

βi + βi−1

2(βi−1)2 ‖Mi −Mi−1‖2
F.
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Since βi+βi−1
2(βi−1)2 ‖Mi −Mi−1‖2

F is bounded, it is not hard to see Lβk (Lk+1, Ek+1,Mk) is upper
bounded. Meanwhile,

Lβk (Lk+1, Ek+1,Mk) +
1

2βk
‖Mk‖2

F

= ||Lk+1||t-γ +λ‖Ek+1‖`1 +
βk
2
‖Lk+1 −X +Ek+1 +

Mk
βk
‖2

F.

Since each term on the right-hand side is bounded, Ek+1 is bounded. By the last term on the
right-hand, Lk+1 is bounded. Therefore, {Lk} and {Ek} are both bounded.

From Bolzano-Weierstrass theorem [39], there must be at least one accumulation point of the
sequence {Pk}+∞

k=1. We denote one of the points P∗ = {L∗, E∗,M∗}. Without loss of generality,
we assume {Pk}+∞

k=1 converge to P∗.
Since

(Mk+1 −Mk)/βk = Lk+1 + Ek+1 −X ,

we have
lim
k→∞

(Lk+1 + Ek+1 −X ) = lim
k→∞

(Mk+1 −Mk)/βk = 0.

Then L∗ + E∗ = X is obtained.
Since Lk+1 is optimally obtained by minimizing Lβk (L, Ek,Mk) according to its definition,

we have
0 ∈ ∂‖L‖t-γ|Lk+1

+Mk + βk (Lk+1 + Ek −X ) .

From Theorem 3 of [26], we know

∇L̂n3
||L̂n3 ||γ = ÛL,n3 Diag(

γ(1 + γ)

(γ + Ω̂n,n,n3)
2
)V̂T
L,n3

and γ(1+γ)

(γ+Ω̂n,n,n3 )
2 ≤

1+γ
γ =⇒∇ ˆLn3

||L̂n3 ||γ is bounded.

Therefore,

∂‖L‖t-γ

∂L̂
= [

∂||L̂1||γ
∂L̂1

| · · · |
∂||L̂N3 ||γ

∂L̂N3

]

is bounded.
From the fact that L̂ is equivalent to Tucker product (for its definition see Chapter 3 of [44])

L̂ = L×3 F̃N3

(see the proof of Proposition 3 of [30] and Remark 2.3. of [45]) and using the chain rule [39], we can
deduce that

∇L‖L‖t-γ =
∂‖L‖t-γ

∂L̂
×3 F̃∗N3

is bounded.
In addition, it is not hard to see

0 ∈ ∂‖L‖t-γ|Lk+1
+Mk+1 − βk (Ek+1 − Ek)

Please note that βk < βmax = 1010 in Algorithm 1, then k → ∞, βk (Ek+1 − Ek) → 0 =⇒ −M∗ ∈
∂‖L∗‖t-γ.

Similarly, since Ek+1 is the minimum of the subproblem Lβk (Lk, E ,Mk), we have

0 ∈ ∂||E ||`1 |Ek+1
+Mk + βk (Lk + Ek+1 −X ) .
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Thus Mk+1 → M∗ ∈ ∂||E∗||`1 . Therefore (L∗, E∗,M∗) satisfies the the Karush-Kuhn-Tuker
(KKT) conditions of the Lagrange function Lβ(L, E ,M) (Chapter 9 of [46]). We thus complete
the proof.

5. Experiments

In this section, we conduct several applications to demonstrate the performance of our algorithm.
All experiments are implemented in Matlab 2017b on Ubuntu 16.04 LTS with 12 cores, 2.40 GHz CPU
and 64 GB RAM.

5.1. Image Recovery

In this part, we focus on noisy color image recovery. A color image with size N1 × N2 and
3 channel, i.e., red, green and blue, can be regarded as a third order tensor X N1×N2×N3 and each frontal
slice of X is the corresponding channel of the color image. Please note that each channel of the color
image is usually not a low rank matrix, but it is observed that the top singular values dominate the
main information [19,47]. Thus we can reconstruct the noisy image in low rank structure.

We perform the experiments on Berkeley Segmentation Dataset [48], which contains 200 color
image for training. For each image, we randomly set 10% of pixels to the random values in [0, 255],
that is, we corrupt the image on 3 channels simultaneously which is more challenging than make
corruptions on only one channel. We compare our t-Gamma algorithms with RPCA [4], Gamma [26],
SNN [49] and TRPCA [20], in which RPCA minimizes a weighted combination of the nuclear norm and
of the l1 norm in matrix form, Gamma replaces the nuclear norm by matrix Gamma quasi-norm, SNN
uses the sum of the nuclear norm for all mode-i matricization of the given tensor, and TRPCA extends
the RPCA from the matrix to tensor case. For RPCA and Gamma, we conduct the algorithms on each
channel, i.e., regarding each channel of the image as a matrix, and then combine the channel recovery
result into a color image. The parameter λ in RPCA and Gamma is set to λ = 1√

max{N1,N2}
as suggested

in [4]. However, when the parameter γ in Gamma is set to 0.01 as stated in [26], it cannot perform well.
We empirically set the γ =

√
min{N1, N2} in Gamma and t-Gamma. For SNN, we set λ = [15, 15, 1.5]

as suggested in [20]. The parameters λ in TRPCA and t-Gamma is set to λ = 1√
max{N1,N2}N3

. By using

the Peak Signal to Noise Ratio (PSNR) to evaluate the recovery results and PSNR is defined as

PSNR = 10 log10

(
‖M‖2

∞
1

N1 N2 N3
‖X̂ −M‖2

F

)
.

In Figure 1, we give the comparison of PSNR value on 200 images and each subfigure contains
50 results. The sample recovery performance are shown in Figure 2. From Figure 1, we can observe that
the proposed t-Gamma algorithm perform better on almost every image and can achieve around 2 dB
improvement in many cases. Table 1 shows the average recovery performance obtained by these five
algorithms on Berkeley Segmentation Dataset. In Figure 2 we can visually conclude that our algorithm
yields a better result than the compare algorithms which can illustrate the merit of the our approach.

Table 1. Average PSNR obtained by five Algorithms on 200 images.

Algorithm RPCA Gamma SNN TRPCA t-Gamma

Average PSNR 25.5843 27.0762 27.6329 29.1157 30.7896
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Figure 1. Comparison of the PSNR values with RPCA [4], Gamma [26], SNN [49], TRPCA [20] and
t-Gamma.

(a) (b) (c) (d) (e) (f) (g)

Figure 2. Recovery results on 5 sample images. The first two columns are original and corrupted
images reps. The third to seventh columns are recovery images obtained by RPCA, Gamma, SNN,
TRPCA and t-Gamma resp. (a) Original; (b) Corrupted; (c) RPCA [4]; (d) Gamma [26]; (e) SNN [49];
(f) TRPCA [20]; (g) t-Gamma.
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5.2. Video Background Modeling

5.2.1. Qualitative Experiments

In this part, we consider the background modeling problem, an essential task in video surveillance,
which aims to separate the foreground objects from the background. The frames of background in
video surveillance are highly correlated and thus it is reasonable to consider it as a low rank tensor.
While the objects in the foreground usually only occupy a small part of the image in some frames and
hence can regard it as the sparse part.

To solve this problem, we test our algorithm on four example color videos, Hall, MovedObject,
Escalator and Lobby http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html, and compare it with
RPCA [4], Gamma [26], SNN [49] and TRPCA [20]. We extract N2 = 200 frames from these four videos.
Suppose the size of frames in the given video is h× w, we stack each frame in each color channel as
a column vector of size N1 × 1, where N1 = h× w, and then all column vectors into a matrix of size
3N1 × N2 for RPCA and Gamma, and into a tensor of size N1 × N2 × 3 for SNN, TRPCA and t-Gamma.
The parameter lambda is set to λ = 1

max{3N1,N2}
for RPCA and Gamma, and λ = 1

max{N1,N2}3
for SNN,

TRPCA and t-Gamma. The parameter γ in Gamma and t-Gamma is set to γ = 1√
min{3N1,N2}

and

γ = 3√
min{N1,N2}

respectively. As suggested in [20], λ in SNN is set to [200, 2, 20].

The background separated results are depicted in Figures 3–6. In Figures 3 and 4, we can see
that our method could reconstruct the background with fewer ghosting effects and more completely.
From Figures 5 and 6, it could be observed that though all the method separate the background from
the foreground effectively, the proposed algorithm are more robust to the dynamic foreground and
illumination variation, e.g., only Gamma and t-Gamma can remove the steps of moving escalator in
Figure 5, while the method Gamma cannot adapt to change of illumination in Figure 6.

(a) (b) (c) (d) (e) (f)

Figure 3. Background modeling: two example frames from Hall sequences are shown. (a) Original;
(b) RPCA [4]; (c) Gamma [26]; (d) SNN [49]; (e) TRPCA [20]; (f) t-Gamma.

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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(a) (b) (c) (d) (e) (f)

Figure 4. Background modeling: two example frames from MovedObject sequences are shown.
(a) Original; (b) RPCA [4]; (c) Gamma [26]; (d) SNN [49]; (e) TRPCA [20]; (f) t-Gamma.

(a) (b) (c) (d) (e) (f)

Figure 5. Background modeling: two example frames from Escalator sequences are shown. (a) Original;
(b) RPCA [4]; (c) Gamma [26]; (d) SNN [49]; (e) TRPCA [20]; (f) t-Gamma.
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(a) (b) (c) (d) (e) (f)

Figure 6. Background modeling: two example frames from Lobby sequences are shown. (a) Original;
(b) RPCA [4]; (c) Gamma [26]; (d) SNN [49]; (e) TRPCA [20]; (f) t-Gamma.

5.2.2. Quantitative Experiments

Since the datasets in Section 5.2.1 do not include the ground truth background for each frame
of the video, we perform the algorithms on the ChangeDetection.net(CDNet) dataset2014 [50] which
consists of visual surveillance and smart environments. However, only part of frames are accompanied
with ground truth background and thus we only take out some of frames of the video for testing.
That is, we select the frames from 900 to 1000 of the dataset highway, pedestrians and PETS2006 in the
baseline category. Hence the size of the video will be h× w× 101, where h× w is the resolution of
each frame, and 101 is the number of frames. We compare our algorithm with RPCA [4], Gamma [26],
SNN [49] and TRPCA [20]. The parameters setting is conducted from Section 5.2.1.

To evaluate the performance of the experiment results, we use the three metrics for the quantitative
measure, that is, Recall, Precision and F-Measure. They are defined as:

Recall =
TP

TP+FN
,

Precision =
TP

TP+FP
,

F-Measure = 2
Precision · Recall

Precision + Recall
,

where TP, FP and FN are true positives numbers, false positives numbers and false negatives numbers
respectively. We primarily use F-Measure for overall evaluation since it combines the metrics Recall
and Precision and also makes a balance between Recall and Precision which can be viewed as a good
indicators for comparison.

From Table 2, we can see that the proposed algorithm achieves better segmentation performance
among the compare methods with respect to the F-Measure. Some of the frames of the segmentation
results are shown in Figure 7, it can be observed that among the three dataset in CDNet our method can
usually get the clearer and more accurate background segmentation. These quantitative comparison
illustrates the superior of t-Gamma tensor quasi-norm as the surrogate of the rank of tensor.
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Table 2. Quantitative Evaluation for algorithm on CDNet Datasets

Dataset
RPCA Gamma SNN TNN t-Gamma

Recall Precision F-Measure Recall Precision F-Measure Recall Precision F-Measure Recall Precision F-Measure Recall Precision F-Measure

highway 0.8642 0.9109 0.8869 0.8837 0.9067 0.895 0.6982 0.9041 0.7879 0.8235 0.902 0.861 0.8835 0.909 0.8961

pedestrians 0.9983 0.9419 0.9692 0.9982 0.9275 0.9616 0.9955 0.9285 0.9608 0.9983 0.9258 0.9607 0.9982 0.9309 0.9634

PETS2006 0.8151 0.7131 0.7607 0.8326 0.7678 0.7989 0.288 0.6974 0.4077 0.8033 0.6853 0.7396 0.8301 0.7805 0.8045

(a) (b) (c) (d) (e) (f) (g)

Figure 7. Visual results for CDNet dataset. Row 1 and row 2 are samples of highway; row 3 and row 4 are samples of pedestrians; row 5 and row 6 are samples of PETS2006.
(a) Original; (b) Ground True; (c) RPCA [4]; (d) Gamma [26]; (e) SNN [49]; (f) TRPCA [20]; (g) t-Gamma
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6. Concluding Remarks

In this paper, we conduct the TRPCA with a new t-Gamma tensor quasi-norm used as the
regularization for tensor rank function. The t-Gamma tensor quasi-norm is developed via t-SVD in the
Fourier domain, which simplifies the required optimization process. Compared with the convex tensor
nuclear norm, our regularization approach appears to be more effective in approximating the tensor
tubal rank. We incorporate the alternating direction method of multipliers with the t-Gamma tensor
quasi-norm to efficiently solve the non-convex TRPCA problem, yielding an approachable framework
for non-convex optimization. Numerical experimental results indicate that our approach outperforms
the existing methods in distinguishable ways.
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