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Abstract: Efficient job scheduling reduces energy consumption and enhances the performance
of machines in data centers and battery-based computing devices. Practically important online
non-clairvoyant job scheduling is studied less extensively than other algorithms. In this paper, an
online non-clairvoyant scheduling algorithm Highest Scaled Importance First (HSIF) is proposed,
where HSIF selects an active job with the highest scaled importance. The objective considered is to
minimize the scaled importance based flow time plus energy. The processor’s speed is proportional
to the total scaled importance of all active jobs. The performance of HSIF is evaluated by using
the potential analysis against an optimal offline adversary and simulating the execution of a set of
jobs by using traditional power function. HSIF is 2-competitive under the arbitrary power function
and dynamic speed scaling. The competitive ratio obtained by HSIF is the least to date among
non-clairvoyant scheduling. The simulation analysis reflects that the performance of HSIF is best
among the online non-clairvoyant job scheduling algorithms.

Keywords: non-clairvoyant scheduling; online scheduling; traditional power function; speed scaling

1. Introduction

In the current era, the importance of the reduction of energy consumption in data centers and
battery based computing devices is emerging. Energy consumption has become a prime concern in
the design of modern microprocessors, especially for battery based devices and data centers. Modern
microprocessors [1,2] use dynamic speed scaling to save energy. The processors are designed in such
a way that they can vary its speed to conserve energy using dynamic speed scaling. The software
developed assists operating system to vary the speed of a processor and save energy. As per United
States Protection Agency [3], data centers represent 1.5% of total US electricity consumption. The
US data center workload requires estimated for 2020 requiring a total electricity use that varies by
about 135 billion kWh. Data center workloads continue to grow exponentially; comparable increases
in electricity demand have been avoided through the adoption of key energy efficiency measures [4].
Energy consumption can be reduced by scheduling jobs in an appropriate order. In the last few years,
a lot of job scheduling algorithms are proposed with dual objectives [5,6]. The objectives considered
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are: the first, to optimize some scheduling quality (criteria, e.g., flow time, weighted flow) and the
second, to minimize energy consumption. Scheduling algorithms with dual objectives have two
components [7]: Job Selection: It determines that out of active jobs which job to execute first on a
processor. Speed Scaling: At any time t, it determines the speed of a processor.

The traditional power function (power P = sα, where s and α > 1 are speed of a processor
and a constant, respectively [8,9]) is used widely for the analysis of scheduling algorithms. In this
paper, the arbitrary power function [10] is considered. The arbitrary power function is having certain
advantages over traditional power function [10]. The motivation to use the arbitrary power function
rather than traditional power function is explained comprehensively by the Bansal et al. [10]. Different
types of job scheduling models are available in literature. A job is a unit of work/task that an operating
system performs. It is like the applications you execute on computer (email client, word-processing,
web browsing, printing, information transfer over the Internet, or a specific action accomplished by
the computer). Any user/system activity on a computer is handled through some job. The size of a
job is the set of operations and microoperations required to be executed for completing some course
of action on a computer. In offline job scheduling, the complete job sequence is known in advance,
whereas jobs arrive arbitrarily in online job scheduling. To minimize the flow time, big jobs execute at
high speed with respect to their actual importance and small jobs execute at low speed with respect
to their actual importance. In non-clairvoyant job scheduling, there is no information regarding the
size of jobs at arrival time, whereas in clairvoyant job scheduling, the size of any job is known at
its arrival time. The practical importance of online non-clairvoyant job scheduling is higher than
clairvoyant scheduling [11]. Most processors do not have natural deadlines associated with them,
for example in Linux and Microsoft Windows [12]. The non-clairvoyant scheduling problem is faced
by the operating system in a time sharing environment [13]. There are several situations where the
scheduler has to schedule jobs without knowing the sizes of the jobs [14]. The Shortest Elapsed Time
First (SETF) algorithm, a variant of which is used in the Windows NT and Unix operating system
scheduling policies, is a non-clairvoyant for minimizing mean slowdown [14].

The theoretical study of speed scaling was initiated by Yao et al. [15]. Motwani et al. [13]
introduced the analysis of non-clairvoyant scheduling algorithm. Initial researches [16–21] considered
the objective to minimize the flow time, i.e., only the quality of service criteria. Later on, some new
algorithms were proposed with an objective of minimizing the weighted/prioritized flow time [22–24],
i.e., not only the quality of service but also the reduction in energy consumption by the machines.
Albers and Fujiwara [25] studied the scheduling problem with an objective to minimize the flow
time plus energy in the dynamic speed scaling approach. Online non-clairvoyant job scheduling
algorithms are studied less extensively than online clairvoyant job scheduling algorithms. Highest
Density First (HDF) is optimal [10] in online clairvoyant settings for the objective of fractional
weighted/importance-based flow time plus energy. HDF cannot operate in the non-clairvoyant
settings. HDF [10] algorithm always runs the job of highest density and the density of a job is its
importance divided by its size. In non-clairvoyant settings, the complete size of a job is only known
at the completion of it. Therefore, the HDF cannot be used directly in the non-clairvoyant settings.
Azar et al. [11] proposed an algorithm (Non-Clairvoyant) NC for the known job densities in the online
non-clairvoyant settings on a uniprocessor, using the traditional power function. In NC, the density
(i.e., the importance/size) is known at arrival time. Speed scaling and job assignment policy used in
non-clairvoyant algorithm NC-PAR (Non-Clairvoyant on Parallel identical machines) is based on a
clairvoyant algorithmic approach, which shows that NC-PAR is not a pure non-clairvoyant algorithm.
WLAPS (Weighted Latest Arrival Processor Sharing) [26] provides high priority to some latest jobs
which increases the average response time. WLAPS does not schedule a fixed portion of active jobs
rather it selects jobs having total importance equal to a fixed portion of the total importance of all active
jobs. It needs to update the importance of some job to avoid under-scheduling or over-scheduling.
It does not consider the importance of jobs in appropriate manner and suffers from high average
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response time. The above-mentioned deficiencies motivated us to continue the study in this field for
the objective of minimizing importance-based importance based flow time plus energy.

In this paper, an online non-clairvoyant scheduling Highest Scaled Importance First (HSIF) is
proposed with an objective of minimizing the scaled importance-based flow time plus energy. In HSIF,
rather than the complete importance of a job the scaled importance of a job is considered. The scaled
importance of a job increases if the job is new and it does not get the chance to execute; consequently,
the starvation condition is avoided. If a job executes then the scaled importance will decrease. It the
HSIF, the impotence of any job is calculated and it is the scaled value of the fixed importance of that
job. As the importance is time dependent it can be termed as dynamic importance/scaled importance.
This balances the speed and energy consumption. The speed of a processor is a function of the total
scaled importance of all active jobs. The competitive ratio of HSIF is analysed using the arbitrary
power function and amortized potential function analysis.

The remaining paper is segregated in the following sections: Next section describes some related
previous scheduling algorithms and their results. Section 3 provides notations used in our paper and
definitions necessary for discussion. In Section 4, the authors have explained a 2-comptitive scheduling
Highest Scaled Importance First (HSIF), which includes the algorithm as well as the comparison of
HSIF with the optimal algorithm using amortized analysis (potential function). In Section 5, a set of
jobs and traditional power function is used to examine the performance of HSIF. Section 6 draws some
concluding remarks and future scope of this study.

2. Related Work

In this section, review of some related work on the online non-clairvoyant job scheduling
algorithms using the traditional power function is presented. Irn et al. [27] proposed a concept
of migration of jobs and gave an online non-clairvoyant algorithm Selfish Migrate (SelMig). SelMig is
O(α2)-competitive using traditional power function with an objective of minimizing the total weighted
flow time plus energy on unrelated machines. Azar et al. [11] presented an online non-clairvoyant
uni-processor algorithm NC, wherein all jobs arrive with uniform density (i.e., weight/size = 1). NC
is
(

2 + 1
α−1

)
-competitive using the traditional power function with an objective of minimizing the

fractional flow time plus energy. NC uses unbounded speed model. Most of the studies using arbitrary
power function have been conducted with clairvoyant settings. Bansal et al. [12] showed that an online
clairvoyant algorithm ALG (Algorithm proposed by Bansal et al.) is γ-competitive with an objective
of minimizing the fractional weighted/importance-based flow time plus energy. ALG uses Highest

Density First (HDF) for job selection. The competitive ratio γ =

(
2(α−1)

α−(α−1)
1− 1

(α−1)

)
, more specifically

γ = 2 for 1 < α ≤ 2, γ = 2(α− 1) for α > 2, γ ≤ α − 1 for α ≥ 2 + e. For large α, the value of
γ ≈

( 2α
lnα

)
. Bansal et al. [10] introduced the concept of arbitrary power function and proved that

an online clairvoyant algorithm (OCA) is (2 + ε)-competitive with an objective of minimizing the
fractional weighted flow time plus energy. Authors presented [28] an expert and intelligent system that
applies various energy policies to maximize the energy-efficiency of data-center resources. Authors
claimed that around 20% of energy consumption can be saved in without exerting any noticeable
impact on data-center performance. Duy et al. [29] described a design, implementation, and evaluation
of a green scheduling algorithm using a neural network predictor to predict future load demand
based on historical demand for optimizing server power consumption in cloud computing. The
algorithm turns off unused servers (and restarts them whenever required) to minimize the number
of running servers; thus, minimizing the energy consumption. Authors defined [30] an architectural
framework and principles for energy-efficient cloud computing. They presented an energy-aware
resource provisioning heuristics that improves energy efficiency of the data center, while delivering the
negotiated Quality of Service. Sohrabi et al. [31] introduced a Bayesian Belief Network. It learns over
time that which of the overloaded virtual machines is best to be removed from a host. The probabilistic
choice is made among virtual machines that are grouped by their degree of Central processing
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unit (CPU) usage. Juarez et al. [32] proposed a real-time dynamic scheduling system to execute
efficiently task-based applications on distributed computing platforms in order to minimize the energy
consumption. They presented a polynomial-time algorithm that combines a set of heuristic rules and a
resource allocation technique in order to get good solutions on an affordable time scale. In OCA, the
work and weights/importance are arbitrary. It uses HDF for job selection and the power consumed is
calculated on the basis of speed of a processor, which is a function of fractional weights of all active
jobs. Chan et al. [26] showed that an online non-clairvoyant job scheduling algorithm named Weighted

Latest Arrival Processor Sharing (WLAPS) is 16
(

1 + 1
ε

)2
-competitive under the arbitrary power model

with an objective of minimizing the weighted flow time plus energy, where ε > 1. The value of α is
commonly believed to be 2 or 3 [26]. HDF is optimal [10] in online clairvoyant settings for the objective
of fractional weighted/importance-based flow time plus energy. In clairvoyant job scheduling, the
size of a job is known at arrival time but the same is not true in case of non-clairvoyant scheduling,
therefore HDF cannot be applied in non-clairvoyant setting. In this paper, a variant strategy of HDF is
considered but in online non-clairvoyant setting for the objective of minimizing the scaled importance
based flow time plus energy. Authors proposed a new strategy Highest Scaled Importance First (HSIF)
in which rather than the complete importance of a job the scaled importance of a job is considered.
The scaled importance of a job increases if the job is new and it does not get the chance to execute;
consequently, the starvation condition is avoided. If a job executes then the scaled importance will
decrease. This balances the speed and energy consumption. The speed of a processor is a function
of the total scaled importance of all active jobs. 2-competitive HSIF is analysed using the amortized
potential function against an offline adversary and arbitrary power function. The results of HSIF and
other related online non-clairvoyant job scheduling algorithm are provided in Table 1.

Table 1. Summary of previous results. SelMIg: Selfish Migrate; NC: Non-Clairvoyant; ALG: algorithm
proposed by Bansal et al.; WLAPS: Weighted Latest Arrival Processor Sharing; OCA: online clairvoyant
algorithm; HSIF: Highest Scaled Importance First.

Function
Type Used Algorithms

Competitiveness Clairvoyant/
Non-ClairvoyantGeneral α α = 2 α = 3

Traditional
Power

Function

SelMig [27] α2 4 9 Non-clairvoyant
NC [11]

(
2 + 1

α−1

)
3 2.5 Non-clairvoyant

ALG [12]

(
2α
lnα

)
( f or large value o f α)

2 2.52 Clairvoyant

Arbitrary
Power

Function

WLAPS [26] 16
(

1 + 1
ε

)2

where ε > 1
>16 >16 Non-clairvoyant

OCA [10] 2 2 2 Clairvoyant
HSIF [this paper] 2 2 2 Non-clairvoyant

3. Definitions and Notations

The necessary definitions, explanation of the terms for the study, the concept of arbitrary power
function and amortized potential function analysis are as follows:

3.1. Scheduling Basics

An online non-clairvoyant uni-processor job scheduling HSIF is proposed, where jobs arrive over
time and there is no information about the sizes of jobs. The importance/weight/priority (generated
by the system) imp(j) of any job j is known at job’s arrival and size is known only at the completion
of a job. Jobs are sequential in nature and preemption is permitted with no penalty. The speed of
a processor s is a rate at which the work is completed. At any time t, a job j is active if arrival time
ar(j) ≤ t and the remaining work rem(j, t) > 0. At time t, the scaled importance of a job j is pr(j, t).
Executed time ext(j, t) of a job j is current time t minus arrival time ar(j), i.e., ext(j, t) = (t− ar(j)).
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The scaled importance based flow of a job is integral over times between the job’s release time and
its completion time of its scaled importance at that time. The ascending inverse density (a) of a job
j is executed time divided by its importance, i.e., a(j) =

(
ext(j, t)
imp(j)

)
. The ascending inverse density

is recalculated discretely either on arrival of a new job or on completion of any job. The response
time of a job is the time interval between the starting time of execution and arrival time of a job. The
turnaround time is the time duration between completion time and arrival time of a job. The weight,
importance and significance of a job are used as the synonyms of the priority of jobs.

3.2. Power Function

The power function P(s) specifies the power used when processor executes at speed s. Any
reasonable power function which satisfies the following conditions is permitted [33]:

• Acceptable speeds are a countable collection of disjoint subintervals of [0, ∞ )

• All the intervals, excluding probably the rightmost, are closed on both ends
• The rightmost interval may be open on the right if the power P(s) approaches infinity, as the

speed s approaches the rightmost endpoint of that interval
• P(s) is non-negative, continuous and differentiable on all but countable many points

• Either there is a maximum allowable speed T, or the limit inferior of
(

P(s)
s

)
as s approaches

infinity is not zero Without loss of generality, it can be assumed that [24]:
• P(0) = 0
• P is strictly convex and increasing
• P is unbounded, continuous and differentiable

Let Q be P−1, i.e., Q(x) provides the speed that a processor can run at, if the limit of x is specified.

3.3. Amortized Local Competitive Analysis

The objective considered is (G) scaled importance-based flow time plus energy. Let GA(t) and
Go(t) be the increase in the objective in the schedule for any algorithm A and offline adversary Opt,
respectively at time t. Opt optimizes G. At any time t, for algorithm A, GA(t) is Pt

A
(
st

A
)
+ prt

A, where
st

A, Pt
A
(
st

A
)

and prt
A are speed of processor, power at speed st

a and scaled importance of all active jobs,
respectively. To prove that A is c-competitive a potential function Φ(t) is required which follows the
following conditions: Boundary Condition: Initially, when no job is released and at the end, after all
jobs are completed Φ = 0. Job Arrival and Completion Condition: There is no increment in Φ, when
any job arrives or completes. Running Condition: At any other time when no job arrives or completes,
GA(t) plus the rate of change of Φ is no more than c times of Go(t): GA(t) +

dΦ(t)
dt ≤ c·Go(t).

Lemma 1. (Young’s Inequality [34]) Let f be any real-valued, continuous and strictly increasing function such
that f(0) = 0. Then ∀ m, n≥0 ∫ m

0
f (x) dx +

∫ n

0
f−1(y) dy ≥ m·n (1)

where, f−1 is the inverse function of f .

4. A 2-Comptitive Scheduling Highest Scaled Importance First (HSIF)

4.1. Scaled Importance-Based Flow Plus Energy

An online non-clairvoyant uni-processor scheduling algorithm Highest Scaled Importance First
(HSIF) is proposed. In HSIF, all jobs arrive arbitrarily along with their importance and without
information about their sizes. The sizes of jobs are known only on the completion of jobs. The possible
speeds of a processor are a countable collection of disjoint subintervals of [0, ∞ ). The working of HSIF
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is observed using amortized potential analysis. HSIF is 2-competitive for the objective to minimize the
scaled importance based flow time plus energy.

4.1.1. Algorithm HSIF

The algorithm HSIF always selects an active job with the highest scaled importance at any time,
where the scaled importance pr(ji, t) of a job ji is computed as follows:

pr(ji, t) =


imp(ji,t)

1
2+log(ext(ji, t))

, if job is executing

imp(ji, t) ∗ (1+log(ext(ji, t))) if job is not executing

The executed time ext(ji, t) of a job j is ext(ji, t) = (t− ar(ji)). At any time t, the processor
executes at speed st

h = Q
(
prt

h
)
, where Q = P−1 and prt

h is the total scaled importance of all active
jobs for HSIF. As the algorithm HSIF is non-clairvoyant, the executed time assumed is its current size.
The intension here is that the instantaneous importance/priority must depend on its importance (system
generated) and size. If the job is not executing (job is waiting) then the scaled importance will increase
and if the job starts execution the partial importance of a job j will decrease with respect to increase
in execution.

Algorithm Highest Scaled Importance First (HSIF)

Input: na number of active jobs {j1, . . . , ji, . . . , jna}. At time t, the importance of all na active jobs
{imp(j1, t), . . . , imp(ji, t), . . . , imp( jna , t)} and the executed time for all active jobs
{ext(j1, t), . . . , ext(ji, t), . . . , ext( jna , t)}.
Output: The speed of all processors and execution sequence of jobs.

1. On arrival of a job ji
2. If CPU is idle allocate the job to CPU
3. pr(ji, t) = imp(ji, t)/(1/2 + log(ext(ji, t)))
4. speed of CPU st

h = Q
(

prt
h
)

5. else if CPU is executing some job jk
6. pr(ji, t) = imp(ji, t) ∗ (1 + log(ext(ji, t)))
7. prt

h = prt
h + pr(ji, t)

8. speed of CPU st
h = Q

(
prt

h
)

9. On completion of a job ji
10. if na 6= 0
11. prt

h = prt
h − pr(ji, t)

12. select the job jk with max(pr(t))
13. imp(jk, t) = pr(jk, t)
14. pr(jk, t) = imp(jk, t)/(1/2 + log(ext(jk, t)))
15. else speed of CPU st

h = 0

Theorem 1. An online non-clairvoyant uni-processor scheduling Highest Scaled Importance First (HSIF)
selects job with highest partial importance and consumes power equal to the total partial importance of all active
jobs under dynamic speed scaling. HSIF is 2-comptitive for the objective of minimizing scaled importance-based
flow time plus energy on arbitrary-work and arbitrary-importance of jobs.

In the rest of this section Theorem 1 is proven. For amortized local competitive analysis of HSIF,
a potential function is provided in next sub section.

4.1.2. Potential Function Φ(t)

Let Opt be the optimal offline adversary that minimizes scaled importance based flow time plus
energy. At any time t, let prt

o and prt
h be the total scaled importance of all active jobs for Opt and HSIF,
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respectively. At any time t, let prt
o(a) and prt

h(a) be the total scaled importance of all active jobs with
at least a ascending inverse density in Opt and HSIF, respectively. Let prt(a) be

(
prt

h(a)− prt
o(a)

)
+

,
where (·)+ = max{0, ·}. A potential function can be defined as follows:

Φ(t) = 2
∫ ∞

a=0

∫ prt(a)

x=0
P′(Q(x))dx da

Since P′(x) and Q(x) are increasing, P′(Q(x)) is an increasing function of x. Therefore,

dΦ(t)
dt

= 2
∫ ∞

0
P′
(
Q
(

prt(a)
))d

(
prt(a)

)
dt

da

To observe the effectiveness of the algorithm, it is required to observe the boundary condition, job
arrival and completion condition, and running conditions.

For the boundary condition, one can observe that before arrival of any job and after completion of
all jobs prt(a) = 0, ∀ a. Therefore, Φ(t) = 0. On arrival of any job, the value of prt(a) remains the same
for all a, therefore Φ(t) remains the same. The scaled importance of a job decreases continuously when
a job is executed by the HSIF or Opt, hence Φ(t) does not decrease on completion of a job. At any other
time t when no job arrives or completes, it is required to prove that the following inequality follows:

prt
h + P

(
st

h
)
+

dΦ(t)
dt

≤ c·
(

prt
o + P

(
st

o
))

, where c = 2

Since t is the current time only, the superscript t is omitted from the parameters in the rest of the
analysis. Let ao and ah be the minimum ascending inverse densities of an active job using Opt and
HSIF, respectively. Let ah (or ao) be ∞ if HSIF (or Opt) has no active job. HSIF executes jobs on the basis
of the highest scaled importance first at a speed sh. Therefore, prh(a) decreases at the rate of (sh/ah),
∀a ∈ [0, ah], and prh(a) remains the same for a > ah. Similarly, pro(a) changes at the rate of (so/ao)

∀a ∈ [0, ao], and pro(a) remains the same for a > ao. Rest of the analysis is based on the three cases
depending on pro > prh, pro > prh and pro = prh.

Case 1: If pro > prh then, one can observe that
(a) ∀a ∈ [0, ao], pro(a) = pro > prh ≥ prh(a)
⇒ ∀a ∈ [0, ao] , pr(a) =

(
prt

h(a)− prt
o(a)

)
+
= 0. Therefore, pr(a) remains the same. Hence for

a ≤ ao the rate of change of pr(a) = 0, i.e., d
dt pr(a) = 0.

(b) If a > ao, pro(a) remains the same, therefore the rate of change of pr(a) ≤ 0, i.e., d
dt pr(a) ≤ 0.

Considering both the sub cases it is observed that

dΦ

dt
= 2

∫ ∞

0
P′(Q(pr(a)))

d(pr(a))
dt

da ≤ 0

⇒ prh + P(sh) +
dΦ

dt
≤ 2 prh < (pro + P(so))

Hence the running condition is satisfied for pro > prh.
Case 2: If pro = prh then, one can observe that ∀a ∈ [0, ao] there is a decrement in pro(a) at the

rate of (so/ao), due to which the possible maximum rate of increment in Φ is:

dΦ

dt
≤ 2

∫ ao

0
P′(Q(pr(a)))

(
so

ao

)
da (2)

∀a ∈ [0, ao], pr(a) = (prh(a)− pro(a))+ ≤ prh − pro = 0,

⇒ P′(Q(pr(a))) = P′(Q(0)) (3)
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In Equation (1) substituting the values for f (x) = P′(x), m = so and n = P′(Q(0)), it provides:

∫ so

0
f (x) dx +

∫ P′(Q(0))

0
f−1(x) dx ≥ so·P′(Q(0)) (4)

Using Equations (3) and (4) in (2), it provides

dΦ

dt
≤ 2

∫ ao

0
P′(Q(pr(a)))

(
so

ao

)
da = 2 so·P′(Q(0))

≤ 2
(∫ so

0
f (x) dx +

∫ P′(Q(0))

0
f−1(x) dx

)
= 2 P(so)

⇒ prh + P(sh) +
dΦ

dt
≤ 2 prh + 2 P(so) = 2 (pro + P(so))

Hence the running condition is satisfied for pro = prh.
Case 3: If pro < prh then, one can observe that a decrement in prh(a) creates a decrement in Φ

and a decrement in pro(a) creates an increment in Φ.
∀a ∈ [0, ah], there is a decrement in prh(a) at the rate of (sh/ah), due to which the possible rate of

change of Φ is:
dΦ

dt
= 2

∫ ah

0
P′(Q(pr(a)))

(
− sh

ah

)
da (5)

∀a ∈ [0, ah], (a) = (prh(a)− pro(a))+ ≥ (prh − pro), thus

dΦ

dt
≤ 2

∫ ah

0
P′(Q(prh − pro))

(
− sh

ah

)
da = −2P′(Q(prh − pro))·sh (6)

∀a ∈ [0, ao], there is a decrement in pro(a) at the rate of (so/ao), due to which the possible rate of
change of Φ is

dΦ

dt
≤ 2

∫ ao

0
P′(Q(pr(a)))

(
so

ao

)
da (7)

∀a ∈ [0, ao], (a) = (prh(a)− pro(a))+ ≤ (prh − pro), thus

dΦ

dt
≤ 2

∫ ao

0
P′(Q(prh − pro))

(
so

ao

)
da = 2P′(Q(prh − pro))·so (8)

Adding the Equations (6) and (8)

dΦ

dt
≤ 2P′(Q(prh − pro))·so − 2P′(Q(prh − pro))·sh (9)

Let i, sh and so ≥ 0 be real numbers. Since P is strictly increasing and convex, P′(0) ≥ 0 and P′(x)
is strictly increasing. Substituting the values of f(x) = P′(x), m = so and n = P′

(
Q
(
prh − pro

))
in

Equation (1), it provides

so·P′(Q(prh − pro)) ≤
∫ so

0
f (x) dx +

∫ P′(Q(prh−pro))

0
f−1(x) dx (10)

= P(so) +
[

x f−1(x)
] f (Q(prh−pro))

f (0)
−
∫ f (Q(prh−pro))

f (0)
x d
(

f−1(x)
)

= P(so) + P′(Q(prh − pro))·Q(prh − pro)−
∫ Q(prh−pro)

0
f (y) dy

= P(so) + P′(Q(prh − pro))·Q(prh − pro)− (prh − pro) (11)
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Substituting the values from Equation (11) to (9), it provides

dΦ
dt ≤ 2P(so) +2P′(Q(prh − pro))·Q(prh − pro)− 2(prh − pro)

−2P′(Q(prh − pro))sh
= 2(P(so)− (prh − pro)) + 2P′(Q(prh − pro))·(Q(prh − pro)− sh)

(12)

Since sh = Q(prh) ≥ Q(prh − pro)⇒ (Q(prh − pro)− sh) ≤ 0, thus using this value in Equation (12),
it provides

dΦ

dt
≤ 2(P(so)− (prh − pro)) (13)

⇒ prh + P(sh) +
dΦ

dt
≤ 2 prh + 2 P(so)− 2(prh − pro) = 2 (P(so) + pro)

Hence the running condition is satisfied for pro < prh.

5. Illustrative Example

To examine the performance of HSIF, a set of seven jobs and the traditional power model is
considered, where Power = speedα and 2 ≤ α ≤ 3. The jobs arrived along with their importance
but the size of jobs was only known at their completion. The jobs are executed by using algorithms
HSIF and NC (the best known to date [11]); their executions are simulated. To demonstrate the
effectiveness of proposed scheduling, a simulator is used which is developed using Linux kernel.
Simulator facilitates to segregate the scheduling algorithm and decisively do not include the effects
of other activity present in a real kernel implementation. The jobs are considered as independent.
The proposed algorithm is for the identical homogeneous machines. To evaluate the performance of the
algorithm the (average) turnaround time and (average) response time is considered. The lesser value
of average response time reflects the prompt response of a request of jobs, which helps in avoiding
starvation condition. The least value of the turnaround time gives the indication that the algorithm is
capable to fulfil the resource requirement of all jobs in minimum time, which is a parameter of better
resource utilization. The hardware specifications are mentioned in the Table 2.

Table 2. Hardware specifications.

Simulation Parameters Values

CPU Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz
RAM 4.00 GB RAM

Hard Drive 1.0 TB
Operating System Red Hat Linux 6.1

Kernel Linux kernel version 2.2.12

The details of jobs and results computed are shown in the Table 3 and Figures 1–4.

Table 3. Job details and execution information using HSIF and NC.

Job Arrival Time Importance Size
Completion Time Turnaround Time Response Time

HSIF NC HSIF NC HSIF NC

J1 1 6 17.19 7 9 6 8 0 0
J2 5 4 25.06 16 20 11 15 3 5
J3 10 2 7.55 57 26 47 16 45 11
J4 13 5 42.67 26 40 13 27 4 14
J5 18 7 63.72 37 57 19 39 9 23
J6 22 1 13.51 68 65 46 43 36 36
J7 32 3 56.22 54 81 22 49 6 34

Average values 23.429 28.143 14.714 17.571
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As per the result stated in the Table 3, the response time (and turnaround time) of most of the
jobs and average response time (and average turnaround time) of all jobs executed by HSIF are lesser
than NC. It shows that the performance of HSIF is better than NC with respect to scheduling criteria.
Table 4 reflects that HSIF consumes less energy and performance objective importance based flow time
as well as importance based flow time plus energy is better for HSIF.
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Table 4. Three objectives values for jobs using HSIF and NC.

Job
Energy Consumed by

Individual Job
Importance Based Flow
Time of Individual Job

Importance Based Flow
Time Plus Energy of

Individual Job

HSIF NC HSIF NC HSIF NC

J1 59.77377 62.24247 253.36673 429.27161 313.1405 490.5141
J2 54.20484 107.6397 333.41095 1348.8623 387.6158 1456.502
J3 209.4849 20.23206 5397.3745 316.85458 5606.859 337.0866
J4 82.46035 218.886 584.23193 5219.856 666.6923 5438.742
J5 208.9329 388.0375 2226.1519 13632.101 2435.085 14020.14
J6 90.82497 44.05148 2118.0612 1816.3544 2208.886 1860.406
J7 82.03271 324.3166 906.74077 14714.469 988.7735 15038.79

Total 787.7144 1165.406 11819.338 37477.769 12607.05 38642.17

After observing the graphs of Figure 1a,b, it is clear that the HSIF adjusts the sum of the importance
of active jobs frequently (count of maxima), but the change in the values is small (difference in the
consecutive maxima). This shows that HSIF is maintaining the consistency in the performance.
The speed of a processor depends on the sum of importance; therefore, the speed of a processor is
having the same reflection. This frequent but less change in the speed makes the HSIF consistent in
performance. In NC, the frequency of change in the sum of the importance of active jobs is lesser, but
the difference in the change is very high. The speed of a processor using NC depends on the sum of
executed size of active jobs; therefore, the speed of a processor variates highly. This high variation
makes the NC less consistent in performance.

In Figure 1c, the number of high speed change (local minima) is six when processor is executing
jobs by using NC, which is due to the completion and start of execution of the jobs. There is a big
change in the speed of processor when the executing job is changed. There is no affect on the new job’s
arrival (accumulation of importance based flow) on the execution speed of executing job. In the speed
growth graph of processor using HSIF, more than six maxima and minima are available; it shows
that the speed of a processor increases on arrival of a new job, i.e., increases on accumulation of
scaled importance based flow time. It eliminates the possibility of starvation condition and improves
the performance. It shows that HSIF is capable to adjust the speed for maintaining and improving
the performance.
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Figure 2a shows that initially, at any time the total energy consumed by processor using HSIF
is higher than NC, but at the later stage the total energy consumed by processor using NC increases.
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The total flowtime of all active jobs when executed using NC is more than HSIF; consequently,
the energy consumed by processor when using NC is more than HSIF. The energy consumed by most
of the individual jobs when they are executed by HSIF is more than NC, as shown is Figure 2b.

The importance based flow time and importance based flow time plus energy values of individual
jobs are shown in the Figures 3 and 4 respectively. Most of the individual jobs are having the lesser
values of importance based flow time and importance based flow time plus energy when they are
executed by using HSIB than NC. HSIF and NC both are competing to reduce the value of the sum
of importance based flow time and importance based flow time plus energy, as shown in Figures 3a
and 4a, respectively. In the later stage the total values for HSIF is lesser than NC. The total value of
importance based flow time and importance based flow time plus energy for a processor by using
HSIF is lesser than NC. The value of objective considered is lesser at most of the time when using HSIF.
From the above observation, it is concluded that the performance of the HSIF is better and consistent
than the best known algorithm NC.
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To extend the analysis of the performance of HSIF, a second set of ten jobs and the traditional
power model is considered. The jobs arrived along with their importance but the size of jobs was only
known at their completion. This case is designed by assuming that the jobs arrive in the increasing
order of size. The jobs are executed by using algorithms HSIF and NC (the best known to date [11]);
their executions are simulated. The analysed data is mentioned in the Tables 5 and 6. In the Table 5 the
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job’s arrival time and importance are mentioned. The size is computed and observed at the completion
of the jobs. On the basis of the arrival time, starting time of execution and computed completion time
the metrics of quality are computed. In this analysis, the metrics of quality considered are turnaround
time, response time, power consumed and important based flow time. The computed results are
mentioned in the Tables 5 and 6. The lower values computed using HSIF and NC are marked in bold.
The jobs details such as arrival time, completion time importance and size are same for table as well as
Table 6.

Table 5. Details and execution information of jobs with increasing-order of size using HSIF and NC.

Job Arrival Time Importance Size
Completion Time Turnaround Time Response Time

HSIF NC HSIF NC HSIF NC

J1 1 3 5 4 5 3 4 0 0
J2 3 6 6 7 11 4 8 2 3
J3 7 5 8 10 18 3 11 1 5
J4 9 1 10 15 25 6 16 2 10
J5 10 2 10 44 32 34 22 29 16
J6 15 8 14 19 41 4 26 1 18
J7 15 4 17 38 50 23 35 19 27
J8 18 7 21 23 60 5 42 2 33
J9 20 9 22 28 71 8 51 4 41

J10 28 9 23 33 82 5 54 1 44

Average values 9.5 26.9 6.1 19.7

Table 6. Three objectives values for jobs arriving with increasing-order of size using HSIF and NC.

Job
Energy Consumed by

Individual Job
Importance Based Flow
Time of Individual Job

Importance Based Flow
Time Plus Energy of

Individual Job

HSIF NC HSIF NC HSIF NC

J1 15.5376 11.41421 33.58979 47.65685 49.12738 60.07107
J2 30.39531 18.67619 86.8327 140.9953 117.228 159.6715
J3 20.89599 28.23206 50.98298 291.4622 71.87897 319.6943
J4 7.883328 30.23206 30.62239 466.6225 38.50572 496.8546
J5 134.5865 30.23206 2437.376 648.0149 2571.962 678.2469
J6 40.10598 58.05148 114.9347 1445.479 155.0407 1503.531
J7 169.0947 61.05148 2119.993 2075.943 2289.088 2136.994
J8 48.41263 82.24247 166.9621 3353.273 215.3747 3435.516
J9 95.6372 104.5797 452.1316 5172.41 547.7688 5276.99

J10 52.16065 105.5797 171.5501 5541.149 223.7107 5646.729

Total 614.7099 530.2914 5664.975 19183.01 6279.685 19714.3

In Table 5, the turnaround time of nine jobs (out of ten) is lesser using HSIF than NC. It is clearly
visible from the data of Table 4 that nine jobs are having response time lesser using HSIF than NC.
As well as the average value of turnaround time and response time is lesser using HSIF than NC. On the
basis of such observations one can conclude that the working of HSIF is better than the best-known
NC in the special case also where the jobs may arrive in the increasing order of size. In Table 6, three
values of three objectives energy consumed, importance-based flow time and importance-based flow
time plus energy are mentioned. As per the values of energy consumed by the jobs six out of ten jobs
consumes lesser power using HSIF than NC; although, the total energy consumed by all ten jobs is
more using HSIF than NC. The importance is one of the main factors which forced the schedule of
execution of the jobs. The importance based flow times of eight jobs (out of ten) are lesser using HSIF
than NC. It is clearly visible from the data of Table 6 that the total importance based flow times of all
ten jobs are also lesser using HSIF than NC. This lesser value of metric reflects the better performance
of HSIF than NC. The third metric importance-based flow time plus energy (the main objective of
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the proposed algorithm) of eight jobs (out of ten) are lesser using HSIF than NC. As well as this, the
average values of importance-based flow time plus energy of all ten jobs lesser using HSIF than NC.
It can be concluded from the observations mentioned above that the objective is better fulfilled by
HSIF than NC.

To extend the analysis and increase the performance evaluation, a set of fifty arbitrary jobs with
arbitrary arrival time is considered. The size of jobs is computed at the completion time only. Five
different objective sets of values turnaround time, completion time, response time, important based
flow time, and importance-based flow time plus energy are computed. The simulation results are
stated in the Tables 7 and 8.

Table 7. Details and execution information of jobs with random-order of size and importance using
HSIF and NC.

Job Arrival
Time

Importance Size Density
Completion Time Turnaround Time Response Time

HSIF NC HSIF NC HSIF NC

J1 1 5 5.6606 1.13212 3 4 2 3 0 0
J2 4 9 11.2292 1.2476889 7 9 3 5 1 1
J3 6 4 6.9192 1.7298 9 15 3 9 2 8
J4 7 5 20.1173 4.02346 17 13 10 6 7 3
J5 10 10 9.6771 0.96771 12 34 2 24 1 22
J6 12 9 4.4418 0.4935333 13 42 1 30 1 26
J7 15 19 29.5157 1.5534579 23 20 8 5 3 1
J8 17 1 10.4579 10.4579 40 22 23 5 19 4
J9 22 2 15.2929 7.64645 33 25 11 3 7 1

J10 23 6 17.6643 2.94405 28 29 5 6 1 3
J11 28 3 5.3368 1.7789333 35 31 7 3 6 2
J12 35 2 9.6688 4.8344 43 37 8 2 6 0
J13 42 7 13.2021 1.8860143 74 63 32 21 31 20
J14 43 13 40.2411 3.0954692 49 49 6 6 1 1
J15 45 14 25.5583 1.8255929 52 66 7 21 5 19
J16 48 8 40.853 5.106625 56 54 8 6 5 2
J17 50 11 12.1269 1.1024455 66 105 16 55 15 54
J18 52 15 54.83 3.6553333 62 59 10 7 7 3
J19 53 16 26.8655 1.6790938 58 76 5 23 4 21
J20 55 7 14.0554 2.0079143 78 61 23 6 22 5
J21 55 9 12.1621 1.3513444 67 99 12 44 11 43
J22 57 17 10.3702 0.6100118 65 127 8 70 7 66
J23 57 19 11.8838 0.6254632 64 122 7 65 6 63
J24 57 20 13.2365 0.661825 63 119 6 62 5 60
J25 57 6 7.5921 1.26535 104 101 47 44 46 43
J26 66 12 11.5422 0.96185 69 110 3 44 2 43
J27 66 7 9.5916 1.3702286 102 91 48 25 47 24
J28 66 11 37.0895 3.3717727 72 73 6 7 4 5
J29 66 14 12.1389 0.8670643 68 114 2 48 1 47
J30 66 8 13.9307 1.7413375 84 74 18 8 17 7
J31 66 8 40.5456 5.0682 87 69 21 3 18 1
J32 66 11 12.1144 1.1013091 73 106 7 40 6 39
J33 70 5 5.3607 1.07214 106 108 36 38 35 38
J34 70 6 6.5298 1.0883 105 107 35 37 34 37
J35 70 7 8.6447 1.2349571 103 103 33 33 32 0
J36 70 8 12.6466 1.580825 93 82 23 12 22 11
J37 73 17 13.2672 0.7804235 75 116 2 43 1 42
J38 74 19 28.4346 1.4965579 77 85 3 11 2 9
J39 74 5 8.0565 1.6113 108 80 34 6 32 7
J40 76 9 13.8968 1.5440889 88 82 12 6 11 7
J41 76 4 2.2268 0.5567 109 131 33 55 32 52
J42 76 8 11.3447 1.4180875 100 85 24 9 23 10
J43 76 11 29.6523 2.6956636 82 78 6 2 4 1
J44 77 15 28.0842 1.87228 80 79 3 2 2 3
J45 81 16 14.7864 0.92415 83 112 2 31 1 30
J46 81 9 12.1814 1.3534889 99 92 18 11 17 10
J47 81 8 10.531 1.316375 101 99 20 18 19 19
J48 87 17 54.2747 3.1926294 92 90 5 3 2 0
J49 93 19 40.1127 2.1111947 98 95 5 2 2 0
J50 93 20 28.3624 1.41812 95 98 2 5 1 3

Total 671 1030 586 916
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Table 8. Three objectives values for jobs arriving with random-order of size using HSIF and NC.

Job
Energy Consumed by
Individual Job (ECiJ)

Importance Based Flow
Time of Individual Job

(IbFTiJ)

Importance Based Flow Time Plus
Energy of Individual Job

(ECiJ+IbFTiJ)

HSIF NC HSIF NC HSIF NC

J1 22.3590357 6.770212252 37.835144 21.78250015 59.19418 28.55271241
J2 46.61278883 36.02011586 100.76936 149.8960335 147.3821 185.9161493
J3 19.25226637 40.5746285 49.274854 228.881385 68.52712 269.4560135
J4 82.78841236 64.15138995 516.081 323.9872543 598.8694 388.1386443
J5 32.71807139 229.7936205 65.670287 2770.892657 98.38836 3000.686277
J6 20.23553431 237.102096 31.471069 3251.6285 51.7066 3488.730596
J7 202.7829624 100.2795249 983.04991 428.7590059 1185.833 529.0385308
J8 42.27367303 60.70577844 529.99832 345.0057207 572.272 405.7114991
J9 33.7634238 150.0710023 215.89783 545.5858599 249.6613 695.6568622

J10 42.07948789 114.1502519 134.28054 647.9364288 176.36 762.0866808
J11 34.33977776 14.82308387 158.99266 43.4028688 193.3324 58.22595267
J12 25.33865247 59.42091636 102.66566 97.67231059 128.0043 157.093227
J13 481.3604361 161.075095 8793.2476 1932.709082 9274.608 2093.784177
J14 85.00788703 276.5769064 315.44764 1565.904674 400.4555 1842.48158
J15 152.3533413 341.901121 692.16774 4081.84265 844.5211 4423.743771
J16 168.7093341 444.4016939 839.37168 2652.137703 1008.081 3096.539397
J17 336.5378155 607.6676007 3232.0993 17099.83442 3568.637 17707.50202
J18 235.6998431 431.6038271 1408.9237 2838.699032 1644.624 3270.302859
J19 127.5172457 376.2169431 458.29066 4628.367088 585.8079 5004.584031
J20 326.6801405 58.09137545 4373.3849 265.635671 4700.065 323.7270464
J21 197.7173871 396.6756722 1471.3821 8940.40525 1669.1 9337.080922
J22 236.5408466 1136.468047 1249.902 38599.64292 1486.443 39736.11097
J23 228.3316502 1206.144663 1083.7848 38904.03481 1312.116 40110.17947
J24 203.5856335 1213.137134 857.18131 37422.77458 1060.767 38635.91172
J25 645.8262181 264.632675 17000.018 5968.470375 17645.84 6233.10305
J26 61.42174437 526.4527132 160.7368 11821.89117 222.1585 12348.34388
J27 551.6457635 175.6851143 11254.291 2292.812971 11805.94 2468.498086
J28 100.7695008 196.6953921 406.78459 1250.246015 507.5541 1446.941407
J29 50.85532029 666.0633792 106.35154 16186.67205 157.2069 16852.73543
J30 280.5938868 64.87066875 2998.2111 295.8360188 3278.805 360.7066875
J31 318.7016553 216.3189596 3782.0731 771.3952677 4100.775 987.7142273
J32 132.192008 442.7510756 627.45436 9143.243446 759.6464 9585.994522
J33 394.0326882 190.53607 8038.7794 3725.90673 8432.812 3916.4428
J34 457.5086268 222.54415 9087.2176 4238.6777 9544.726 4461.22185
J35 498.2490083 231.6174786 9359.2487 3947.994271 9857.498 4179.61175
J36 373.348732 96.7904125 4998.1542 634.2753625 5371.503 731.065775
J37 61.75288892 720.4549719 129.14116 15634.62855 190.894 16355.08352
J38 91.44826525 212.2669018 234.05556 1311.454543 325.5038 1523.721444
J39 362.0526921 35.80565 6900.7966 146.4452 7262.849 182.25085
J40 197.7173871 63.77204444 1471.3821 258.1763556 1669.1 321.9484
J41 284.713719 210.1924482 5348.1421 5632.759218 5632.856 5842.951667
J42 392.3744651 80.70904375 5464.8046 447.7994813 5857.179 528.508525
J43 106.386545 53.26049632 437.28887 136.4336571 543.6754 189.6941535
J44 72.19599888 58.38507639 184.7807 157.6041655 256.9767 215.9892419
J45 58.12036605 489.3002581 121.54462 7737.146183 179.665 8226.446441
J46 315.6681227 99.67674444 3372.9875 602.1209333 3688.656 701.7976778
J47 317.1910961 152.6581875 3732.1705 1533.16375 4049.362 1685.821938
J48 117.5735219 291.1073658 405.47938 974.5465744 523.0529 1265.65394
J49 142.6166731 93.38620681 503.28556 247.963412 645.9022 341.3496188
J50 65.43614279 119.1602493 131.34057 454.3746597 196.7767 573.534909

Total 9834.978683 13738.91643 123957.6903 263339.4565 133791.6699 277078.3729

On the simulation data provided in the Tables 7 and 8, the statistical analysis is conducted.
The Independent Samples t Test is used to compare the means of two independent groups in
order to determine whether there is statistical evidence that the associated objective means are
significantly different.

In the first Table 9, Group Statistics, provides basic information about the group comparisons,
including the sample size (n), mean, standard deviation, and standard error for objectives by group.
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In the second section, Independent Samples Test, displays the results most relevant to the Independent
Samples t Test. There are two parts that provide different pieces of information: t-test for Equality of
Means and Levene’s Test for Equality of Variances. If the p value is less than or equal to the 0.05, then
one should use the lower row of the output (the row labeled “Equal variances not assumed”). If the p
value is greater than 0.05, then one should use the upper row of the output (the row labeled “Equal
variances assumed”). Based on the results provided in the Tables 9 and 10, the following conclusive
remarks are considered:

• For Turnaround Time p-value is less than 0.05 in Levene’s Test for Equality of Variances; therefore,
the null hypothesis (the variability of the two groups is equal) is rejected. The lower row of the
output (the row labeled “Equal variances not assumed”) is considered. A t test passed to reveal a
statistically reliable difference between the mean values of Turnaround Time of HSIF (M = 13.42,
s = 12.511366261) and NC (M = 20.6, s = 19.786616792) with t(82.782) = 2.17, p = 0.033.

• The total Turnaround Time for HSIF is 359 time unit lesser than the total Turnaround Time for
NC. The average Turnaround Time for HSIF is 7.18 time unit lesser than the average Turnaround
Time for NC.

• For Response Time p-value is less than 0.05 in Levene’s Test for Equality of Variances; therefore,
the null hypothesis (the variability of the two groups is equal) is rejected. The lower row of the
output (the row labeled “Equal variances not assumed”) is considered. A t test passed to reveal a
statistically reliable difference between the mean values of Response Time of HSIF (M = 11.72,
s = 12.748813) and NC (M = 18.32, s = 19.976966) with t(83.23) = 2.17, p = 0.05.

• The total Response Time for HSIF is 330 time unit lesser than the total Response Time for NC. The
average Response Time for HSIF is 6.6 time unit lesser than the average Response Time for NC.

• For Completion Time p-value is greater than 0.05 in Levene’s Test for Equality of Variances;
therefore, the null hypothesis (the variability of the two groups is equal) is considered. The upper
row of the output (the row labeled “Equal variances assumed”) is considered. A t test failed to
reveal a statistically reliable difference between the mean values of Completion Time of HSIF
(M = 67.4, s = 30.651431) and NC (M = 74.82, s = 34.902014) with t(98) = 1.13, p = 0.261.

• For Energy Consumed p-value is greater than 0.05 in Levene’s Test for Equality of Variances;
therefore, the null hypothesis (the variability of the two groups is equal) is considered. The upper
row of the output (the row labeled “Equal variances assumed”) is considered. A t test failed to
reveal a statistically reliable difference between the mean values of Energy Consumed of HSIF
(M = 196.7, s = 160.31869) and NC (M = 274.778, s = 291.01057) with t(98) = 1.66, p = 0. 1.

• Although, the statistical test failed to identify the difference in HSIF and NC on the basis of
energy consumed, the total Energy Consumed for HSIF is 3909.937747 unit lesser than the total
Energy Consumed for NC. The average Energy Consumed for HSIF is 78.07875 unit lesser than
the average Energy Consumed for NC.

• For Importance-based Flow Time p-value is less than 0.05 in Levene’s Test for Equality of Variances;
therefore, the null hypothesis (the variability of the two groups is equal) is rejected. The lower
row of the output (the row labeled “Equal variances not assumed”) is considered. A t test passed
to reveal a statistically reliable difference between the mean values of Importance-based Flow
Time of HSIF (M = 2479.15, s = 3625.2051) and NC (M = 15373.3, s = 21122.893) with t(63.08) = 1.95,
p = 0.05.

• The total Importance-based Flow Time for HSIF is 139381.7662 unit lesser than the total
Importance-based Flow Time for NC. The average Importance-based Flow Time for HSIF is
2787.635324 unit lesser than the average Importance-based Flow Time for NC.

• For Importance-based Flow Time plus Energy p-value is less than 0.05 in Levene’s Test for Equality
of Variances; therefore, the null hypothesis (the variability of the two groups is equal) is rejected.
The lower row of the output (the row labeled “Equal variances not assumed”) is considered. A t
test passed to reveal a statistically reliable difference between the mean values of Importance-based
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Flow Time plus Energy of HSIF (M = 2675.83, s = 3774.8105) and NC (M = 5541.57, s = 9740.346)
with t(63.39) = 1.94, p = 0.05.

• The total Importance-based Flow Time plus Energy for HSIF is 143286.703 unit lesser than the
total Importance-based Flow Time plus Energy for NC. The average Importance-based Flow Time
plus Energy for HSIF is 2865.73406 unit lesser than the average Importance-based Flow Time plus
Energy for NC.

It is clearly evident from the above statistical analysis and deduced results that HSIF performance
better than the best available scheduling algorithm NC.

To extend the perfection of the analysis of the evaluation of working of HSIF in comparison to
NC, the normalized Z-values of Energy Consumed by individual job (ECiJ) and importance-based
flow time of individual job (IbFTiJ) are computed and provided in the Tables 11 and 12. The sum
of Z values of Energy Consumed by individual job (ECiJ) and the importance-based flow time of
individual job (IbFTiJ) are added and converted in to the range [0 1] for individual job, as shown in
the Tables 11 and 12. For all jobs, the total of normalized values of ECiJ+IbFTiJ and the average of the
normalized values of ECiJ+IbFTiJ are provided (in the Tables 11 and 12) to reflect the difference between
the working of both algorithms. The normalized total values and average values of ECiJ+IbFTiJ are
lesser for HSIF than NC. It reflects that the normalized value of dual objective (i.e., the sum of energy
consumed and importance based flow time) for HSIF is lesser and better than NC. It is concluded from
the above analysis that HSIF performs better than NC.

Table 9. Group statistics of objectives values for HSIF and NC.

Group Statistics

Scheduling N Mean (M) Std. Deviation
(s)

Std. Error
Mean

Turnaround_time
HSIF 50 13.42 12.511366 1.7693744

NC 50 20.6 19.786617 2.7982502

Responce_time HSIF 50 11.72 12.748813 1.8029545

NC 50 18.32 19.976966 2.8251697

Completion_time HSIF 50 67.4 30.651431 4.3347669

NC 50 74.82 34.902014 4.9358902

Energy_consumed HSIF 50 196.7 160.31869 22.672486

NC 50 274.778 291.01057 41.155109

Importance_based_flow_time HSIF 50 2479.15 3625.2051 512.68143

NC 50 15373.3 21122.893 2987.2282

Importance_based_flow_time_plus_energy HSIF 50 2675.83 3774.8105 533.83883

NC 50 5541.57 9740.346 1377.4929
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Table 10. Statistics of objectives values for HSIF and NC using Independent Samples t Test.

Independent Samples Test

Objectives

t-Test for Equality of Means Levene’s Test for
Equality of Variances

t df
p-Value

(2-tailed)
Mean

Difference
Std. Error
Difference

95% Confidence Interval of
the Difference F p-Value

Lower Upper

Turnaround_Time
Equal Variances Assumed −2.17 98 0.033 −7.18 3.31072346 −13.7500229 −0.60997705 14.19 0

Equal Variances Not assumed −2.17 82.78 0.033 −7.18 3.31072346 −13.765152 −0.59484797

Responce_Time Equal Variances Assumed −1.97 98 0.05 −6.6 3.35145171 −13.2508468 0.050846846 13.27 0
Equal Variances Not assumed −1.97 83.23 0.05 −6.6 3.35145171 −13.2656255 0.065625546

Completion_Time Equal Variances Assumed −1.13 98 0.261 −7.42 6.56911077 −20.4561865 5.616186531 1.277 0.26
Equal variances Not assumed −1.13 96.39 0.261 −7.42 6.56911077 −20.4589043 5.618904335

Energy_Consumed Equal Variances Assumed −1.66 98 0.1 −78.078755 46.9870691 −171.323064 15.16555442 5.645 0.02
Equal Variances Not assumed −1.66 76.23 0.101 −78.078755 46.9870691 −171.656969 15.499459

Importance_based_flow_time Equal Variances Assumed −1.95 98 0.05 −2787.635324 1432.92269 −5631.22377 55.95311792 9.168 0
Equal Variances Not assumed −1.95 63.08 0.05 −2787.635324 1432.92269 −5651.02882 75.75817343

Importance_Based_Flow_time_plus_energy Equal Variances Assumed −1.94 98 0.05 −2865.734061 1477.31876 −5797.42506 65.95693429 8.953 0
Equal Variances Not assumed −1.94 63.39 0.05 −2865.734061 1477.31876 −5817.56103 86.09291177
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Table 11. Normalized objectives values for HSIF using z-score.

Job
Simple Values Z Values Sum

(ZHSIF_ECiJ + ZHSIF_IbFTiJ)
Normalized Sum

(in range [0 1])HSIF_ECiJ HSIF_IbFTiJ ZHSIF_ECiJ ZHSIF_IbFTiJ

J1 22.359 37.835144 −1.08746 −0.67343 −1.76089 0.147822
J2 46.6128 100.76936 −0.93618 −0.65607 −1.59225 0.18155
J3 19.2523 49.274854 −1.10684 −0.67027 −1.77711 0.144578
J4 82.7884 516.081 −0.71053 −0.54151 −1.25204 0.249592
J5 32.7181 65.670287 −1.02285 −0.66575 −1.6886 0.16228
J6 20.2355 31.471069 −1.10071 −0.67518 −1.77589 0.144822
J7 202.783 983.04991 0.03795 −0.41269 −0.37474 0.425052
J8 42.2737 529.99832 −0.96324 −0.53767 −1.50091 0.199818
J9 33.7634 215.89783 −1.01633 −0.62431 −1.64064 0.171872

J10 42.0795 134.28054 −0.96445 −0.64682 −1.61127 0.177746
J11 34.3398 158.99266 −1.01273 −0.64001 −1.65274 0.169452
J12 25.3387 102.66566 −1.06888 −0.65555 −1.72443 0.155114
J13 481.3604 8793.2476 1.77559 1.74172 3.51731 1.203462
J14 85.0079 315.44764 −0.69669 −0.59685 −1.29354 0.241292
J15 152.3533 692.16774 −0.27661 −0.49293 −0.76954 0.346092
J16 168.7093 839.37168 −0.17459 −0.45233 −0.62692 0.374616
J17 336.5378 3232.0993 0.87225 0.2077 1.07995 0.71599
J18 235.6998 1408.9237 0.24327 −0.29522 −0.05195 0.48961
J19 127.5172 458.29066 −0.43153 −0.55745 −0.98898 0.302204
J20 326.6801 4373.3849 0.81076 0.52252 1.33328 0.766656
J21 197.7174 1471.3821 0.00635 −0.27799 −0.27164 0.445672
J22 236.5408 1249.902 0.24851 −0.33908 −0.09057 0.481886
J23 228.3317 1083.7848 0.19731 −0.38491 −0.1876 0.46248
J24 203.5856 857.18131 0.04295 −0.44742 −0.40447 0.419106
J25 645.8262 17000.018 2.80146 4.00553 6.80699 1.861398
J26 61.4217 160.7368 −0.84381 −0.63953 −1.48334 0.203332
J27 551.6458 11254.291 2.214 2.42059 4.63459 1.426918
J28 100.7695 406.78459 −0.59837 −0.57166 −1.17003 0.265994
J29 50.8553 106.35154 −0.90971 −0.65453 −1.56424 0.187152
J30 280.5939 2998.2111 0.5233 0.14318 0.66648 0.633296
J31 318.7017 3782.0731 0.761 0.35941 1.12041 0.724082
J32 132.192 627.45436 −0.40237 −0.51078 −0.91315 0.31737
J33 394.0327 8038.7794 1.23088 1.5336 2.76448 1.052896
J34 457.5086 9087.2176 1.62682 1.82281 3.44963 1.189926
J35 498.249 9359.2487 1.88094 1.89785 3.77879 1.255758
J36 373.3487 4998.1542 1.10186 0.69486 1.79672 0.859344
J37 61.7529 129.14116 −0.84174 −0.64824 −1.48998 0.202004
J38 91.4483 234.05556 −0.65651 −0.6193 −1.27581 0.244838
J39 362.0527 6900.7966 1.0314 1.21969 2.25109 0.950218
J40 197.7174 1471.3821 0.00635 −0.27799 −0.27164 0.445672
J41 284.7137 5348.1421 0.54899 0.7914 1.34039 0.768078
J42 392.3745 5464.8046 1.22054 0.82358 2.04412 0.908824
J43 106.3865 437.28887 −0.56333 −0.56324 −1.12657 0.274686
J44 72.196 184.7807 −0.7766 −0.63289 −1.40949 0.218102
J45 58.1204 121.54462 −0.8644 −0.65034 −1.51474 0.197052
J46 315.6681 3372.9875 0.74208 0.24656 0.98864 0.697728
J47 317.1911 3732.1705 0.75158 0.34564 1.09722 0.719444
J48 117.5735 405.47938 −0.49355 −0.57202 −1.06557 0.286886
J49 142.6167 503.28556 −0.33735 −0.54504 −0.88239 0.323522
J50 65.4361 131.34057 −0.81877 −0.64764 −1.46641 0.206718

Average 196.69957 2479.153805 2 × 10−7 8.88178 × 10−18 2 × 10−7 0.50000004

Total 9834.9785 123957.6903 1 × 10−5 0 1 × 10−5 25.000002

Table 12. Normalized objectives values for NC using z-score.

Job
Simple Values Z Values Sum

(ZNC_ECiJ + ZNC_IbFTiJ)
Normalized Sum

(in range [0 1])NC_ECiJ NC_IbFTiJ ZNC_ECiJ ZNC_IbFTiJ

J1 6.7702 21.7825 −0.92096 −0.55435 −1.47531 0.204938
J2 36.0201 149.896034 −0.82045 −0.54081 −1.36126 0.227748
J3 40.5746 228.881385 −0.80479 −0.53246 −1.33725 0.23255
J4 64.1514 323.987254 −0.72378 −0.52241 −1.24619 0.250762
J5 229.7936 2770.892657 −0.15458 −0.26379 −0.41837 0.416326
J6 237.1021 3251.6285 −0.12947 −0.21298 −0.34245 0.43151
J7 100.2795 428.759006 −0.59963 −0.51133 −1.11096 0.277808
J8 60.7058 345.005721 −0.73562 −0.52019 −1.25581 0.248838
J9 150.071 545.58586 −0.42853 −0.49899 −0.92752 0.314496

J10 114.1503 647.936429 −0.55197 −0.48817 −1.04014 0.291972
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Table 12. Cont.

Job
Simple Values Z Values Sum

(ZNC_ECiJ + ZNC_IbFTiJ)
Normalized Sum

(in range [0 1])NC_ECiJ NC_IbFTiJ ZNC_ECiJ ZNC_IbFTiJ

J11 14.8231 43.402869 −0.89328 −0.55206 −1.44534 0.210932
J12 59.4209 97.672311 −0.74003 −0.54633 −1.28636 0.242728
J13 161.0751 1932.709082 −0.39072 −0.35238 −0.7431 0.35138
J14 276.5769 1565.904674 0.00618 −0.39115 −0.38497 0.423006
J15 341.9011 4081.84265 0.23065 −0.12524 0.10541 0.521082
J16 444.4017 2652.137703 0.58288 −0.27634 0.30654 0.561308
J17 607.6676 17099.83442 1.14391 1.25064 2.39455 0.97891
J18 431.6038 2838.699032 0.5389 −0.25663 0.28227 0.556454
J19 376.2169 4628.367088 0.34857 −0.06748 0.28109 0.556218
J20 58.0914 265.635671 −0.7446 −0.52858 −1.27318 0.245364
J21 396.6757 8940.40525 0.41888 0.38827 0.80715 0.66143
J22 1136.468 38599.64292 2.96103 3.52297 6.484 1.7968
J23 1206.1447 38904.03481 3.20046 3.55515 6.75561 1.851122
J24 1213.1371 37422.77458 3.22448 3.39859 6.62307 1.824614
J25 264.6327 5968.470375 −0.03486 0.07416 0.0393 0.50786
J26 526.4527 11821.89117 0.86483 0.69281 1.55764 0.811528
J27 175.6851 2292.812971 −0.34051 −0.31432 −0.65483 0.369034
J28 196.6954 1250.246015 −0.26832 −0.42451 −0.69283 0.361434
J29 666.0634 16186.67205 1.34457 1.15413 2.4987 0.99974
J30 64.8707 295.836019 −0.72131 −0.52538 −1.24669 0.250662
J31 216.319 771.395268 −0.20088 −0.47512 −0.676 0.3648
J32 442.7511 9143.243446 0.5772 0.40971 0.98691 0.697382
J33 190.5361 3725.90673 −0.28948 −0.16286 −0.45234 0.409532
J34 222.5442 4238.6777 −0.17949 −0.10866 −0.28815 0.44237
J35 231.6175 3947.994271 −0.14831 −0.13938 −0.28769 0.442462
J36 96.7904 634.275363 −0.61162 −0.48961 −1.10123 0.279754
J37 720.455 15634.62855 1.53148 1.09578 2.62726 1.025452
J38 212.2669 1311.454543 −0.21481 −0.41804 −0.63285 0.37343
J39 35.8057 146.4452 −0.82118 −0.54117 −1.36235 0.22753
J40 63.772 258.176356 −0.72508 −0.52936 −1.25444 0.249112
J41 210.1924 5632.759218 −0.22194 0.03868 −0.18326 0.463348
J42 80.709 447.799481 −0.66688 −0.50932 −1.1762 0.26476
J43 53.2605 136.433657 −0.7612 −0.54223 −1.30343 0.239314
J44 58.3851 157.604166 −0.74359 −0.53999 −1.28358 0.243284
J45 489.3003 7737.146183 0.73716 0.26109 0.99825 0.69965
J46 99.6767 602.120933 −0.6017 −0.49301 −1.09471 0.281058
J47 152.6582 1533.16375 −0.41964 −0.39461 −0.81425 0.33715
J48 291.1074 974.546574 0.05611 −0.45365 −0.39754 0.420492
J49 93.3862 247.963412 −0.62332 −0.53044 −1.15376 0.269248
J50 119.1602 454.37466 −0.53475 −0.50863 −1.04338 0.291324

Average 274.77833 5266.789129 2 × 10−7 4 × 10−7 6 × 10−7 0.50000012

Total 13738.9165 263339.4565 1 × 10−5 2 × 10−5 3 × 10−5 25.000006

6. Conclusions and Future Work

An online non-clairvoyant job scheduling algorithm Highest Scaled Importance First (HSIF) is
proposed with an objective to minimize the sum of scaled importance based flow time and energy
consumed. HSIF uses the arbitrary power function and dynamic speed scaling policy for uni-processor
system. The working of HSIF is analysed using the amortized potential function analysis against
an optimal offline adversary. The competitive ratio of HSIF is 2. The competitive ratio of HSIF
is lesser than the non-clairvoyant scheduling algorithms LAPS, SelMig, NC, R3, EtRR, ALG, and
WLAPS; similar to an online clairvoyant scheduling Alg. Additionally, a set of jobs is considered
as an illustrative example and the execution of the jobs on a processor is simulated by using HSIF
and the best known algorithm NC. The simulation results show that the performance of the HSIF
is consistent and better than the other online non-clairvoyant algorithm. On the basis of amortized
potential function analysis and simulation results, it is concluded that the HSIF performs better than
any other online non-clairvoyant algorithm. Use of HSIF in data centres and in battery based devices
will reduce power consumption and improve computing capability. The further enhancement of our
study will be to evaluate the working of HSIF in the multi-processor environment and the experiments
will be conducted in the real time environment as well as with more number of test cases. Along with
the amortized analysis and simulation the result will be analysed using statistical tests. The working of
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HSIF will be evaluated in the cloud/fog environment for resource allocation and energy optimization.
One open problem is to reduce the competitive ratio that is achieved in this paper. In the further
extension of this work, the number of jobs may be increased significantly to enhance the analysis of
the algorithmic evaluation.
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