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Abstract: In this paper, an image recovery problem under the case of salt-and-pepper noise and
data missing that degrade image quality is addressed if they are not effectively handled, where the
salt-and-pepper noise as the impulsive noise is remodeled as a sparse signal due to its impulsiveness
and the data missing pattern, denoted by a sparse vector, contains only zeros and ones to formulate
the data missing. In particular, the salt-and-pepper noise and data missing are reformatted by their
sparsity, respectively. The wavelet and framelet domains are explored to sparsely represent the image
in order to accurately reconstruct the clean image. From the reformulations conducted and to recover
the image, under one optimization framework, a joint estimation is developed to perform the image
recovery, the salt-and-pepper noise suppression, and the missing patter estimation. To solve the
optimization problem, two efficient solvers are developed to obtain the joint estimation solution, and
they are based on the alternating direction method of multipliers (ADMM) and accelerated proximal
gradient (APG). Finally, numerical studies verify that the joint estimation algorithm outperforms the
state-of-the-art approaches in terms of both objective and subjective evaluation standards.
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1. Introduction

Image restoration is an important and widely studied subject in image processing, where the main
objective is to reconstruct the latent image given the degraded and/or noisy image [1–5]. The main
detrimental factors to corrupt the image are noise, data missing, and blur, to name a few. It is
well known that images are deteriorated if they are not properly handled, and, in this work, the
image restoration approach is developed when the image is corrupted by salt-and-pepper noise and
data missing.

The salt-and-pepper noise, classified as the impulsive noise, presents a great challenge for
an image reconstruction problem because of its impulsive nature. The noise is mainly caused by
imaging sensors, transmissions, and/or other factors. Under the case of salt-and-pepper noise, the
approaches developed for Gaussian noise will not work well because the noise distributions are
different. To suppress the noise, the traditional techniques mainly focus on filters in which nonlinear
filters and linear filters are developed. In contrast, nonlinear filters in general offer better performance
than linear filters. The classical nonlinear filter in the context of impulsive noise removal is the
standard median (MED) filter [6]. It can easily be shown that this type of filter is conceptually simple to
implement and hence provides good denoising ability, but its performance deuterates as the noise level
increases. Shortly after, the detection-removing approaches are then devised so as to better suppress
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the noise, where the noisy pixels are detected first, and second they are replaced by the results of a
certain type of median filters using vicinity pixels—for example, the adaptive median filter (AMF) [7]
and its improved versions of adaptive weighted mean filter (AWMF) [8,9], the multistate median
(MSM) filter [10] and the adaptive median filter with edge-preserving regularization (AM-IEPR) [11].
Computer simulation results show that the above-mentioned filters outperform the traditional MED
filter, but their performance largely depends on the performance of the detection. The main drawback
of these approaches is that they failed to exploit the noise structure that might improve the noise
suppression ability and in turn enhance the image reconstruction.

In practice, data missing happens because of sensor failure and sudden data transmission
loss. Over the past several decades, a huge number of approaches have been proposed to handle
this issue. Based on the structural inpainting technique, several algorithms were reported for
accurate reconstruction of missing edges, and they are effective for pure structure images [12,13].
However, for images containing textures, the performances were less satisfactory. To remedy this
issue, the exemplar-based inpainting technique was exploited to develop several methods for accurate
reconstruction of missing textures [4,14–16]. Traditionally, missing texture reconstruction is considered
as the texture synthesis, and, based on which, many methods were proposed—for example, the
fragment-based algorithm [14] and the exemplar-based image inpainting method [15]. In [16],
the approach for learning a high-order Markov random field (MRF) has been proposed and the
performance of missing texture reconstruction is dramatically improved. The key idea is to formulate
the prior as a high-order Markov random field (MRF) defined over large neighborhood systems.
By decomposing the exemplars into the frequency domain and using the selected coefficients, the
gradient based algorithm was developed to interpolate the missing parts, and its superior performance
was demonstrated because the coefficient selection process acts to remove the noise [17,18]. Recently,
due to the successful developments of the sparse signal reconstruction, many methods have been
proposed by exploiting the sparse representation of the image [4,19–21]. Even they provide better
reconstruction results in some cases, the performance degrades when the missing level is high.

To handle those issues, namely salt-and-pepper noise and data missing, in this paper, a joint
estimation approach is developed to simultaneously recover the image and missing pattern under
the salt-and-pepper noise condition. The primary objective of this work focuses on utilizing a sparse
property of signals. To explore the sparse property of images, two representative domains, namely
wavelet and framelet domains, are introduced in which the natural images have a sparse representation.
Thanks to the impulsive nature of the noise, its sparsity is also observed in the time domain since
it contains few nonzero values and lots of zero values. Therefore, the noise suppression becomes
a parameter estimation problem, where the noise is actively reduced rather than passively being
suppressed. To reveal the sparse property of the missing pattern, a vector that consists of only zeros
and ones is introduced to remodel the missing measurements problem in which the element is one if
the measurement is received correctly and zero if the corresponding measurement is missed. With the
reformulations introduced, a joint optimization framework is readily developed to perform image
and missing pattern estimation while suppressing the salt-and-pepper noise. A two-step iterative
approach is proposed in order to efficiently solve this optimization problem, where each step contains
a convex optimization problem. At every step, the resultant problem is an `1-norm constrained
optimization, and two algorithms, called ADMM and APG, are tailored to solve the optimization
problems. To demonstrate the performance of the proposed joint estimation approach, experiments
in three situations such as salt-and-pepper noise only, data missing only, and the combination of
salt-and-pepper noise and data missing are respectively conducted. The main difference compared to
the work presented in [1] is that the data missing issue is addressed instead of the deblur problem.

The rest of the paper is organized as follows: the formulations of the salt-and-pepper noise and
data missing are presented in Section 2. In Section 3, two sparse transform domains, namely wavelet
and framelet are briefly introduced. A joint estimation is provided that utilizes the sparse properties
of salt-and-pepper noise, data missing and image to perform the noise suppression, missing pattern
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estimation, and image recovery in Section 4. To efficiently obtain the solution, two solvers based
on ADMM and APG are developed. In Section 5, numerical studies for the proposed approach are
presented. Finally, this paper concludes with a brief summary in Section 6.

2. Formulations of Salt-and-Pepper Noise and Data Missing

In this work, the degraded image is given by

y = Hx + n, (1)

where y is the degraded image, x is the latent image to be reconstructed, H is the degradation matrix,
and n is the noise. It is of interest to note that the column representation of the image is used in
Equation (1).

For a pure denoising problem, the degradation matrix is usually an identity matrix and the noise
n is the main source of interference. The noise can be generally divided into two categories: Gaussian
noise and impulsive noise. It is a consensus that the impulsive noise is much harder to be removed
than the Gaussian noise, and, in this work, one type of the impulsive noise salt-and-pepper noise is
considered. The clean image is corrupted by the salt-and-pepper noise. That is,

y(i) =


nmin, with probability p/2,
nmax, with probability p/2,
x(i), with probability 1− p,

(2)

where p denotes the probability, nmin and nmax indicate the minimum and maximum values of the
dynamic range, and they are 0 and 255 for a grey image, respectively. In Equation (2), one important
observation is that only p× 100% pixels are affected by the noise and the rest is not. This is to say that,
if the additive noise model in Equation (1) is used, the noise n has lots of zero components. Therefore,
n can be seen as a sparse vector and this property will be exploited to remove the noise. For more
information, the readers are referred to [22].

Another detrimental factor for image reconstruction is data missing due to the unreliable
transmission link and/or other reasons. When this happens, the corresponding pixel is set to be
zero and the rest is unchanged. In doing so, a sparse vector can be introduced to reformulate the
data missing signal model. For example, let the uniform samples be [y1, y2, y3, y4]

T, and suppose
the pixels of y1, y2 are missing. The received signal that contains samples of y3, y4 is modeled
as [y3, y4]

T = H ◦ [y1, y2, y3, y4]
T, where H = [0, 0, 1, 1]T and ◦ is Hadamard product to indicate a

componentwise product. In this reformulation, an unknown sparse vector H is introduced to model
the data missing pattern and it will be utilized to estimate the missing pattern. To simplify the
following derivations, the missing pattern is rewritten in a matrix form, denoted by H. By using the
matrix notation, the missing pattern in this example is a sparse matrix; that is, H = [0 0 1 0; 0 0 0 1].
With this reformulation, in the case of data missing, the received signal is [23]

ỹ = Hy = H(x + n) = Hx + ñ, (3)

where ỹ is the received signal in the case of data missing, H is the unknown missing pattern, and ñ is
the salt-and-pepper noise.

If we now wish to recover the latent image from the received signal model in Equation (3), the
sparse property of missing pattern H and the salt-and-pepper noise ñ should be utilized. With that
in mind, the following optimization problem is formulated to simultaneously recover the image and
estimate the missing paper under the salt-and-pepper noise. That is,

minimize ‖x‖2 + λ1‖H‖1 + λ2‖ñ‖1

subject to ‖ỹ−Hx− ñ‖2
2 < ε,

(4)
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where ‖ · ‖1 is a `1-norm that is known to promote sparse solution, λ1 and λ2 are regularization
parameters, and ε is a precision parameter. This two regularization parameters problem arises in
many different applications—for example, in the autoregressive (AR) identification problem [24].
In the recovery problem of Equation (4), the image itself is only constrained by the `2-norm. It is well
documented that images have sparse representations in a certain transform domain as well. In what
follows, two representative domains, namely wavelet and framelet domains, are introduced, and they
respectively account for the orthogonal and nonorthogonal basis.

3. Transform Domains

3.1. Orthogonal Basis-Wavelet

The wavelet transform (WT) is a useful tool to provide a time-frequency representation of a signal.
For a mother wavelet ψ(t), the WT of the signal of interest (SOI) of x(t) is given by [25]

CWTx(a, b) =
1

a−1/2

∫ ∞

−∞
x(t)ψ∗(

t− b
a

)dt, (5)

where ∗ is the complex conjugate, and a and b respectively represent the scaling and translation factors.
From Equation (5), the scale parameter a compresses the wavelet when it is small. By doing so, the
rapidly changing details of the signal are revealed. When it is large, it stretches the wavelet and,
therefore, the coarse features of the signal are revealed.

The inverse WT is expressed

x(t) =
C−1

ψ

a−1/2

∫ ∞

−∞

∫ ∞

−∞
CWTx(a, b)ψ̃(

t− b
a

)db
da
a2 , (6)

where ψ̃(t) denotes the dual function of ψ(t) and C−1
ψ represents the admissible constant.

In a vector representation, matrixWWT is utilized to represent the wavelet decomposition and
WT

WT denotes the wavelet reconstruction. Using these notations, the image in wavelet domain is

αWT =WWTx, (7)

and correspondingly the image is reconstructed by

x =WT
WTαWT . (8)

It is well known that the wavelet coefficient αWT of the image contains many negligible
components, which means αWT is sparse—for more information, see [25,26].

3.2. Nonorthogonal Basis-Framelet

A wavelet frame system provides better smoothness, short support and symmetrical property
than the orthogonal wavelet basis by sacrificing orthonormality and linear independence [27].

With a scaling function φ and wavelet functions {ϕ1, · · · , ϕr}, the so-called refinable equations are

φ(t) =
√

2 ∑
k

h0(k)φ(2t− k),

ϕl(t) =
√

2 ∑
k

hl(k)φ(2t− k), l = 1, 2, · · · , r,
(9)

where φ(t), ϕ(t), and h(t) are user defined functions, and, in this work, they are chosen the same as
in [27]—for example, h0 = 1

4 [1, 2, 1], h1 =
√

2
4 [1, 0,−1], and h2 = 1

4 [−1, 2,−1], and φ(t), ϕ(t) are the
piecewise linear refinable spline and corresponding framelets.
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Under these notations, the frame coefficients of a signal x(t) can be calculated as

ck =
∫

x(t)φk(t)dt,

dk,j,l =
∫

x(t)ϕk,j,l(t)dt,
(10)

where ck and dk,j,l are the frame coefficients, and φk(t) = φ(t− k), ϕk,j,l(t) = ϕl(2jt− k).
With the frame coefficients, the signal is synthesized as

x(t) =
∞

∑
k=−∞

ckφk(t) +
r

∑
l=1

∞

∑
j=0

∞

∑
k=−∞

dk,j,l ϕk,j,l . (11)

Similarly, WFT is utilized to represent the tensor product framelet decomposition and WT
FT

denotes the framelet reconstruction, and, therefore, in the matrix notation, the frame coefficient and
reconstructed image are respectively calculated by

αFT =WFTx, x =WT
FTαFT . (12)

Two representative bases are briefly introduced—for more details, the diligent readers are referred
to [25,27], especially [25] for the wavelet transform and [27] for the framelet transform. It is of
interest to note that there are other transform domains that can be exploited for images—for example,
second-generation wavelet [28] and synchrosqueezed wavelet transforms (SST) [29], to name a few.
However, the further studies of different domains are beyond scope of this work. To more clearly
observe the difference of two bases, the following experiment is conducted, where the coefficients
of the framelet and wavelet decompositions are provided in Figure 1. It is clearly seen that framelet
decomposition produces more sparse representation of the image than the wavelet one. Therefore, it is
expected that framelet based approach will outperform the wavelet based approach.
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(c)

Figure 1. Comparation of framelet and wavelet decomposition. (a) the lena image; (b) the sorted
framelet coefficients at level 1; (c) the sorted wavelet coefficients at level 1.

4. Problem Formulation and Algorithm Development

With the sparse representation in the transform domain, the degraded image in Equation (3) is
reexpressed more explicitly as

ỹ = H(WT
WT,FTαWT,FT) + ñ, (13)

whereWWT,FT respectively indicates the wavelet and framelet transform operator and αWT,FT is the
transform coefficient vector in the corresponding domain. To utilize the sparse property of the αWT,FT ,
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H, and n, the following optimization problem is developed to jointly conduct image reconstruction
and missing pattern estimation in the case of the salt-and-pepper noise. That is,

minimize ‖αWT,FT‖1 + λ1‖H‖1 + λ2‖ñ‖1

subject to ‖ỹ−H(WT
WT,FTαWT,FT)− ñ‖2

2 < ε,
(14)

with variables αWT,FT , H and ñ. To efficiently solve the optimization problem in Equation (14), a
two-step process is utilized. Let us first suppose that H is known; the sub-problem is a convex
optimization problem with variables αWT,FT and ñ. Second, with the estimated values of αWT,FT and
ñ, the sub-problem is another convex optimization with variable H. In Equation (14), the parameter of
ε is usually chosen empirically, but some approaches such as factor model can be utilized to obtain the
optimal value [30]. To summarize, the two-step procedure is as follows:

Initialize missing pattern vector.
• Step 1: Solve Equation (14) with the initialized/estimated missing pattern to obtain estimations of αWT,FT
and ñ as

minimize ‖αWT,FT‖1 + λ2‖ñ‖1

subject to ‖ỹ− Ĥ(WT
WT,FTαWT,FT)− ñ‖2 < ε,

(15)

where Ĥ is the initialized/estimated value of the missing pattern.
• Step 2: With the estimations from Step 1, solving Equation (14) yields missing pattern estimation as

minimize ‖H‖1

subject to ‖ỹ−H(WT
WT,FT α̂WT,FT)− ˆ̃n‖2 < ε,

(16)

where α̂WT,FT and ˆ̃n denote the estimated values of αWT,FT and ñ, respectively.
• Iterate Steps 1 and 2 until a stopping rule is met.

It is seen that at each step, it solves an `1-norm constrained optimization problem, and considering
the large size of the image, the following two algorithms of ADMM and APG are tailored to solve the
optimization problems.

4.1. Alternating Direction Method of Multipliers (ADMM)

To efficiently solve the optimization problems of Equations (15) and (16), in this paper, the
ADMM approach [31] is utilized in which the dual ascent and method of multipliers are utilized
recursively.

In light of ADMM approach, consider the Step 1 in Equation (15) first, and since the optimizations
of n and α are separable, the estimation of n is rewritten as

minimize ‖y− Ĥn‖2
2 + λ‖n‖1 (17)

with variable n, where the subscripts are omitted to simplify the notation expression and λ is the
regularization parameter. For this problem, the ADMM steps for estimating the n at lth iteration are
given by

nl+1 = minimizen
(
‖y− Ĥn‖2

2 + (ρ/2)‖n− zl + sl‖2
2
)
,

zl+1 = minimizez
(
λ‖z‖1 + (ρ/2)‖nl+1 − z + sl‖2

2
)
,

sl+1 = sl + rl+1 − zl+1.

(18)
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In the n-step of Equation (18), setting the derivative of the cost function with respect to n to
zero yields

−2ĤHy + 2ĤHĤn + ρ(n− zl + sl) = 0. (19)

Rearranging the terms in Equation (19) produces

(ρI + 2ĤHĤ)n = ρ(zl − sl) + 2ĤHy. (20)

By the use of Equation (20), the estimate of n in a closed-form expression is

n = (ρI + 2ĤHĤ)−1(ρ(zl − sl) + 2ĤHy). (21)

In the z-step of Equation (18), according to subdifferential calculus, the estimate of z is obtained
by componentwise soft thresholding as

zl+1 = Tλ/ρ

(
nl+1 + sl), (22)

where the soft thresholding operator T is given by

Tλ/ρ(a) =


a− λ/ρ, a > λ/ρ,

0, |a| < λ/ρ,
a + λ/ρ, a < −λ/ρ.

(23)

It is documented that soft thresholding is the proximity operator of the `1 norm—see [31].
To estimate α, without ambiguity, the subscript ofW is dropped, and the optimization problem

now is

minimize ‖y− ĤWα− n̂‖2
2 + λ‖α‖1. (24)

Similarly, the ADMM steps of α at lth iteration are

αl+1 = minimizeα
(
‖y− ĤWα− n̂‖2

2 + (ρ/2)‖α− gl + ul‖2
2
)

gl+1 = minimizeg
(
λ‖g‖1 + (ρ/2)‖αl+1 − g + ul‖2

2
)

ul+1 = ul + αl+1 − gl+1.

(25)

By the steps developed in Equations (19)–(23), the estimates for α and g can be respectively
obtained by

α = (ρI + 2WHĤHĤW)−1(ρ(gl − ul) + 2WH(y− n̂)), (26)

gl+1 = Tλ/ρ

(
αl+1 + ul). (27)

Now, we turn our attention into solving the Step 2 in Equation (16), and its ADMM steps are

Hl+1 = minimizeH
(
‖y−H(W α̂ + n̂)‖2

2 + (ρ/2)‖H− Zl + Ul‖2
F
)

Zl+1 = minimizeZ
(
λ‖Z‖1 + (ρ/2)‖Hl+1 − Z + Ul‖2

F
)

Ul+1 = Ul + Hl+1 − Zl+1.

(28)
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Similarly, the estimates of H and Z are respectively calculated by

H = (ρI + 2(W α̂ + n̂)H(W α̂ + n̂))−1(ρ(Zl −Ul)

+2(W α̂ + n̂)Hy),
(29)

Z = Tλ/ρ

(
Hl+1 + Ul). (30)

In accordance with Equation (29), as one sees, the terms ofW and y are known in this step and,
therefore, the (ρI + (W α̂ + n̂)H(W α̂ + n̂))−1 and (W α̂ + n̂)Hy can be computed in advance to save
the computational complexity. With the ADMM steps developed, the algorithm to solve Equation (14)
is summarized in Algorithm 1.

Algorithm 1 Alternating Direction Method of Multipliers (ADMM) based approach.

Objective function: λ1‖αWT,FT‖1 + λ2‖H‖1 + λ3‖n‖1 + ‖ỹ−H(WT
WT,FTαWT,FT + n)‖2

2
Outputs: Estimates of n, α and H
Initialization: l = 1 Repeat
l = l + 1
Step 1: Produce the estimate of n by Equations (18)–(23)
Step 2: Produce the estimate of α by Equations (25)–(27)
Step 2: Produce the estimate of H by Equations (29) and (30)
Step 3: Update the residual ỹ = ỹ−H(WT

WT,FTαWT,FT + n)
Until l > T {maximum iteration} or norm(ỹ) < δ {predefined threshold}.

4.2. Accelerated Proximal Gradient (APG)

In addition to ADMM, the accelerated proximal gradient (APG) approach has been widely
utilized to solve `1-norm regularization problem because of its fast convergence and excellent
performance [32,33]. It is developed for the following unconstrained optimization problem:

minimize F(x) + G(x), (31)

with variable x. In the APG algorithm, when the second function is `1-norm, namely G(x) = λ‖x‖1,
the update of x is obtained by the soft-thresholding operator, given by

xk+1 = Tλ/L(βl −
1
L
∇F(βl)). (32)

For our problem, let F(α, n, H) = ‖ỹ − H(WTα + n)‖2
2 and G(α) = λ1‖α‖1, G(n) =

λ2‖n‖1, G(H) = λ3‖H‖1; then, calculate the gradients of F(α, n, H) with respect to α, n, H, respectively.
With simple calculations, the gradients are of the form

∇nF(α, n, H) = −2HH(y−HWα−Hn),

∇αF(α, n, H) = −2WHHH(y−HWα−Hn),

∇HF(α, n, H) = −2(WTα + n)H(y−HWα−Hn).

(33)

With those gradients, the APG based approach to solve Equation (14) is now summarized in
Algorithm 2.
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Algorithm 2 Accelerated Proximal Gradient (APG) based approach.

Objective function: λ1‖αWT,FT‖1 + λ2‖H‖1 + λ3‖n‖1 + ‖ỹ−H(WT
WT,FTαWT,FT + n)‖2

2
Outputs: Estimates of n, α and H
Initialization: l = 0, n0 = n−1, α0 = α−1, H0 = H−1 t0 = 1, t−1 = 0
Repeat
βn

l = nl +
tl−1

tl
(nl − nl−1)

βα
l = αl +

tl−1
tl

(αl − αl−1)

βH
l = Hl +

tl−1
tl

(Hl −Hl−1)

nl+1 = Tλ1/L(βn
l −∇nF(βn

l , βα
l , βH

l )/L)
αl+1 = Tλ2/L(βα

l −∇αF(βn
l , βα

l , βH
l )/L)

Hl+1 = Tλ3/L(βH
l −∇HF(βn

l , βα
l , βH

l )/L)

tl+1 =
1+
√

1+4t2
l

2
l = l + 1
Until l > T {maximum iteration} or ‖WT(αl+1 − αl)‖2 < δ {predefined threshold}.

5. Numerical Studies

The numerical studies are conducted in this section to show the performance of the proposed
joint estimation method. For comparison purposes, the results from adaptive median filter and edge
preserving regularization (AM-IEPR) [11], standard median (MED) filter [6], adaptive median filter
(AMF) [7], beta process factor analysis (BPFA) [4], and fields of experts (FoE) [16] are also provided.
In simulations, for ADMM, the parameters of λ, ρ and T for the estimation of n are chosen as 0.25,
0.25 and 700, the parameters of λ, ρ and T for the estimation of α are chosen as 0.75, 0.075 and 700,
the parameters of λ, ρ and T for the estimation of H are chosen as 7.5, 750 and 50, and the maximum
iteration of n, α and H are set to be 3. For APG, the parameters of λ, L and T for the estimation of n are
chosen as 0.00045, 3 and 500, the parameters of λ, L and T for the estimation of α are chosen as 0.0003,
3 and 500, the parameters of λ, L and T for the estimation of H are chosen as 0.0002, 3 and 20, and the
maximum iteration of n, α and H are also set to be 3. The performance evaluations are quantitatively
measured by means of the peak signal-to-noise ratio (PSNR), the mean absolute error (MAE) and the
structural similarity index (SSIM), and they are of the form

PSNR = 10log10
2552

1
MN ∑i,j(ri,j − xi,j)2

,

MAE =
1

MN ∑
i,j
|(ri,j − xi,j)|,

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

(34)

where ri,j and xi,j denote the pixel values of the reconstructed image and the original image, respectively,
µx and µy respectively denote the average of x and y, σ2

x and σ2
y are the variances of x and y, σxy is

the covariance of x and y, c1 = (k1P)2, c2 = (k2P)2 are two variables to stabilize the division with
weak denominator, P is the dynamic range of the pixel-values, and k1 = 0.01 and k2 = 0.03 are chosen
by default.

5.1. Salt-and-Pepper Noise Only

In this section, the latent image corrupted by the salt-and-pepper only is studied first. Figure 2
depicts the restoration results of different algorithms under 70% noise level. Generally speaking, the
APG based solver provides better recovery performance than ADMM based solver, demonstrated in
Figure 2c–f. Moreover, the framelt domain based recovery algorithms outperform the wavelet domain
based algorithm because the nonorthogonality in the framelet improves the sparse representations.
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Therefore, the combination of framelet and APG, denoted by framelt+APG, outperforms all the other
algorithms. Specifically, the lena image reconstructed by framelt+APG shows the clean image with no
noise residual, seen in Figure 2c. On the other hand, the best performance provided by the competing
approaches is the AM-IEPR, but it still shows unclear effect, shown in Figure 2g. To observe the
performance of the different algorithms in terms of the objective criterion, the results of PSNR, MAE
and SSIM are provided in Figure 3, using 100 randomly selected images from SIPI Image Database.
Inspecting Figure 3a shows that the framelt+APG produces the best PSNR index among all the methods,
thereby yielding the best recovery performance, which is consistent with the conclusion in Figure 2.
From the SSIM, it is seen that the value of the framelt+APG is very close to one, whereas the other
algorithms drop significantly as the noise level increases.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Restoration results of different algorithms in the case of salt-and-pepper noise only.
(a) original image; (b) corrupted image with 70% salt-and-noise noise (6.95 dB); (c) reconstructed image
obtained by framelet+APG (28.2 dB); (d) reconstructed image obtained by framelet+ADMM (26.5 dB);
(e) reconstructed image obtained by wavelet+APG (26.1dB); (f) reconstructed image obtained by
wavelet+ADMM (23.7 dB); (g) reconstructed image obtained by AM-IEPR (27.6 dB); (h) reconstructed
image obtained by MED (27.3 dB); (i) reconstructed image obtained by AMF (27.4 dB). AM-IEPR:
adaptive median filter and edge preserving regularization, MED: median, AMF: adaptive median filter.
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Figure 3. Results of PSNR, MAE, and SSIM at different noise levels. (a) PSNR, (b) MAE, (c) SSIM.
PSNR: peak signal-to-noise ratio, MAE: mean absolute error, SSIM: structural similarity index.

5.2. Data Missing Only

In this section, the perforce of different algorithms is provided in the case of the data missing only.
The original image and degraded image with 70% random missing are presented in Figure 4a,b, and
the reconstructed images by proposed methods and other approaches are provided in Figure 4c–h.
In this case, the framelet+APG approach is able to recover the original clean image in great details and
hence produces the best PSNR of 29.1 dB. The second best PSNR is provided by the FoE approach,
but burry effect is still present. In Figure 5, using 100 randomly selected images from SIPI Image
Database, the indexes of PSNR, MAE and SSIM are provided in which the framelet+APG approach
produces the best and consistent PSNR across the range of low and high missing levels. Especially,
when the missing level is low, say 10%, the PSNR is more than 40 dB that is a 2 dB gain greater than the
second best one, and when the missing level is high, say 70%, the PSNR obtained is still close to 35 dB.
In addition to that, the value of the SSIM obtained by the framelet+APG is close to one even when
the missing level is high as 70%. In summary, the recovery performance obtained by framelet+APG is
satisfactory in terms of both visual and objective standards.

Figure 6 shows the restoration results of different algorithms under a specific data missing pattern.
A text message imbedded in the clean image is given in Figure 6a. The reconstructed images are
provided in Figure 6b–f. However, all the methods are able to recover the original image, but the
image obtained by the framelet+APG is visually superior to other schemes. Judging from the close-up
portion of the Figure 6, compared to the other images obtained, the great details of the image obtained
by the framelet+APG approach are preserved, demonstrated in Figure 7. The recovered text images in
Figure 8 show again that the framelet+APG algorithm produces best result, whereas the text recovered
by wavelet+ADMM shows faded effect.

In practice, the illegal action of covering licence plate is somehow a common means to avoid
penalties. To save manpower, the reconstruction of the original plate from the degraded one is desired,
and the proposed methods are applied in attempt to that end. In order to simulate the illegal action, one
number is completely missed in the original plate, shown in Figure 9b. In this data missing problem,
the proposed approaches are applied to reconstruct the original plate and the results are provided in
Figure 9c–f. It is observed that the APG based approaches are able to recover the original number,
whereas there are still some missing parts in the image obtained by the ADMM based approaches.
The experiment in this case is somehow ideal in the way that, if the intention is to avoid penalty,
the entire plate will be covered. If that is the case, we suspect that the technology would not be of
much use except for the local enforcements. Nonetheless, the proposed methods still will be useful in
recovering the partially covered plates.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4. Restoration results of different algorithms under random data missing only. (a) original image;
(b) corrupted image with 70% missing (7.23 dB); (c) reconstructed image obtained by framelet+APG
(29.1 dB); (d) reconstructed image obtained by framelet+ADMM (26.7 dB); (e) reconstructed image
obtained by wavelet+APG (25.9 dB); (f) reconstructed image obtained by wavelet+ADMM (23.6 dB);
(g) reconstructed image obtained by BPFA (27.8 dB); (h) reconstructed image obtained by FoE (28.3 dB).
FoE: fields of experts.
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Figure 5. Results of PSNR, MAE, and SSIM at different missing levels. (a)PSNR, (b)MAE, (c) SSIM
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(a) (b) (c)

(d) (e) (f)

Figure 6. Restoration results of different algorithms under a specific data missing pattern.
(a) corrupted image with 21.4% specific missing; (b) reconstructed image obtained by framelet+APG;
(c) reconstructed image obtained by framelet+ADMM; (d) reconstructed image obtained by
wavelet+APG; (e) reconstructed image obtained by wavelet+ADMM; (f) reconstructed image obtained
by FoE.

(a) (b) (c)

(d) (e) (f)

Figure 7. Close-up comparisons of Figure 6. (a) zoomed portion of Figure 6a; (b) zoomed portion of
Figure 6b; (c) zoomed portion of Figure 6c; (d) zoomed portion of Figure 6d; (e) zoomed portion of
Figure 6e; (f) zoomed portion of Figure 6f.
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(a) (b) (c)

(d)

Figure 8. Restoration results of different algorithms for text in Figure 6. (a) reconstructed text obtained
by framelet+APG; (b) reconstructed text obtained by framelet+ADMM; (c) reconstructed text obtained
by wavelet+APG; (d) reconstructed text obtained by wavelet+ADMM.

(a) (b) (c)

(d) (e) (f)

Figure 9. Restoration results of different algorithms under specific local data missing only. (a) original
image (online image); (b) corrupted image with specific local missing; (c) reconstructed image obtained
by framelet+APG; (d) reconstructed image obtained by framelet+ADMM; (e) reconstructed image
obtained by wavelet+APG; (f) reconstructed image obtained by wavelet+ADMM.
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5.3. Salt-and-Pepper Noise and Data Missing

Finally, in this section, the experiments are conducted in the presence of both salt-and-pepper noise
and data missing, which presents a very challenging case to recover the original image. In Figure 10b,
the 40% salt-and pepper noise and the 40% data missing are utilized to corrupt the image of lena, and
the restoration results obtained by the proposed methods are provided in Figure 10c–f. One observes
from these figures that the framelet+APG produces a clear image with PSNR of 29.3 dB that is 22.27 dB
greater than the corrupted image and 2.9 dB greater than the framelet+ADMM approach. The results
of image house in Figure 11 also confirm the conclusion from the image of lena. The PSNRs, MAEs, and
SSIMs under the different percentages of the noise and data missing are also provided in Tables 1–3.
Observing Table 1 reveals that, even when the corruption level is high, say 40%+40%, the highest
PSNR of the reconstructed image is 29.06 dB, which is 3.92 dB greater than the lowest PSNR produced
by wavelet+ ADMM. From Table 2, one observes that the MAEs obtained by the framelet+APG are the
lowest under all cases, suggesting the better recovery performance, and the SSIMs obtained by the
framelet+APG are always close to the one, presented in Table 3.

Finally, the proposed methods are applied to the scenario, where the data missing comes
from the text imbedding into a salt-and-pepper noise corrupted image, demonstrated in Figure 12a.
The reconstructed images are depicted in Figure 12b–e, where the images obtained by framelet+ADMM,
wavelet+APG, and wavelet+ADMM still show the text residuals. On the other hand, the image
reconstructed by framelel+ APG is satisfactory and preserves great details.

(a) (b) (c)

(d) (e) (f)

Figure 10. Restoration results of different algorithms under both salt-and-pepper noise and data
missing for image Cameraman. (a) original image; (b) corrupted image with 40% salt-and pepper
noise and 40% missing (7.03 dB); (c) reconstructed image obtained by framelet+APG (29.3 dB);
(d) reconstructed image obtained by framelet+ADMM (26.4 dB); (e) reconstructed image obtained by
wavelet+APG (26.1 dB); (f) reconstructed image obtained by wavelet+ADMM (24.7 dB).
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Table 1. Peak signal-to-noise ratios (PSNRs) for the lena image with different levels of salt-and-pepper
noise and data missing.

Salt-and-Pepper Noise+Missing 20% + 20% 30% + 30% 40% + 40%

framelet+APG 34.42 31.57 29.26
framelet+ADMM 33.17 29.56 27.35
wavelet+APG 32.29 29.13 27.04
wavelet+ADMM 30.57 27.46 25.34

Table 2. Mean absolute errors (MAEs) for the lena image with different levels of salt-and-pepper noise
and data missing.

Salt-and-Pepper Noise+Missing 20% + 20% 30% + 30% 40% + 40%

framelet+APG 1.54 2.57 3.82
framelet+ADMM 2.52 3.96 5.79
wavelet+APG 4.76 7.06 10.42
wavelet+ADMM 6.23 9.87 15.43

(a) (b) (c)

(d) (e) (f)

Figure 11. Restoration results of different algorithms under both salt-and-pepper noise and data
missing for image house. (a) original image; (b) corrupted image with 40% salt-and pepper noise and
40% missing (7.51 dB); (c) reconstructed image obtained by framelet+APG (31.4 dB); (d) reconstructed
image obtained by framelet+ADMM (28.6 dB); (e) reconstructed image obtained by wavelet+APG
(29.1 dB); (f) reconstructed image obtained by wavelet+ADMM (26.9 dB).
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Table 3. Structural similarity index (SSIMs) for the lena image with different levels of salt-and-pepper
noise and data missing.

Salt-and-Pepper Noise+Missing 20% + 20% 30% + 30% 40% + 40%

framelet+APG 0.994 0.988 0.982
framelet+ADMM 0.815 0.742 0.686
wavelet+APG 0.931 0.879 0.859
wavelet+ADMM 0.784 0.716 0.597

(a) (b) (c)

(d) (e)

Figure 12. Restoration results of different algorithms under both salt-and-pepper noise and
specific data missing. (a) corrupted image with 20% salt-and-pepper and 21.4% specific
missing; (b) reconstructed image obtained by framelet+APG; (c) reconstructed image obtained by
framelet+ADMM; (d) reconstructed image obtained by wavelet+APG; (e) reconstructed image obtained
by wavelet+ADMM.

6. Conclusions

In this work, a joint estimation method of image recovery, salt-and-pepper noise suppression and
data missing patter estimation are developed. Due to reformulations performed for the noise and the
data missing, they are represented by the sparse signals in the time domain. This property is utilized to
actively suppress the noise and perform missing pattern estimation. In order to achieve image recovery
in the presence of salt-and-pepper noise and data missing, a joint estimation is developed that allows
for simultaneously recovering the image, suppressing the noise, and estimating the unknown missing
pattern. The resultant joint estimation is an optimization problem and it is efficiently solved by ADMM
and APG based solvers. From the experiments conducted, the proposed joint estimation approach
generates a significant performance improvement compared with other state-of-the-art algorithms.
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