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Abstract: Digital volumetric speckle photography (DVSP) method has been used to strain
investigation in opaque materials. In this paper, an improved DVSP algorithm is introduced, in which
a multi-scale coarse–fine subset calculation process and a subvoxel shifting technique are applied
to increase accuracy. We refer to the new algorithm as Multi-scale and Subvoxel shifting Digital
Volumetric Speckle Photography (MS-DVSP). The displacement and strain fields of a red sandstone
cylinder exposed to uniaxial compression and a woven composite beam under three-point bending
are mapped in detail. The characteristics of the interior deformation of the specimens are clearly
depicted, thus elucidating the failure mechanism of the materials.

Keywords: interior 3D deformation; digital volumetric speckle photography; X-ray
microtomography; digital volume correlation; red sandstone; woven composite beam

1. Introduction

Speckle photography, a technique that uses a random speckle pattern to quantitatively measure
displacement and strain, is a major milestone in the archive of experimental mechanics. Speckle
photography has found application in many fields of science and engineering. The basic principle
of the white light speckle technique was first proposed in a 1968 paper by J. Burch [1]. After the
advent of laser, the laser speckle photography technique [2] was developed, followed by a major
expansion of the white light speckle photography approaches [3]. The method’s spatial resolution
was significantly increased with the development of the electron speckle photography technique by
Chiang et al., in 1997 [4], which employs submicron and nano-sized speckles. In addition, its ease of
use and versatility were greatly enhanced by the development of the digital speckle photography (DSP)
technique [5,6]. DSP is a 2-D method in that only the deformation of a plane (either a surface plane or
interior plane [7]) can be mapped. Since the genesis of experimental mechanics field, one of the major
goals has always been to develop a true 3D experimental stress/strain analysis technique whereby one
can probe into solids for detecting the interior deformation with ease. The invention of techniques such
as frozen stress photoelasticity [8,9], scattered light photoelasticity [10,11], integrated photoelasticity
and photoelastic tomography [12–14], etc. were major developments in this field. However all of
these techniques are rather tedious and time consuming, some of which are even error prone. These
techniques require transparent birefringent materials to simulate the real object, which limits their
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application. Many important solid mechanics problems cannot be modeled by a transparent material,
the most obvious of which are the 3D deformation of rock materials and fiber-reinforced composites.
Aside from photoelasticity, moire, laser speckle, and white light speckle photography techniques have
also been attempted to investigate the internal strain of 3D objects [15–18]. However, successes in
such attempts have been restricted because only a few planes or sections can be probed. All of these
techniques require the use of a transparent material.

With the rapid growth and application of high-resolution X-ray computed tomography (nano,
microfocus and synchrotron), it becomes much easier to acquire volumetric images of opaque
materials with high spatial resolution. Based on volumetric images, digital volume correlation
(DVC) method, a 3D extension of 2D digital image correlation (DIC), has been proposed by Bay et al.
for strain analysis of bone tissues exposed to compression loads [19]. This method has since been
applied to many materials such as wood [20], compacted sugar [21], sand grains [22], cast iron [23],
rock materials [24–26], concrete [27,28], and composites [29–31]. In the DVC method, surrounding
an interrogated point, a cubic subset (subvolume) of voxels is selected in the reference volumetric
image, its corresponding position is registered in the deformed volumetric image, from which its
3D displacement vector is retrieved. The registration process can be carried out either in the spatial
domain or the frequency domain. In the frequency domain, fast Fourier transform (FFT) is used to
increase the calculation efficiency.

As an extension of the 2D DSP (Digital Speckle Photography) method [5,6], we have developed
a 3D interior full field deformation measurement technique called digital volumetric speckle
photography (DVSP) with the help of X-ray microtomography [32]. This technique has been
successfully applied to mapping the internal 3D strain fields of rocks [33–35], concrete [36],
and composites [37–39]. In applying the DVSP method, the reference volumetric image and deformed
volumetric image are divided into subsets of certain 3D voxel arrays. Each corresponding pair of the
subsets are “compared” via a two-step 3D FFT analysis, which is computationally highly efficient.
The result is a 3D map of displacement vectors, in terms of impulse functions, representing the
collective displacement experienced by all the speckles within the subset of voxels. Mathematically the
DVSP algorithm may be considered as an equivalent operation to the phase-only cross-correlation at the
spectrum plane. The phase-only filter (POF) can result in a sharper impulse response function, and its
signal is considerably stronger than that of the noise spectrum [6,40]. However, if the displacement
between the subsets is large, a fair amount of noise is imposed in the correlation surface resulting from
the nonoverlapping areas. This effect gives rise to a poor signal-to-noise ratio.

In this paper, a multi-scale and coarse-fine subset calculation process and a subvoxel shifting
techniques are introduced into the DVSP algorithm to improve its accuracy. As a demonstration,
we applied the new algorithm to analyzing the internal deformation of a red sandstone cylinder
specimen exposed to uniaxial compression and a woven composite beam specimen under
three-point bending.

2. Methodology of Multi-Scale Subset and Subvoxel Shifting in DVSP

2.1. Theory of Multi-Scale Subset and Subvoxel Shifting in DVSP

The theory of DVSP has been described previously [32] and is only briefly presented here for
easy reference. Assume that a reference volumetric image and a deformed volumetric image of an
object are acquired by a CT system (i.e., either in nano- or microscale), these two volumetric images
are subsequently divided into volumetric subsets with arrays of 16 × 16 × 16 voxels or 32 × 32 × 32
voxels and then ‘compared’. The cross correlation with the POF is operated in the frequency domain
(ξ, η, ζ) as follows:
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G(ξ − u, η − v, ζ − w) = =
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where G(ξ − u, η − v, ζ − w), an expanded impulse function located at (u, v, w), is the discrete 3D cross
correlation between the two volumetric subsets. = denotes the Fourier transform, with H1

(
fx, fy, fz

)
being the Fourier transform of h1(x, y, z), representing the gray distribution function of a subset
from the reference volumetric image, and H2

(
fx, fy, fz

)
being the Fourier transform of h2(x, y, z),

representing the gray distribution function of the corresponding subset from the deformed volumetric
image. In addition, * denotes the complex conjugate.
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are the spectral

amplitude and phase fields, respectively.
In Equation (1), the term exp

{
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)
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)]}
may be viewed as a POF, which

can give a good balance between the peak sharpness and the noise tolerance in the correlation theory.
As noted in reference [34], the random error of DVSP depends on subset size and micro structure
pattern of objects. Furthermore, if the displacement between the corresponding subsets is large,
the increase in the nonoverlapping area would cause an increase in decorrelation and thus result
in an enhanced random error. On the other hand, in the case of images, G in Equation (1) is only
displaying a delta-like function if u, v and w are integers. Non-integer translations between two subsets
cause the peak in G to spread across neighboring voxels, subsequently degrading the quality of the
displacement estimate. To identify sub-voxel investigation, the common approach is to apply cubic
spline interpolation. The accuracy of these interpolation methods is highly dependent on the shape of
the G function near the peak. In the 2D method, a multi-scale and coarse-fine subset calculation process
and a subpixel shifting technique have been applied to decrease the error caused by decorrelation and
non-integer translations [41,42]. These techniques are hereby introduced into DVSP, and we call this
new algorithm Multi-scale and Subvoxel shifting Digital Volumetric Speckle Photography (MS-DVSP).

The essence of the multi-scale and coarse-fine calculation process is to minimize the
nonoverlapping area under one voxel. In the coarse calculation process, the largest size of the
subset (2n × 2n × 2n) should not be larger than the size of the region-of-interest (ROI) in the reference
volumetric image, and the integer voxel of displacement value (u0, v0, w0) is obtained by the DVSP
method. After that, the subset with the size (2n−1 × 2n−1 × 2n−1) is applied, the corresponding subset
in the deformed volumetric image is re-selected with reference to the first integer voxel predicted
displacement (u0, v0, w0), and the displacement value (u1, v1, w1) of each subset is then calculated
by the DVSP method. The subset size is gradually reduced according to above mentioned steps.
When the subset size reaches a predetermined value and the obtained displacement values ∆u, ∆v,
∆w are no more than 1 voxel in size, then surrounding an integral voxel of the crest a cubic subset
with the size of 3 × 3 × 3 voxels is selected and a cubic spline interpolation is used to assess the
sub-voxel value δu, δv and δw. The reference subset can be moved with an amount δu, δv and δw by
using the shifting property of Fourier transform. To weaken the edge effects and get good localization
properties of Fourier transform, the shifted reference subset and the deformed subset are narrowed
by a Kaiser window. Then, the subvoxel translation is calculated again. Some errors due to the
interpolation require to reiterate by considering the “reference” subset with a new subvoxel shifting
until a convergence criterion is matched. The final displacement value (u, v, w) of each subset can be
obtained from the sum of the displacement values in the above steps. The flowchart of the MS-DVSP
algorithm is shown in Figure 1. The procedures are programmed in MATLAB codes.
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Figure 1. Flowchart of the (Multi-scale and Subvoxel shifting Digital Volumetric Speckle Photography)
MS-DVSP algorithm.
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2.2. X-ray Microtomography System and In Situ Loading Setup

The schematic of the X-ray microtomography system and a custom-made in situ loading setup is
illustrated in Figure 2. The X-ray microtomography system mainly consists of a FXE 225 kV micro focus
X-ray source from YXLON (Hamburg, Germany), an array detector (XRD 0822 AP14, Varex Imaging
Corporation, Salt Lake City, UT, USA) of dimensions 1024 × 1024 pixels from PerkinElmer (Waltham,
MA, USA), a turntable and its mechanical control unit, and a scanning control workstation [39].
The custom-made in situ loading setup is mounted on the turntable by using bolts, and rotates 360◦

with the turntable. In the loading experiment, the specimen is placed on the stage in the Poly(methyl
methacrylate) (PMMA) chamber of the setup, and the mechanical loading is controlled by an electric
motor. While the specimen is rotating step by step over 360◦, a set of 720 radiograph projections are
captured. When each projection is captured, the turntable does not move. It takes about 25 min for one
360◦ scan. After that, a Feldkamp cone-beam algorithm is used to reconstruct a sequence of 2D 16-bit
slice gray images [43]. Based on these slice images, a 3D image is obtained.
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Figure 2. Schematic of the X-ray microtomography system and the in situ loading setup.

3. Experiment and Results

3.1. Internal Strain Investigation of Red Sandstone Exposed to Compression

A cylindrical specimen of red sandstone of 25 mm in diameter and 50 mm in length is scanned
under different compression loadings in situ. The scan voltage is 120 kV, and the current is 200 µA.
The experimental process is divided into 8 steps as shown in the stress–strain curve in Figure 3a.
In each step, the specimen is scanned when the force is stable. In step 1, we take two consecutive
scans of the specimen in identical settings and without moving (except the tomographic rotation) or
deforming the specimen and designate them as Scans 1 and 2, respectively. Those two scans are used to
evaluate artifacts and image noise influences in Section 4.2. In step 7, the loading value decreases due to
the development of micro cracks, but the specimen still has loading capacity till the loading reaches the
peak value of 12.08 MPa. In step 8, the broken specimen is scanned. In Figure 3, three sectional images
at y = 6.20 mm, 12.50 mm and 18.80 mm of the specimen in step 6 and step 8 are shown, respectively.
From the gray images shown Figure 3b–d, it is difficult to ascertain the damage. With reference to
Figure 3e–h, the coalescence of tensile cracks mainly results in the failure of the specimen. At the lower
left and right corners of the middle sectional image shown in Figure 3f, there are also some cracks due
to shear stress. We select the volumetric image of step 1 as the reference image, and volumetric images
of other steps as the deformed images, respectively. The size of the volumetric image has 560 × 560
× 801 voxels and the dimension of a unit voxel is 45 µm × 45 µm × 45 µm. By using the MS-DVSP
algorithm, displacement fields are calculated. The final subset size is 32 × 32 × 32 voxels and the shift
of the subset is 10 voxels. The calculated region of each section is the rectangular area marked with the
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dashed lines in Figure 3b–d. The u, v and w displacement fields of all sectional images of step 6 are
plotted in Figure 4. As expected, the specimen mainly bore compression deformation along the z axis,
and maximum displacements exist in the top region. Illustrated in Figure 4a,d,g, displacement fields
of sectional images are divided into the negative and positive displacement regions, which make the
specimen tensile along x axis. The main cracks shown in Figure 3e–h can be predicated by the zero
displacement interface. This tensile deformation can also be investigated along y axis. In Figure 4b,e,h,
the displacement of the sectional image at y = 6.20 mm is negative, while the displacement of most area
of the sectional image at y = 18.80 mm is over zeros, especially in the lower region. These displacement
distribution characteristics manifest that the expansion deformation occurs in circumference.
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Strain estimation can be derived from computed displacement fields by using numerical
computation methods. During this procedure, the noise in computed displacement fields will result in
decreasing the reliability of strain estimation. It is necessary to smoothing the calculated displacement
dataset before strain estimation [44]. Here, we first apply multivariate kernel smoothing regression [45]
to smooth the displacement fields. After that, a point-wise least-squares (PLS) [46] approach is used to
compute the internal strain fields. The size of the strain calculation cubic element is 33× 33× 33 voxels,
and the distance between the center points of the neighbor element is 10 voxels. The normal strains
and shear strains of these sections in step 4, 5 and 6 are plotted as shown in Figures 5–7, respectively.
Here, in normal strain, we define positive corresponding to tension and negative corresponding to
compression. From normal strain contours εxx shown in Figure 5, with the loading increase, it is noted
that the deformation localization first occurs in both ends of the specimen, and develop to the middle.
These localization regions correspond to the main cracks shown in Figure 3e–h. The distributions
of normal strain εzz (shown in Figure 6) indicate that the compression deformation along the axis z
is nearly uniform under small loading. With loading increase, deformations in both ends grow up
more than ones in the middle. The maximum compression strain occurs at the bottom of the specimen.
Due to friction among the specimen and two compression plates, the distributions of shear strain εxz

take the shape of an ‘x’, as marked by the dashed lines in Figure 7, which depicts the characteristics of
the shear deformations in the specimen. It is the shear deformation (shown in Figure 7f) cooperating
with tensile deformation (shown in Figure 5f) that lead to the damage at the lower left and right corners
of the specimen. These strain contours are useful in our efforts to understand the failure mechanism of
the material.
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Figure 7. Contour plots of εxz strain fields of the sectional images in step 4, step 5 and step 6. (a–c) along
y = 6.20 mm, respectively; (d–f) along y = 12.50 mm, respectively; (g–i) along y = 18.80 mm, respectively.

3.2. A Woven Composite Short Beam Under Three-Point Bending

A short woven composite short beam under three-point bending experiment has been described
in reference [37,39]. The load-displacement curve is plotted in Figure 8, and Figure 11 scan steps
are marked on the curve. The scan voltage is 130 kV, and the current is 200 µA. Five radiography
projections are shown in Figure 8. The areas with high gray value correspond to pores in the specimen.
From those projections before step 11, no much more damage information can be detected. In the
projection of step 11, the specimen is broken, more areas with high gray value occur among layers on
the left side of the specimen, which correspond to the cracks among layers. A 3D image of 900 × 250
× 361 voxels is reconstructed in each scan step, and a unit voxel is 45 µm × 45 µm × 45 µm. Limited
by the CT system resolution, fibers can not be distinguished from the matrix. The middle longitudinal
sectional image and two transverse sectional images of the 10th scanning step are shown in Figure 9a–c,
respectively. Pores have low gray value, which inverses to the projection. No discernable cracks are
detected from these gray images. In the 11th scanning step, delamination and cracks are clearly visible
on the left side of the specimen from the upper loading point to the bottom support shown in Figure 9e.
We recalculate the internal displacement and strain fields with the MS-DVSP algorithm and the PLS
approach, respectively. Due to heterogeneity in structures, we select the final subset size of 32 × 32 ×
32 voxels and the subset shift of 5 voxels to obtain much more displacement detail.
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Figure 8. Loading–displacement curve and radiography projections of step 1, step 7, step 9, step 10
and step 11.

In Figure 10, v, w displacement fields and εyy, εzz and εyz strain fields of the middle longitudinal
sectional image at step 7 (F = 6761 N), step 9 (F = 8333 N), and step 10 (F = 8982 N) are depicted,
respectively. v, w displacement distributions are consistent to typical patterns of a short beam under
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three-point bending, but the periodic distribution of the internal structure in the woven composite
specimen makes v displacement show periodic fluctuation in the longitudinal direction, which also be
manifested by εyy strain distribution shown as Figure 10g–i. From εzz strain distribution illustrated
in Figure 10j–l, the periodic fluctuation in the transverse direction is due to the layer structure of the
specimen. From the contours of the shear strain εyz, the strain growth in regions from the loading
point to two supports is evident with loading increase, and the high strain value is the prelude to
the eventual delamination failure as shown in Figure 9e at Step 11. εyz strain fields of two transverse
sectional images are depicted in Figure 11. Before the specimen is broken, it is also found that high
strain occurs on the region which corresponds to the crack area shown in Figure 10f.
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Figure 9. Reconstructed sectional images: (a) One middle longitudinal sectional image and two
transverse sectional images of step 10; (b) The middle longitudinal sectional image at x = 4.5 mm of
step 10; (c) two transverse sectional images of step at y = 11.925 and 27.000 mm of step 10; (d) One
middle longitudinal sectional image and two transverse sectional images of step 11; (e) The middle
longitudinalsectional image at x = 5.625 mm of step 11; (f) two transverse sectional images of step at y
= 11.925 and 27.000 mm of step 11.
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Figure 10. Displacement and strain fields of the middle longitudinal sectional image at step 7, step 9
and step 10, respectively; (a–c) v fields; (d–f) w fields; (g–i) εyy fields; (j–l) εzz fields; (m–o) εyz fields.
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Figure 11. εyz strain contours of two transverse sectional images at step 7, step 9 and step 10,
respectively; (a) step 7; (b) step 9 (c) step 10.

4. Discussion

4.1. Assessment of Accuracy of MS DVSP

For evaluating the robustness of an algorithm, numerical experiments are usually used. There
are two methods to generate the reference and the deformed images. The first method is to apply
computer simulation to digitally generating images. This method can isolate the possible errors caused
by the image acquisition. In most DVC and DVSP applications, natural microstructures are seen
as the speckle patterns. It is difficult to find a mathematic function to describe and simulate the
natural microstructures. The second method is to employ the original image of a specimen as the
reference image, and the deformed images can be generated by using synthetic shifts with Fourier
transform. In this paper we use the second method. Two volumetric images of 200 × 200 × 200
voxels are isolated from the reconstructed images of step 1 in the above two experiments, which are
defined as the reference images, respectively. The “deformed” volumetric images are generated by
imposing a rigid displacement ranging from 0.1 to 1.0 voxel with an increment of 0.1 voxel along the
z direction. By using the MS-DVSP algorithm, pre-imposed sub-voxel translation displacements are
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calculated. The predetermined subset sizes are defined as 16 × 16 × 16 voxels, 32 × 32 × 32 voxels
and 64 × 64 × 64 voxels, respectively, and the shift of the subset is 10 voxels. Figure 12 shows both
the mean bias error and the standard deviation error as a function of the imposed displacement for
different subset sizes. With a predetermined subset size, the error reaches maximum at 0.5 voxels.
In this situation the information between each subset in the reference and deformed images is the
most biased. Furthermore the larger is the subset, the smaller the error. But, increasing the subset
size would degrade the spatial resolution. We define the predetermined subset size as having 32 ×
32 × 32 voxels. With this subset size the maximum mean bias error of the red sandstone specimen is
0.0160 voxels and the corresponding standard deviation error is and 0.0060. For the woven composite
specimen, the maximum mean bias error is 0.0062 voxels, and the corresponding standard deviation
error is and 0.0089 voxels. The difference of accuracy between those two materials depends on their
natural structures. The Shannon entropy values [47] of the red sandstone and the woven composite
are 2.7606 and 3.0337, respectively, which means the woven composite has more feature information
seen as speckle patterns resulting in a bit higher accuracy in the measurement.
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In reference [39] a multi-scale coarse-fine subset calculation process was used in DVSP, which
also increased the performance of DVSP. We call this algorithm M-DVSP. To compare the performance
of MS-DVSP, M-DVSP, and DVSP, we calculate the displacements of these volumetric images
with imposed sub-voxel translation using these three algorithms, respectively. The subset size is
predetermined at 32 × 32 × 32 voxels, and the shift of the subset is 10 voxels. The error curves are
plotted as shown in Figure 13. The performance of M-DVSP algorithm is slightly better than that of
DVSP, especially in standard deviation errors after 0.5 voxels. When the imposed displacement is
increased continuously, the overlapping area between the reference subset and the deformed subset is
decreased, and the noise caused by non-overlapping becomes stronger. As a result, it can be expected
that the errors of DVSP will get progressively worse. Among these three algorithms, the performance
of MS-DVSP is the best. Based on the mean bias error and its corresponding standard deviation error,
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we can find that the maximum error of the red sandstone specimen is 0.022 voxels of the MS-DVSP
algorithm, 0.125 voxels of M-DVSP algorithm, and 0.124 of DVSP algorithm. The maximum error
of MS-DVSP is only about one sixth of those errors of the other two algorithms, DVSP and M-DVSP.
In the case of the woven composite specimen, the maximum errors are as follows: 0.015 voxels of the
MS-DVSP algorithm, 0.150 voxels of the M-DVSP algorithm, and 0.151 of the DVSP algorithm. Thus,
the maximum error of MS-DVSP is only about one tenth of those errors of the other two algorithms.
These results indicate that MS-DVSP algorithm is an effective way to increase the accuracy of the
technique, and the performance of MS-DVSP also depends on the internal micro-structures of objects.
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the red sandstone specimen; (c) Mean bias error of displacement of the woven composite specimen;
(d) Standard deviation error of displacement of the woven composite specimen.

4.2. Influence of Artifacts in CT Image

During reconstruction of CT slice image, the non-uniformity of detector units and the
polychromatic nature of the X-ray will give rise to ring and beam hardening artifacts. The self-heating
effect of X-ray tube may result in distance variations that induce magnification changes and thus
spurious dilatational strain. In addition, the image noise and contrast, the imperfect motion of the
rotation stage, and the possible rigid body motion of the specimen will all influence the measurement
result. Among all these effects, the spurious dilatational strain is definitely the most important to
correct. More detailed information on the influence of these effects can be found in references [48–51].
Here, we just discuss the influence of the image noise and the imperfect motion.

To analyze the effect of artifacts of the micro X-ray CT system on the MS-DVSP algorithm,
we take two consecutive scans in step 1 of the red sandstone specimen in Section 3.1 as the baseline
experiment. Noise and artifacts of the system are included in the reconstructed images. For saving the
computation time, we isolate two volumetric images having 200 × 200 × 200 voxels from the center of
reconstructed images of Scan 1 and Scan 2, define them as the reference image and the deformed image,
respectively, and calculate displacements by using the MS-DVSP algorithm. The predetermined subset
size is 32× 32× 32 voxels, and the shift of the subset is 10 voxels. The average measured displacements
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are u = −0.0059 voxels, v = −0.0147 voxels, and w = 0.0175 voxels, and the standard deviation errors
are 0.0107 voxels, 0.0115 voxels and 0.0105 voxels, respectively. The measured displacement along y
and z axes is greater than the standard deviation error, indicating that some motion occurred along y
and z axes between these two scans due to physical perturbations in the CT system. Because there are
real noise and artifacts in the volumetric images of Scans 1 and 2, the above results indicate that the
uncertainty of displacement measurement in all three directions is about 0.02 voxels with the MS-DVSP
algorithm in the red sandstone specimen experiment.

For investigating the influence of noise and artifacts, two groups of deformed volumetric images
are obtained by imposing subvoxel displacements on above two cropped volumetric images, and they
are marked as Group 1, and Group 2, respectively. We define the cropped volumetric image of Scan 1
as the reference image, and the images of Group 1 and Group 2 as the deformed images, respectively.
Then we calculate the displacements with the MS-DVSP algorithm. The predetermined subset size is
32 × 32 × 32 voxels, and the shift of the subset is 10 voxels. Figure 14 illuminates the results of the
displacement measurement. Due to the influence of noises and artifacts, the error increases almost two
times. The uncertainty of displacement measurement is 0.015 voxel.
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As a more accurate alternative to fitting just rigid body movements, a least squares fit is used to
calculate the rigid body translations and rotations, assuming small angles [52],

urigid + θzY− θyZ ∼= U
vrigid − θzX + θxZ ∼= V
wrigid + θyX− θxY ∼= W

(2)

where θx, θy, and θz are the rotations about the x, y, and z axes, respectively, and X, Y, Z and U, V, W
are the vectors of the x, y, z coordinates and u, v, w displacements, respectively, for all of the correlation
points. The rigid body displacements are urigid = −0.0082 voxels, vrigid = −0.0204 voxels and wrigid =
0.0167 voxels, and the rotations are θx = 2.13×10−5, θy = −3.15 × 10−5 and θz = 3.43 × 10−5. There are
rigid body translations similar to the average measured displacements. Thus, when compared with
the volumetric image of Scan 1, the volumetric image of Scan 2 incur very small rigid body translation
and small rotation in all three directions. Compared with the deformation of the specimen in our study,
the rigid body translation and rotation are very small, so we neglect the influence of the imperfect
motion of the rotation stage in the data analysis.

To assess the uncertainty of strain measurement, we use the above calculated imposed subvoxel
displacement results to compute strains with the PLS approach. Three sizes of strain calculation cubic
box surrounding the point of interest are used, and they are 23 × 23 × 23 voxels, 33 × 33 × 33 voxels
and 43 × 43 × 43 voxels, respectively. Since only a rigid body translation is imposed, strains should be
zero. However errors of displacement fields give rise to the error of strain calculation. The standard
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deviation errors of εzz is shown in Figure 15, which dictates that the uncertainty of strain measurement
depends on the size of the calculation box, the larger is the box, the smaller the uncertainty. In PLS
approach, too small calculation box is not enough to smooth the noise existing in local displacement
fields, making strains having large variation. On the contrary, too large calculation box may result in
local displacement fields oversmoothed. It is suggested that the size of the calculation box can be equal
to or slightly larger than the size of the reference subset [46]. So in this study, we select the calculation
box of 33 × 33 × 33 voxels. With this size, the uncertainty of strain measurement increases more than
two times due to the influence of noise and artifacts, and it is 2.34 × 10−4.
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