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Abstract: A phasor measurement unit (PMU) can provide phasor measurements to the distribution
network to improve observability. Based on pre-configuration and existing measurements, a network
compression method is proposed to reduce PMU candidate locations. Taking the minimum number
of PMUs and the lowest state estimation error as the objective functions and taking full observability
of distribution network as the constraint, a multi objective model of optimal PMU placement
(OPP) is proposed. A hybrid state estimator based on supervisory control and data acquisition
(SCADA) and PMU measurements is proposed. To reduce the number of PMUs required for full
observability, SCADA measurement data are also considered into the constraint by update and
equivalent. In addition, a non-dominated sorting genetic algorithm-II (NSGA-II) is applied to solve
the model to get the Pareto set. Finally, the optimal solution is selected from the Pareto set by the
technique for order preference by similarity to ideal solution (TOPSIS). The effectiveness of the
proposed method is verified by IEEE standard bus systems.

Keywords: phasor measurement unit; distribution network; compression; cost; state estimation error;
supervisory control and data acquisition; multi objective model

1. Introduction

High penetration of distributed generator and controllable load has changed the fundamental way
of the operation in the distribution network from a passive to active network [1–3]. The distribution
network is developing in an intelligent direction [4]. The uncertainty of distributed generator and
load brings great challenges to the stable operation of the distribution network, such as bidirectional
power flow and increased voltage fluctuation. Furthermore, the distribution network topology changes
dynamically to reduce power loss and voltage deviation [5]. As uncertainty increases, real-time
measurement devices need to be added to the distribution network. Improving the observability of the
distribution network is an important way to realize the intellectualization of the distribution network.
Monitoring network state is traditionally done through the supervisory control and data acquisition
(SCADA) system whose measurements are usually unsynchronized [6]. Among those newly-developed
devices that aim at realizing the online system monitoring, phasor measurement unit (PMU) opens
a new avenue for the distribution system. PMU is a real-time measurement device based on global
positioning system (GPS), and it can receive the GPS timing signal to realize the synchronous acquisition
of bus data. Compared with other measurement devices, PMU can deliver highly synchronized direct
phasor measurements because it has high GPS synchronization accuracy. Therefore, the PMU can not
only be applied to real-time state estimation of the distribution system and optimize its operating state,
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but also can quickly deal with problems such as anomaly detection [7], overcurrent protection [8],
steady-state model synthesis [9], network topology detection [10], reliability analysis [11] and so on.
Reference [7] proposes a layered architecture for monitoring networks based on the PMU measurements
and establishes a set of analyses and sensor primitives to detect anomalous behavior in the control
perimeter. Reference [8] proposes a scheme to enhance the traditional overcurrent protection scheme by
using PMU functions embedded in solid state transformer and feeder protection relay. The proposed
solution not only can enable the relay to operate correctly at its original range but also can maintain
coordination with each other. In Reference [9], a new method of synthesizing the steady-state model
of the unbalanced distribution network is proposed, which uses real-time measurements provided
by PMU and can reduce the complexity of the network model caused by the increase of the power
supply in the distribution network. In Reference [10], a new method for detecting topology changes in
the distribution network is proposed, which is called the time series signature verification method
for topology detection. This method analyzes the measurements provided by PMU installed on the
distribution feeder. Reference [11] analyzes the reliability of the distribution system in the presence
of the adjusted download resources with the PMU measurements from the same distribution feeder,
which considers the practical regulation-eligible load types, the practical distribution-level protection
devices, the impact of delay and so on. Therefore, PMU is considered as one of the most important
measurement devices, and utilization of PMU in the distribution network is of great interest.

PMU can acquire the voltage phasor of the bus and the associated branch current phasor at high
frequency [12]. When the voltage phasor of a bus can be measured directly or indirectly, the bus is
called an observable bus. When all the buses of the distribution network are observable, the network
is called an observable network. If PMU is installed on each bus, the network is fully observable.
However, the installation cost is high, and it is difficult to achieve the full deployment of PMU in
the short term. How to achieve optimal PMU placement (OPP) in a distribution network encounters
technical challenges.

The purpose of OPP is to find out the most representative location and place a PMU on it.
Around the theme of improving the level of observability, the main goals of OPP include minimizing
the number of PMUs required, maximizing measurement redundancy and handing contingency
constraint. The main goal is to minimize the number of PMUs required. In Reference [13], an OPP
method for complete observability of a system under normal operating conditions is proposed.
Tabu search algorithm is used to determine the minimum number of PMUs required to make the
system observable. A new PMU layout formula is developed to ensure the full observability of the
network in Reference [14]. It takes the network observability under all possible arrangements of line
connections at complex buses into account. Another goal is to maximize measurement redundancy.
Measurement redundancy represents the number of times the bus is observed directly or indirectly.
The solution with the largest network measurement redundancy is chosen as the best choice in
Reference [15]. Network measurement redundancy is the sum of the measurement redundancy of
all buses. In Reference [16], a multi-objective probability model is proposed for the problem of OPP.
The proposed model simultaneously optimizes two objective functions: minimizing the number of
PMUs and maximizing the expected value of network measurement redundancy. Various accidents
may occur in the network. Therefore, it is important to analyze the observability in these conditions
which include line outage and PMU failure. In Reference [17], a new OPP method which considers
emergency constraints is provided. The proposed method is based on n–k redundancy criterion using
robust optimization. This security standard ensures network observability in any accidental state,
including up to k loss of PMUs. In Reference [18], the OPP problem is performed in order to achieve a
fully observable network under normal and emergency conditions considering network expansion.
To this end, the strain index is introduced through the modeling process of n–1 contingency states.

Unlike the transmission grid, the measurement data of the distribution network is insufficient,
which renders most distribution networks unobservable [19]. Existing real-time measurements of
the distribution network are mainly provided by the SCADA system [20], and the remote terminal
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unit (RTU) is the main measurement device. On the one hand, the sampling period of SCADA is
much longer than that of PMU [21]. On the other hand, the SCADA system cannot provide the
phase angle data directly. The lack of a sufficient number of measurements is usually solved by
introducing pseudo-measurements, which are mainly represented by historical measurements or
forecast measurements on generators production and power consumption [22,23].

The main purpose of improving network measurement redundancy is to improve the accuracy
of state estimation. The distribution network state estimation technology is expected to be able to
monitor the operating status of the system accurately and provide reliable data for other advanced
management software of the active distribution network, such as transient stability [24], voltage
security visualization [25], fault location identification [26], dynamic control strategies [27] and so on.
Therefore, taking state estimation accuracy instead of network measurement redundancy into the
OPP problem can be more helpful to improve the observability and controllability of the distribution
network. Distribution system state estimation methods proposed are mainly based on weighted least
squares (WLSs) algorithms [28–30], and considerable effort has been devoted to reducing computational
requirements. The main differences between proposals are basically the choice of state variables, the
simplification of accelerated estimation and the technique of combining heterogeneous measurements.
The two main kinds of state variables are bus voltages and branch currents. The weight associated
with measurement is proportional to the accuracy of the measurement. Reference [28] discusses the
correlation and importance of the weighted least squares estimation approach and presents the impact
of the input data correlation on state estimation results. The implementation details of the constrained
weighted least squares state estimation method are proposed in Reference [29], which can implement
the equality constraint formula of the WLS method. Reference [30] uses real-time measurements and
all available pseudo-measurements, the model is extended to include the slack bus voltage during the
estimation process, and the possibility to treat radial and weakly mesh topologies is also present.

In order to reduce the number of PMUs required for the full observability, zero injection bus (ZIB)
should be considered into the OPP model. If a bus is not connected with any load, and the current
injection of the bus and the power measurements of the bus are both zero, this kind of bus can be
called a ZIB [6]. The observability of the distribution network can be improved by the presence of ZIB
by Kirchhoff laws [31]. The existing methods of taking ZIBs into consideration are mainly divided
into three types: linear inequality constraint, nonlinear modification and topology transformation.
Reference [17] incorporates ZIBs to the OPP model by adding a linear inequality constraint. The number
of added inequality constraints is equal to the number of ZIBs. Although this kind of method can
guarantee that the model is nonlinear, this kind of method is difficult to apply when there are other
measurements or multiple ZIBs are connected in the system. Topology transformation refers to merging
the ZIB with one of the connected buses. Nonlinear modification means that the ZIB is applied to
the OPP problem by modifying existing constraints. This method is easy to implement and has good
adaptability, but it also makes the model nonlinear. In Reference [32], selection rules for topology
transformation are proposed. ZIBs are merged with one of their connected buses. Based on the three
rules, the proposed method determines the best bus to merge with the ZIB to get the minimum number
of PMUs required for the full observability. However, using topology transformation to deal with ZIBs
has two limitations: to identify the locations of PMUs and the importance of selecting the merged bus.
Although the number of PMUs required for the full observability is reduced, the optimization effect is
affected by the selection of the bus which is merged with ZIB.

Due to a large number of buses in the distribution network, only using PMU measurements to
realize the network observable fully is not economic. Therefore, conventional measurements should
also be applied to the OPP problem. Conventional measurements of the distribution network are
mainly provided by the SCADA system. In Reference [33], conventional measurements are modeled,
and a recipe is introduced when multiple branches are adjacent to the same bus. The changes in the
flow measurements after branch interruption are also considered in the proposed OPP method to
obtain a more practical solution for the distribution network. Only power flow measurements are used
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in this OPP model, and other useful measurements are not utilized. Reference [34] presents a new
integration model which considers the impact of current measurement and ZIB on the OPP model. The
OPP model considering current measurements and ZIB is based on the logical sum of the observability
of the bus, which can take advantage of the maximum capabilities of current measurement and ZIB.
In addition, this method can also be applied to other systems with multiple topologies.

Compared with the transmission network, the number of buses in the distribution network is
large, so it is difficult to solve the model and verify the optimal solution. In order to search the optimal
solution efficiently, some OPP methods are proposed to reduce the PMU candidate locations and
improve the optimization effect. In Reference [35], considering the radiation of the distribution network,
an OPP method which decomposes the network into two sub-networks is proposed. This method
decomposes the whole network into two sub-networks: the primary sub-network and secondary
sub-network. The OPP process of each sub-network is performed separately, so the number of PMU
candidate locations is greatly reduced. Although the proposed OPP method saves calculation time, the
number of PMUs required for the full observability increases due to the segmentation operation.

Numerical algorithms [36,37] and heuristic algorithms [38–42] are the main optimization
techniques for solving the OPP model. The numerical algorithm is mainly applicable to solve the
problem whose model is simple and linear. Reference [36] proposes an iterative weighted least
squares algorithm to solve the OPP model for the full observability, which has actual placement
variables. The proposed algorithm is implemented by using the available routines in the existing state
estimator to avoid the use of other mathematical optimization technologies. Reference [37] proposes a
mathematical OPP framework which considers cost and benefits at the same time. The enforcement in
reliability is calculated by using the PMU measurement infrastructure and converted to a monetary
value as the development benefit. The benefit is reduced by the cost value to get the optimal solution.
The heuristic algorithm is applicable to solve the nonlinear, high-dimensional and multi-objective
model. In Reference [38], a greedy algorithm is applied to the optimization. The proposed greedy
algorithm has good performance with low computational complexity and robustness to solve the
uncertainty of PMU placement budget. This performance makes the greedy algorithm attractive
in typical scenarios of phased PMU placement because the performance is robust to changes in the
PMU budget. Reference [39] develops an effective exponential binary particle swarm optimization
algorithm to obtain multiple solutions to OPP. An exponential inertia weighting factor is introduced
by the proposed algorithm to improve the group’s searchability. In order to combine the previous
positions of the particles, two innovative equations are presented to update the particle position.
In addition, two useful filtering techniques are applied to converge reliably. Reference [40] proposes
a biogeography-based optimization algorithm to solve the OPP problem. This proposed algorithm
is suitable to solve the multi-objective optimal PMU placement problem for the full observability.
In Reference [41], a backtracking search algorithm is applied to the OPP problem. Selection operation,
variation operation and crossover operation of backtracking search algorithm are different from those
of other algorithms. The backtracking search algorithm can create more effective individuals in each
generation. It controls the magnitude of the search direction in a balanced way that is required for global
and local searches. Reference [42] proposes a practical multi-stage simulated annealing algorithm for
the optimization of PMU placement. The proposed OPP method can also solve the problem of PMU
channel limits. In order to control uphill and downhill motion, the multi-stage simulated annealing
algorithm applies multiple stages in the optimization process, which can encourage to converge to the
OPP more quickly than classical simulated annealing.

In this paper, a new OPP method for a distribution network is proposed, which considers cost
and state estimation accuracy. The main contributions are:

(1) Based on pre-configuration and existing measurements, a network compression method is
proposed, which can reduce the candidate locations of the PMUs and improve the network measurement
redundancy. Additionally, a hybrid state estimator is applied, which can make full use of supervisory
control and data acquisition (SCADA) and PMU measurements to improve state estimation accuracy.
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(2) A new OPP model is built which can minimize the number of PMUs required for the full
observability and state estimation errors of the distribution network simultaneously. Based on this,
it can maximize network measurement redundancy.

(3) To reduce the number of PMUs required for the full observability, a new way of taking SCADA
data into the constraints is also developed by updating some constraints and equating some buses
to “lesser ZIB.” To solve the OPP model, a non-dominated sorting genetic algorithm-II (NSGA-II)
is applied to get the Pareto set, and the compromise solution is selected by the technique for order
preference by similarity to ideal solution (TOPSIS) which can comprehensively minimize cost and
state estimation errors. The optimal solution which has the minimum number of PMUs to ensure the
network observable can also be provided by the Pareto set.

The remainder of this paper is organized as follow. Section 2 proposes the network compression
method. Section 3 presents the hybrid state estimator which considers PMU measurements. Section 4
proposes the multi-objective model of OPP. Section 5 provides the solution methodology of the model
based on NSGA-II and TOPSIS. Section 6 presents the simulation results and Section 7 concludes
the paper.

2. Network Compression

Network compression includes two parts. On the one hand, some observable buses are merged
with their neighbors by pre-configuring a part of PMUs; on the other hand, based on existing ZIB
measurements, some buses which can become an observable bus are merged with their neighbors.
Network compression can reduce the PMU candidate locations, increase network measurement
redundancy and improve the optimization effect.

2.1. The Observability of Distribution Network

For the distribution network, when the voltage phasor of a bus can be measured directly or
indirectly, the bus is identified as observable. PMU can acquire the voltage phasor at the installed bus
and the current phasor of all the branches connected to the installed bus at high frequency. Based on
the characteristics of PMU, the rules of observability are as follows:

(1) If a bus is placed with a PMU, this bus and its neighbors are identified as observable buses
(neighbors refer to buses which are connected to the bus).

(2) If all neighbors of ZIB are observable buses, the voltage phasor of this ZIB can be calculated by
Kirchhoff laws (KCLs), so this ZIB is also identified as an observable bus.

ZIB has no load or generator. It acts as a transshipment bus in distribution networks. The sum of
currents flowing into a ZIB is zero.

(3) If a ZIB is an observable bus and the observability of only one of its neighbors is unknown, the
voltage phasor of this neighbor can be calculated by KCLs, so this neighbor becomes an observable bus.

2.2. Network Compression Based on Pre-Configuration and Existing Measurements

When the distribution network has n buses, the PMU has n candidate locations. Based on the
rules of observability, the bus which needs to be placed with PMU and the buses which do not need to
be placed with PMU can be determined. Through pre-configuration, the bus which does not need to
be placed with PMU is merged with its neighbor to reduce PMU candidate locations. The specific
methods are as follows:

(1) Place a PMU on the neighbor of the leaf bus, and merge the leaf bus with its neighbor into a
new bus.

The leaf bus is a bus which is only connected to one bus. The distribution network is radial, so it
always has many leaf buses. When a PMU is installed on a leaf bus, the number of new observable
buses is only two: leaf bus and its neighbor; when a PMU is placed on the bus which is connected to a
leaf bus, more than two buses become observable buses.
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Therefore, PMU is not placed on the leaf bus, PMU is placed on the bus which is connected to
the leaf bus instead. Therefore, the leaf bus becomes an observable bus, which does not need to be
considered in the process of OPP. The leaf bus can be merged with its neighbor. Network compression
based on pre-configuration can reduce the number of buses in the network and improve network
measurement redundancy when there are many leaf buses in the distribution network.

(2) Merge the ZIB with one of its neighbors while only two buses are connected to the ZIB.
For the ZIB which has only two neighbors: (a) if a PMU is placed on any one of the neighbors, both

the ZIB and another neighbor become observable; (b) if all two neighbors of the ZIB are observable
buses, the voltage phasor of the ZIB can be calculated by KCLs, so this ZIB is identified as an observable
bus. Therefore, if the ZIB has only two neighbors, this ZIB does not need to be placed with a PMU and
can be merged with one of the neighbors.

In summary, the network compression method provides a compressed network for the OPP model
based on the pre-configuration and existing measurements.

3. Hybrid State Estimator Considering PMU Measurements

3.1. The Basic Model of State Estimation

The state estimator proposed in this paper is based on WLS. Assuming that the number of
state variables is N and the number of measurements is M, the measurements can be expressed as
Equation (1):

z = h(x) + v, (1)

where z = [z1, z2, · · · , zM]T is the M-dimensional vector of measurements; x = [x1, x2, · · · , xN]
T is

the N-dimensional vector of state variables; v = [v1, v2, · · · , vM]T is the M-dimensional vector of
measurement errors, whose entry vi represents the error of measurement i; h is the vector of functions,
which represents the relationship between z and x.

According to the measurement vector z and measurement function h, the objective function that
minimizes the sum of squares of estimation errors can be expressed as Equation (2):

min J(x) = (z− h(x))TW(z− h(x)), (2)

where J(x) is the sum of squares of estimation errors; W is the weight matrix of measurements,
diag W = [w1, w2, · · · , wM]T; wi represents the weight of measurement i, which can be described as
Equation (3):

W = R−1 =


σ2

1
σ2

2
. . .

σ2
M


−1

, (3)

where R is the covariance matrix of the measurement error; σi is the variance of the measurement i.
To minimize the sum of squares of estimation errors, J(x) is guided by x, which can be expressed

as Equation (4):
∂J(x)
∂x

= 0. (4)

According to Equation (2), Equation (4) can be modified to Equation (5):

H(x)W(z− h(x)) = 0, (5)

where H(x) is named as the Jacobian matrix, which can also be defined as Equation (6):

H(x) =
∂h(x)
∂x

. (6)
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As h is the vector of nonlinear functions, the Taylor series is applied to solve Equation (5), and the
high terms with orders greater than 1 are ignored to get a linear Equation (7):

h(x) = h(x0) + H(x0)∆x, (7)

where x0 represents the initial state vector.
According to Equations (5) and (7), the iterative equations can be expressed as Equation (8): ∆x(k) =

[
HT(x(k))WH(x(k))

]−1
W

[
z− h(x(k))

]
x(k+1) = x(k) + ∆x(k)

, (8)

where x(k+1) and x(k) are the state variable vectors obtained by the k − th and (k + 1) − th
iterations respectively.

Newton method is applied to solve the iterative Equations (8). The estimated state vector x̂ can
be obtained when the convergence criterion is satisfied. The convergence criterion can be defined as
Equation (9):

max
∣∣∣∆x(k)

∣∣∣ < ε, (9)

where ε represents the value of convergence.

3.2. Estimator with PMU Measurements

The state estimator based on SCADA measurements is nonlinear, while the state estimator
based on PMU measurements can be linear. In this paper, a hybrid state estimator considering PMU
measurements and SCADA measurements is proposed.

At the sampling time of SCADA, the first state estimator is carried out with the SCADA
measurements and PMU measurements at the nearest moment, and the result of state estimation x̂s

is saved. This state estimator is nonlinear. At this moment, the measurements include the voltage
amplitude and phase angle of the bus, the amplitude and phase angle of branch current, the active
power and reactive power of branch, the active power and reactive power injected at the bus. In this
paper, the real and imaginary parts of slack bus voltage and branch current are chosen as state
variables [30]. The measurement function and Jacobian matrix are obtained by the relationship between
the measurements and state variables. PMU collects the amplitudes and phase angles of bus voltage
and branch current, while the state variables of the estimator are the real and imaginary parts of bus
voltage and branch current, so PMU measurements need to be equivalently transformed. Coordinate
transformation involves the transmission of measurement errors. Taking the branch current as an
example, the covariance of branch current in terms of real and imaginary parts can be calculated as
Equation (10):

[
σ2

ir
wk

σ2
ix
wk

]
=


∂irwk
∂Iwk

∂irwk
∂δwk

∂ixwk
∂Iwk

∂ixwk
∂δwk

×
 σ2

Iwk
0

0 σ2
δwk

×

∂irwk
∂Iwk

∂irwk
∂δwk

∂ixwk
∂Iwk

∂ixwk
∂δwk


T

, (10)

where w and k are the bus number; σ2
ir
wk

and σ2
ix
wk

are the measurement error covariances of the real and

imaginary parts of branch current; irwk and ixwk are the real and imaginary parts of branch current; Iwk
and δwk are the amplitude and phase angle of branch current; σ2

Iwk
and σ2

δwk
are the measurement error

covariances of amplitude and phase angle of branch current. Similarly, the measurement errors of the
real and imaginary parts of the slack bus voltage can be obtained.
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Then, at the sampling time of PMU, the second linear state estimator is carried out with the last
result of state estimation x̂S and PMU measurements at the current moment. The covariance matrix of
the estimated state error can be calculated as Equation (11):

RS =
(
HTWH

)−1
, (11)

where RS represents the covariance matrix of the estimated state error of x̂S.
Then the weight matrix of measurements of this state estimator can be expressed as Equation (12):

WP =


RS

RIPMU

RUPMU


−1

, (12)

where WP is the weight matrix of measurements of this state estimator; RIPMU and RUPMU are
the covariances of branch current and bus voltage measurement errors provided by PMU at the
current moment.

The estimated state provided by the second linear state estimator can be defined as Equation (13):

x̂P =
(
HP

TWHP
)−1

HP
TWz, (13)

where x̂P is the estimated state provided by the second state estimator; HP is the Jacobian matrix of this
state estimator, its elements are constant which can be obtained by Equation (6).

In this paper, the state estimation error is provided by the error in voltage amplitude estimation
and error in voltage phase angle estimation.

The error in voltage amplitude estimation can be expressed as Equation (14):

eamp =

n∑
i=1

∣∣∣Ui,true −Ui,se
∣∣∣

n
, (14)

where n is the number of bus in the network; eamp is the mean error in voltage amplitude estimation at
each bus, which represents the error in voltage amplitude estimation; Ui,true is the true value of bus
voltage amplitude provided by the power flow computation; Ui,se is the estimated value of bus voltage
amplitude provided by the proposed hybrid state estimator.

The error in voltage phase angle estimation can be expressed as Equation (15):

eang =

n∑
i=1

∣∣∣ϕi,true −ϕi,se
∣∣∣

n
, (15)

where eang is the mean error in voltage phase angle estimation at each bus, which represents the error
in voltage phase angle estimation; ϕi,true is the true value of bus voltage phase angle provided by
the power flow computation; ϕi,se is the estimated value of bus voltage phase angle provided by the
proposed hybrid state estimator.

4. Multi Objective Model of Optimal PMU Placement

Considering the cost and accuracy of state estimation, a new multi-objective model of optimal
PMU placement is presented. The objective functions are to minimize the number of PMUs and
minimize the error of state estimation simultaneously, and the constraint is to ensure the distribution
network is observable. On the basis of minimizing the number of PMUs required and the state
estimation error, the solution with the largest measurement redundancy is obtained by modifying the
objective function, so as to deal with the problem of data loss caused by communication problems.
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In addition, SCADA measurements are also applied to reduce the number of PMUs required for the
full observability.

4.1. The Basic Model of OPP Considering Cost and State Estimation Accuracy

The first goal is to minimize the cost, so the objective function f1(X) is the number of PMUs,
which can be expressed as Equation (16):

min f1(X) =

NS∑
i=1

Xi, (16)

where NS is the number of buses in the compressed network; i is the bus number; X =[
X1, X2, · · · , XNS

]T
is the NS-dimensional vector of placement; Xi is a 0–1 variable, which can

be expressed as Equation (17):

Xi =

1 if a PMU is placed on bus i

0 other
. (17)

The second optimization objective is to minimize the state estimation error, that is, to maximize
the state estimation accuracy. The objective function f2(X) is the sum of the error in voltage amplitude
estimation and error in voltage phase angle estimation, which can be expressed as Equation (18):

min f2(X) = eamp + eang =

n∑
i=1

∣∣∣Ui,true −Ui,se
∣∣∣

n
+

n∑
i=1

∣∣∣ϕi,true −ϕi,se
∣∣∣

n
. (18)

The constraint is that the distribution network is fully observable, which can be expressed as
Equation (19):

M = AX ≥ b, (19)

where M is the measurement redundancy vector, which presents measurement redundancy of each bus,
and its entry mi is the number of times that bus i is observed directly or indirectly; b = [1, 1, · · · , 1]T is the
minimum measurement redundancy vector, bi = 1 ensures each bus observable; A is the connectivity
matrix, which can be defined as Equation (20):

A(i, j) =


1 if bus i is connected to bus j

1 if i = j

0 other

. (20)

The more buses the network has, the more solutions with the same number of PMUs required for
the full observability exist. Therefore, the network measurement redundancy becomes an important
index to select the optimal solution [43]. In order to ensure that the optimization effect of searching the
minimum number of PMUs does not be affected, the first objective function f1(X) can be modified to
Equation (21):

min f1(X) =

NS∑
i=1

Xi +

NS∑
i=1

mi

(max{mi}+ 1)NS
. (21)

4.2. Updated Constraint Considering ZIB Measurement

Assuming that a ZIB is connected to q buses, and any q of these buses are observable, the voltage
phasor of us (q + 1) can be calculated by KCLs. In other words, bus (q + 1) is also observable. If a ZIB
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is connected to two buses, this ZIB can be merged with one of its neighbors. When the network has
some ZIBs which have more than two neighbors individually, the Equation (19) can be updated to
Equation (22):

M = AX + O ≥ b, (22)

where O =
[
o1, o2, · · · , oNS

]T
is the ZIB measurement vector, which represents whether ZIB and its

neighbor can be observed by the characteristic of ZIB, its entry oi can be defined as Equation (23):

oi =

1 gi ≥ 1

0 gi = 0
, (23)

where gi can be calculated as Equation (24):

gi =



0 i = 1, 2, · · · , p− 1
m(p+1)m(p+2) · · ·m(p+q) i = p

m(p)m(p+2) · · ·m(p+q) i = p + 1
...

...
m(p)m(p+1) · · ·m(p+q−1) i = p + q

0 i = p + q+1, · · · , NS

, (24)

where bus p is a ZIB, from bus (p + 1) to bus (p + q) are its neighbors.

4.3. Updated Constraint Considering SCADA Measurement

The installation cost can be high if only PMU measurements are applied to meet the constraints.
In the process of OPP, the existing SCADA measurements are applied to meet the full observability.

The full observability indicates that the voltage phasors of all buses in the network are known. In
this paper, power flow measurements and injection measurements are applied to the OPP model by
updating the constraints and equivalent.

The relationship between power flow and bus voltage phasor can be expressed as Equation (25):

Si j =
·

Ui

(
∗

Ui −
∗

U j

)
∗

yi j, (25)

where Si j is the power flow of branch i− j;
·

Ui represent the voltage phasor of bus i;
∗

Ui and
∗

U j represent

the conjugations of the voltage phasor of bus i and bus j respectively;
∗

yi j represents the conjugation of
branch admittance.

According to Equation (25), if the power flow and the voltage phasor of the bus at one end of the
branch are known, the voltage phasor of the bus at another end can be calculated.

If the power flow of branch i− j is measured, the constraints corresponding to bus i and bus j can
be modified to Equation (26):

mi = AiX + oi
m j = A jX + o j

⇒
mi(new) = AiX + oi + (1− ki)k j

m j(new) = A jX + o j +
(
1− k j

)
ki

, (26)

where Ai and A j are respectively the i− th and j− th row of A; ki and k j are 0–1 variables, which can be
calculated as Equation (27):

ki =

1 mi ≥ 1

0 mi = 0
k j =

1 m j ≥ 1

0 m j = 0
. (27)

If ki = 1, the bus i is observable. If ki = 0, the bus i is unobservable.
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The relationship between the power injection and the bus voltage phasor can be expressed as
Equation (28):

Si =
·

Ui
∗

Ii =
·

Ui

∑
j∈i

∗

Yi j
∗

U j, (28)

where Si represents the power injection at bus i;
∗

Ii represents the conjugation of the current phasor of

the bus i; j ∈ i represents bus j is connected to bus i in the network;
∗

Yi j represents the conjugation of
the admittance matrix element.

According to Equation (28), if the power injection at the bus i is known, and the number of
observable buses (bus whose voltage phasor is known) among bus i and its k neighbors is k, the voltage
phasor of bus (k + 1) can be calculated by KCLs. The observation property of the bus whose injection
is known is the same as that of ZIB.

Therefore, if the power injection at the bus is known, this bus is equivalent to ZIB, which is named
as “lesser ZIB” in this paper. If the “lesser ZIB” has two neighbors, the “lesser ZIB” is merged with one
of its neighbors and the network is compressed again. If the “lesser ZIB” has more than two neighbors,
the modeling process is shown in Equations (22)–(24).

The reason why this kind of bus is named as “lesser ZIB” is that ZIB measurement is perfect while
the power injection measurement has the errors. Although the bus with known power injection has
some similar characteristics of ZIB, the weights should be different when these measurements are
applied to state estimation.

4.4. The Final OPP Model

To sum up, the multi-objective model of OPP considering cost and state estimation accuracy can
be expressed as Equation (29):

min f1(X) =
NS∑
i=1

Xi +

NS∑
i=1

mi

(max{mi}+1)NS

min f2(X) =

n∑
i=1
|Ui,true−Ui,se|

n +

n∑
i=1
|ϕi,true−ϕi,se|

n
s.t. M ≥ b

. (29)

5. Solution Methodology Based on NSGA-II and TOPSIS

The proposed OPP model is nonlinear because SCADA measurements and ZIBs are introduced
into the problem. The multi-objective model is usually transformed into a single-objective model by
unifying the dimensions and setting the corresponding weights [44]. However, the selection of weight
requires prior knowledge which has strong subjectivity. Therefore, the non-dominated sorting genetic
algorithm-II (NSGA-II) is employed to perform the optimization and get the Pareto optimal solution
set in this paper.

To minimize the number of PMUs required and state estimation error comprehensively, the
compromise solution is selected by TOPSIS [45]. If the installation cost is limited, the solution with the
minimum number of PMUs in the Pareto set is selected as the optimal solution.

5.1. Optimization Based on NSGA-II

5.1.1. Initialization Based on Network Compression

The network is compressed by pre-configuration and existing measurements. The buses in the
compressed network should be renumbered according to the ascending order of the original number.

The individuals are encoded in binary, and the length of the string is NS. If bus i is placed with
PMU, the corresponding gene is set as 1. If bus i is not placed with PMU, the corresponding gene is set
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as 0. During the process of generating the initial population, the corresponding genes of the buses
pre-configured with PMUs are uniformly set as 1, while the corresponding genes of other buses are
randomly set as 1 or 0.

5.1.2. Fitness Calculation

Combining two objective functions with the constraint in the form of the penalty function, the
fitness functions can be expressed as Equation (30):

F1(X) = − f1(X) −C
NS∑
i=1

(mi − bi)

F2(X) = − f2(X) −C
NS∑
i=1

(mi − bi)

, (30)

where F1(X) and F2(X) are fitness functions of f1(X) and f2(X) respectively; C is the penalty factor,
whose value is much larger than 1 to reduce the fitness greatly if the solution does not achieve
full observability.

5.1.3. Genetic Operations Based on Pre-Configuration

In this paper, the probabilities of crossover operation and mutation operation are no longer
set to constants. Instead the probabilities of crossover and mutation change with the fitness of the
individual. The specific process of calculating the probabilities of crossover and mutation is shown in
Reference [46], which is no longer described here.

The corresponding genes of the buses pre-configured with PMUs should not change. Therefore,
after the crossover operation and mutation operation, the corresponding genes of the buses
pre-configured with PMUs are re-assigned to 1.

5.1.4. Fast Nondominated Sorting

If individual Xi is not dominated by individual X j, the relationship between them can be defined
as Equation (31):  F1(Xi) ≥ F1

(
X j

)
F2(Xi) ≥ F2

(
X j

) . (31)

An individual can be called as a non-dominant individual if it is not dominated by any other
individuals in the population. According to the fast nondominated sorting approach, the group is
stratified, and each individual gets the corresponding rank irank.

5.1.5. Crowding-Distance Calculation

According to the value of F1(X), the individuals of each rank are rearranged in ascending order,
the crowding distance can be calculated as Equation (32):

Ti = F1(Xi+1) − F1(Xi−1), (32)

where Ti represent the crowding distance of individual i.
According to the value of F2(X), the individuals of each rank are rearranged in ascending order

again, and the crowding distance can be updated to Equation (33):

Ti = Ti + F2(Xi+1) − F2(Xi−1). (33)

The crowding distances of individuals at two ends of each rank are set as a large value, so
individuals at two ends have an advantage in selection.
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In the process of optimization, the individual with small rank is superior to the individual with
large rank. For the same rank, the individual with a large value of crowding distance is superior to the
individual with a small value of crowding distance.

5.1.6. Optimization Process

The steps of applying the above NSGA-II to solve the proposed OPP model are as follows:
(1) Input the information of distribution network: the connectivity matrix A, locations of ZIBs,

SCADA measurements and so on;
(2) Compress the network and rearrange bus number;
(3) Create the initial population which has Q individuals and choose this population as the

parent population;
(4) Set the total number of iterations MaxGen and set iteration number as Gen = 1;
(5) Perform crossover operation and mutation operation to generate the offspring population, and

merge the offspring population with the parent population;
(6) Calculate the rank and crowding distance of each individual;
(7) Select Q individuals according to the rank and crowding distance to generate the parent

population, and set Gen = Gen + 1;
(8) Whether the maximum number of iterations is reached? Yes, end; No, go to step (5).

5.2. Selection Based on TOPSIS

The technique for order preference by similarity to ideal solution (TOPSIS) is a kind of
comprehensive analysis method according to the distance between the evaluation object and the ideal
solution. In this paper, TOPSIS is applied to select the compromise solution from the Pareto set. The
process of TOPSIS algorithm is as follows:

At first, the values of f1(X) and f2(X) are applied to construct a decision matrix, which can be
defined as Equation (34):

T =
[
ti j

]
Q×2

=


f1(X1) f2(X1)

...
...

f1
(
XQ

)
f2
(
XQ

)
, (34)

where T is the decision matrix, and ti j represents the decision indicator obtained by the value of the
objective function j of the solution i; Q is the number of solutions in the Pareto set.

By normalizing T, the standard matrix P is obtained, which can be expressed as Equation (35):

P =
[
pi j

]
Q×2

=


max

i

(
ti j

)
− ti j

max
i

(
ti j

)
−min

i

(
ti j

)


Q×2

. (35)

Then, the entropy values of the two objective functions can be calculated as Equation (36):

e j = −
1

ln Q

Q∑
i=1


pi j

Q∑
i=1

pi j

Q∑
i=1

pi j

Q∑
i=1

pi j

 j = 1, 2, (36)

where e j represents the entropy value of the objective function f j(X).
According to the ej, the entropy weights of two objective functions can be calculated as Equation

(37):

α j =
1− e j

2∑
i=1

(1− ei)

j = 1, 2, (37)
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where α j represents the entropy weight of the objective function f j(X).
Considering the subjective weight of the planner, the weights of two objective functions can be

calculated as Equation (38):

w j =
λ jα j

2∑
i=1

λiαi

j = 1, 2, (38)

where w j represents the final weight of objective function f j(X); λ j is the subjective weight of the
planner, the larger λ j is, the more important f j(X) is.

According to w j and P, the weighted decision matrix Z is constructed, which can be defined as
Equation (39):

Z =
[
zi j

]
Q×2

=
[
w jpi j

]
Q×2

. (39)

Next, the extreme values of the weighted decision matrix can be calculated as Equation (40):

o+j = max
1≤i≤Q

zi j

o−j = min
1≤i≤Q

zi j
j = 1, 2, (40)

where o+j and o−j represent the maximum value and minimum value of the j − th column of the
weighted decision matrix Z respectively.

After that, the positive ideal solution and the negative ideal solution can be calculated as Equation
(41):

Y+ =
(
o+1 , o+2

)
Y− =

(
o−1 , o−2

) , (41)

where Y+ and Y− represent the positive ideal solution and the negative ideal solution respectively.
For each solution in the set, the distances from the positive ideal solution and the negative ideal

solution can be calculated as Equation (42):

d+i = ‖zi − Y+
‖ =

√
2∑

j=1

(
zi j − o+j

)2

d−i = ‖zi − Y−‖ =

√
2∑

j=1

(
zi j − o−j

)2
i = 1, 2, · · · , Q, (42)

where d+i represents the distance between the positive ideal solution and solution i; d−i represents the
distance between the negative ideal solution and solution i.

Then, the closeness coefficient of each solution in the Pareto set can be calculated as Equation (43):

D+
i =

d−i
d+i + d−i

i = 1, 2, · · · , Q, (43)

where D+
i represents the closeness coefficient of solution i.

At last, the solution with the largest value of the closeness coefficient D+
i is selected as the

compromise solution.
The flow chart of the multi-objective OPP method in the compressed distribution network

considering cost and state estimation accuracy is shown in Figure 1.
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6. Simulation Results and Discussion

The efficiency of the OPP method proposed in this paper is verified by the (Institute of Electrical
and Electronics Engineers) IEEE standard bus systems.
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The topology of IEEE 33 bus system, as shown in Figure 2, is used in this paper to carry out the
analysis; 1–33 is the bus number. The SCADA measurements include the voltage amplitudes of buses
1, 2, 3, 6, 18, 23, 33; the current amplitudes of branches 3–4, 6–7, 2–19, 6–26; the injections at buses 5,
6, 13, 21; the power flows of branch 2–19, 23–24, 28–29. In the process of simulation, the power flow
calculation results of the IEEE 33 bus system are selected as the truth values, and various measurements
are generated by superimposing the corresponding random errors on the truth values. The standard
deviations of measurement errors of voltage amplitude and current amplitude provided by the SCADA
system are 1%. The standard deviation of the power measurement error is 2%. The standard deviations
of measurement errors of voltage amplitude and branch current amplitude provided by PMU are 0.2%,
the standard deviation of measurement errors of voltage phase angle provided by PMU is 0.5%, and
the standard deviation of measurement errors of branch current phase angle provided by PMU is 0.5%.
The standard deviation of the pseudo-measurement error is 20%.
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Figure 2. IEEE 33 bus system.

Before applying NSGA-II to solve the model, the network is compressed through the
pre-configuration and existing measurements. Buses 5, 13, 21 are equivalent to “lesser ZIBs” with two
neighbors, so buses 5, 13, 21 are merged with buses 4, 12, 22 into new buses 4’, 12’, 21’ respectively.
Bus 6 is equivalent to a “lesser ZIB” with three neighbors. Buses 1, 18, 21, 25, 33 are leaf buses, which
are not placed with PMUs. The connected buses 2, 17, 20, 24, 32 are pre-configured with PMUs and
merged with buses 1, 18, 21, 25, 33 into new buses 2’, 17’, 20’, 24’, 33’ respectively. The compressed
network and observable buses are shown in Figure 3.
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Figure 3. Compressed IEEE 33 bus system.

The compressed system, as shown in Figure 3, is pre-configured with some PMUs. The buses
pre-configured with PMUs are no longer involved in genetic operations, and their values of genes are
1. The specific parameters of applying NSGA-II to solve the model are as follows:

The number of individuals in the parent population is 60. The number of individuals in the
offspring population is 60. The number of iterations is 400. The number of buses in the system is 33.
The number of branches is 32. The number of buses in the compressed system is 25. The number of



Appl. Sci. 2019, 9, 1515 17 of 22

variables in the placement vector is 25. The number of objectives is 2. The value of the initial front
of each individual is 1. The number of intersections in the crossover operation is 2. The value of
each subjective weight is 1. The number of rows in the chromosome matrix is 60, and the number of
columns in the chromosome matrix is 29. The value of the penalty factor is 1000.

The Pareto set obtained by the optimization is shown in Figure 4. As shown in Figure 4, at least
10 PMUs are needed to ensure the observability of the network. The locations of PMUs are: buses 2,
8, 11, 15, 17, 20, 24, 26, 30, 32. Considering the cost and state estimation accuracy comprehensively,
the compromise solution is selected by TOPSIS. The compromise solution needs 11 PMUs, and the
locations are buses 2, 4, 8, 11, 15, 17, 20, 24, 26, 30, 32.
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Figure 4. The Pareto set.

In order to reflect the influence of network compression on OPP, this paper uses the single variable
method to compare two cases, the result of the comparison is shown in Table 1. As shown in Table 1,
on the one hand, network compression based on pre-configuration and existing measurements can
effectively reduce the number of PMUs of the most economical solution and the compromised solution.
On the other hand, under the same number of PMUs, the state estimation error of the solution is
reduced by network compression. Note that: the most economical solution is the solution that has the
minimum number of PMUs in the Pareto set; the compromised solution is the solution selected by the
TOPSIS from the Pareto set.

Table 1. Comparison of two cases based on network compression.

Case Optimal Solution No. of PMUs State Estimation Error

1: Without Network
Compression

The Most Economical Solution 11 6.64328588 × 10ˆ(–4)
The Compromised Solution 12 6.46038299 × 10ˆ(–4)

2: With Network
Compression

The Most Economical Solution 10 6.38764872 × 10ˆ(–4)
The Compromised Solution 11 6.13058913 × 10ˆ(–4)

In order to further analyze the influence of the compromised solution on the state estimation
accuracy, 1000 state estimation simulations were carried out, the comparison of error in voltage
amplitude estimation is shown in Figure 5, the comparison of error in voltage phase angle estimation
is shown in Figure 6.

As shown in Figures 5 and 6, the compromised solution obtained by the OPP method proposed in
this paper can not only reduce not only the voltage amplitude estimation error but also the voltage
phase angle estimation error of each bus effectively.

In order to further analyze the effectiveness of searching the minimum number of PMUs required
for the full observability, the simulation results of the proposed method in IEEE 33, 34 and 69 bus
systems are compared with those of other methods in References [46–48], which are shown in Table 2.
The topologies of the IEEE 34 bus system and IEEE 69 bus system are shown in Appendix A.
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Table 2. Comparison of optimal solutions in IEEE Standard Bus Systems.

Method
IEEE 33 Bus System IEEE 34 Bus System IEEE 69 Bus System

No. of
PMUs

PMU
Locations

No. of
PMUs

PMU
Locations

No. of
PMUs PMU Locations

Proposed Method
(The Most Economical

Solution)
10

2, 8, 11, 15,
17, 20, 24, 26,

30, 32
11

2, 4, 6, 10, 12,
17, 21, 23, 28,

31, 33
22

2, 3, 8, 11, 14, 17, 22, 26, 28, 33,
34, 37, 41, 45, 49, 51, 56, 59, 62,

64, 66, 68

Proposed Method
(The Compromised

Solution)
11

2, 4, 8, 11, 15,
17, 20, 24, 26,

30, 32
12

2, 4, 6, 10, 12,
17, 20, 21, 23,

28, 31, 33
23

2, 3, 8, 11, 12, 14, 17, 22, 26, 28,
33, 34, 37, 41, 45, 49, 51, 56, 59,

62, 64, 66, 68

Reference [46] 11
2, 6, 8, 11, 15,
17, 21, 24, 28,

29, 32
12

2, 5, 7, 10, 13,
17, 21, 24, 28,

30, 31, 33
26

1, 4, 8, 14, 17, 19, 21, 24, 27, 28,
31, 34, 37, 39, 42, 45, 49, 51, 54,

56, 59, 61, 64, 66, 68, 69

Reference [47] 14

2, 4, 6, 8, 11,
13, 15, 17, 21,
23, 24, 27, 29,

32

13
2, 4, 8, 12, 14,
16, 17, 21, 24,
27, 28, 31, 33

27
1, 4, 5, 8, 9, 12, 15, 18, 20, 23,

26, 29, 32, 34, 37, 40, 42, 45, 49,
52, 53, 55, 58, 61, 64, 66, 69

Reference [48] 11
2, 5, 8, 11, 14,
17, 21, 24, 27,

30, 32
13

2, 4, 8, 10, 12,
17, 21, 23, 25,

28, 31, 33
25

2, 4, 7, 9, 14, 17, 20, 23, 26, 29,
32, 34, 37, 40, 43, 45, 49, 51, 54,

57, 58, 61, 64, 66, 68

As shown in Table 2, compared with the methods in References [46–48], the OPP method proposed
in this paper can provide the optimal solution with the minimum number of PMUs required for the
full observability of IEEE 33, 34 and 69 bus systems respectively. Furthermore, the proposed OPP
method can also obtain the compromise optimal scheme which comprehensively considers the cost
and state estimation error.
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7. Conclusions

Taking the cost and the state estimation accuracy into consideration, a multi objective method
of optimal PMU placement is proposed in this paper. The following conclusions are obtained. The
network compression based on the pre-configuration and existing measurements can not only reduce
the number of PMUs of the most economical solution and the compromised solution, but also reduce
the state estimation error under the same number of PMUs. Furthermore, the proposed OPP method
can provide the most economical solution with the minimum number of PMUs required for the full
observability and the compromised solution which considers the cost and state estimation accuracy
comprehensively. Moreover, the compromised solution obtained by the proposed OPP method can
effectively reduce the voltage amplitude estimation error and voltage phase angle estimation error.
In addition, the most economical solution obtained by the proposed OPP method has the minimum
number of PMUs required for the full observability than those provided by other methods. The expected
future work will take the influence of network reconfiguration into consideration.

Author Contributions: X.K. and Y.W. conceived the idea of the study and conducted the research. Y.W. analyzed
most of the data and wrote the initial draft of the paper. X.Y. and L.Y. contributed to finalizing this paper.

Funding: This research was funded by the National Key Research and Development Program of China, grant
number 2017YFB0902900 and 2017YFB0902902.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A
Appl. Sci. 2019, 9, x FOR PEER REVIEW 21 of 24 

15      16       17     18 

1        2        3       4       6        7        8       9      10      14   

5      23     24  

25     30       31    32 

13

12

11

29

28

27

26

33

34

22

21

20

19

 

Figure A1. IEEE 34 bus system. 

1   2    3   4   5    6    7    8   9   10  11  12  13 14   15  16  17   18   19   20   21  22  23  24   25  26  27

35

34

33

32

31

30

29

28

53  54  55  56   57   58   59   60  61  62  63   64  65

47  48  49  50

66 67

68 6952 51

36

37

38

39
40  41  42  43   44   45   46  

Figure A2. IEEE 69 bus system. 

References 

1. Hassan, E.; Napis, N.; Khatib, T.; Abd Kadir, A.; Sulaima, M. An improved method for reconfiguring and 

optimizing electrical active distribution network using evolutionary particle swarm optimization. Appl. 

Sci. 2018, 8, 804, doi:10.3390/app8050804. 

2. Al Essa, M.; Cipcigan, L. Reallocating charging loads of electric vehicles in distribution networks. Appl. Sci. 

2016, 6, 53, doi:10.3390/app6020053. 

3.  Cui, K.; Yong, C.; E, Z.; Kong, X.; Chen, Y.; Wang, X. Multiobjective scheduling of an active distribution 

network based on coordinated optimization of source network load. Appl. Sci. 2018, 8, 1888, 

doi:10.3390/app8101888. 

4. Tan, Y.; Liu, W.; Su, J.; Bai, X. Generative adversarial networks based heterogeneous data integration and 

its application for intelligent power distribution and utilization. Appl. Sci. 2018, 8, 93, 

doi:10.3390/app8010093. 

5. Prasad, S.; Kumar, D.M.V. Trade-offs in PMU and IED deployment for active distribution state estimation 

using multi-objective evolutionary algorithm. IEEE Trans. Instrum. Meas. 2018, 67, 1298–1307, 

doi:10.1109/TIM.2018.2792890. 

6. Mabaning, A.A.G.; Orillaza, J.R.C.; Von Meier, A. Optimal PMU placement for distribution networks. In 

Proceedings of the 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New 

Zealand, 4–7 December 2017; pp. 1–6, doi:10.1109/ISGT-Asia.2017.8378415. 

7. Jamei, M.; Scaglione, A.; Roberts, C.; Stewart, E.; Peisert, S.; McParland, C.; McEachern, A. Anomaly 

detection using optimally placed μPMU sensors in distribution grids. IEEE Trans. Power Syst. 2017, 33, 

3611–3623, doi:10.1109/TPWRS.2017.2764882. 

Figure A1. IEEE 34 bus system.



Appl. Sci. 2019, 9, 1515 20 of 22

Appl. Sci. 2019, 9, x FOR PEER REVIEW 21 of 24 

15      16       17     18 

1        2        3       4       6        7        8       9      10      14   

5      23     24  

25     30       31    32 

13

12

11

29

28

27

26

33

34

22

21

20

19

 

Figure A1. IEEE 34 bus system. 

1   2    3   4   5    6    7    8   9   10  11  12  13 14   15  16  17   18   19   20   21  22  23  24   25  26  27

35

34

33

32

31

30

29

28

53  54  55  56   57   58   59   60  61  62  63   64  65

47  48  49  50

66 67

68 6952 51

36

37

38

39
40  41  42  43   44   45   46  

Figure A2. IEEE 69 bus system. 

References 

1. Hassan, E.; Napis, N.; Khatib, T.; Abd Kadir, A.; Sulaima, M. An improved method for reconfiguring and 

optimizing electrical active distribution network using evolutionary particle swarm optimization. Appl. 

Sci. 2018, 8, 804, doi:10.3390/app8050804. 

2. Al Essa, M.; Cipcigan, L. Reallocating charging loads of electric vehicles in distribution networks. Appl. Sci. 

2016, 6, 53, doi:10.3390/app6020053. 

3.  Cui, K.; Yong, C.; E, Z.; Kong, X.; Chen, Y.; Wang, X. Multiobjective scheduling of an active distribution 

network based on coordinated optimization of source network load. Appl. Sci. 2018, 8, 1888, 

doi:10.3390/app8101888. 

4. Tan, Y.; Liu, W.; Su, J.; Bai, X. Generative adversarial networks based heterogeneous data integration and 

its application for intelligent power distribution and utilization. Appl. Sci. 2018, 8, 93, 

doi:10.3390/app8010093. 

5. Prasad, S.; Kumar, D.M.V. Trade-offs in PMU and IED deployment for active distribution state estimation 

using multi-objective evolutionary algorithm. IEEE Trans. Instrum. Meas. 2018, 67, 1298–1307, 

doi:10.1109/TIM.2018.2792890. 

6. Mabaning, A.A.G.; Orillaza, J.R.C.; Von Meier, A. Optimal PMU placement for distribution networks. In 

Proceedings of the 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New 

Zealand, 4–7 December 2017; pp. 1–6, doi:10.1109/ISGT-Asia.2017.8378415. 

7. Jamei, M.; Scaglione, A.; Roberts, C.; Stewart, E.; Peisert, S.; McParland, C.; McEachern, A. Anomaly 

detection using optimally placed μPMU sensors in distribution grids. IEEE Trans. Power Syst. 2017, 33, 

3611–3623, doi:10.1109/TPWRS.2017.2764882. 

Figure A2. IEEE 69 bus system.

References

1. Hassan, E.; Napis, N.; Khatib, T.; Abd Kadir, A.; Sulaima, M. An improved method for reconfiguring and
optimizing electrical active distribution network using evolutionary particle swarm optimization. Appl. Sci.
2018, 8, 804. [CrossRef]

2. Al Essa, M.; Cipcigan, L. Reallocating charging loads of electric vehicles in distribution networks. Appl. Sci.
2016, 6, 53. [CrossRef]

3. Cui, K.; Yong, C.; E, Z.; Kong, X.; Chen, Y.; Wang, X. Multiobjective scheduling of an active distribution
network based on coordinated optimization of source network load. Appl. Sci. 2018, 8, 1888. [CrossRef]

4. Tan, Y.; Liu, W.; Su, J.; Bai, X. Generative adversarial networks based heterogeneous data integration and its
application for intelligent power distribution and utilization. Appl. Sci. 2018, 8, 93. [CrossRef]

5. Prasad, S.; Kumar, D.M.V. Trade-offs in PMU and IED deployment for active distribution state estimation
using multi-objective evolutionary algorithm. IEEE Trans. Instrum. Meas. 2018, 67, 1298–1307. [CrossRef]

6. Mabaning, A.A.G.; Orillaza, J.R.C.; Von Meier, A. Optimal PMU placement for distribution networks.
In Proceedings of the 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New
Zealand, 4–7 December 2017; pp. 1–6. [CrossRef]

7. Jamei, M.; Scaglione, A.; Roberts, C.; Stewart, E.; Peisert, S.; McParland, C.; McEachern, A. Anomaly detection
using optimally placed µPMU sensors in distribution grids. IEEE Trans. Power Syst. 2017, 33, 3611–3623.
[CrossRef]

8. Hooshyar, H.; Baran, M.E.; Firouzi, S.R.; Vanfretti, L. PMU-assisted overcurrent protection for distribution
feeders employing Solid State Transformers. Sustain. Energy Grids Netw. 2017, 10, 26–34. [CrossRef]

9. Mahmood, F.; Hooshyar, H.; Lavenius, J.; Bidadfar, A.; Lund, P.; Vanfretti, L. Real-time reduced steady-state
model synthesis of active distribution networks using PMU measurements. IEEE Trans. Power Deliv. 2017,
32, 546–555. [CrossRef]

10. Cavraro, G.; Arghandeh, R. Power distribution network topology detection with time-series signature
verification method. IEEE Trans. Power Syst. 2018, 33, 3500–3509. [CrossRef]

11. Shahsavari, A.; Sadeghi-Mobarakeh, A.; Stewart, E.M.; Cortez, E.; Alvarez, L.; Megala, F.; Mohsenian-Rad, H.
Distribution grid reliability versus regulation market efficiency: An analysis based on micro-PMU data.
IEEE Trans. Smart Grid 2017, 8, 2916–2925. [CrossRef]

12. Mahaei, S.M.; Hagh, M.T. Minimizing the number of PMUs and their optimal placement in power systems.
Electr. Power Syst. Res. 2012, 83, 66–72. [CrossRef]

13. Korres, G.N.; Georgilakis, P.S.; Koutsoukis, N.C.; Manousakis, N.M. Numerical observability method for
optimal phasor measurement units placement using recursive Tabu search method. IET Gener. Transm.
Distrib. 2013, 7, 347–356. [CrossRef]

http://dx.doi.org/10.3390/app8050804
http://dx.doi.org/10.3390/app6020053
http://dx.doi.org/10.3390/app8101888
http://dx.doi.org/10.3390/app8010093
http://dx.doi.org/10.1109/TIM.2018.2792890
http://dx.doi.org/10.1109/ISGT-Asia.2017.8378415
http://dx.doi.org/10.1109/TPWRS.2017.2764882
http://dx.doi.org/10.1016/j.segan.2017.02.003
http://dx.doi.org/10.1109/TPWRD.2016.2602302
http://dx.doi.org/10.1109/TPWRS.2017.2779129
http://dx.doi.org/10.1109/TSG.2017.2718560
http://dx.doi.org/10.1016/j.epsr.2011.09.010
http://dx.doi.org/10.1049/iet-gtd.2012.0377


Appl. Sci. 2019, 9, 1515 21 of 22

14. Khorram, E.; Taleshian Jelodar, M. PMU placement considering various arrangements of lines connections at
complex buses. Int. J. Electr. Power Energy Syst. 2018, 94, 97–103. [CrossRef]

15. Rahman, N.H.A.; Zobaa, A.F. Integrated mutation strategy with modified binary PSO algorithm for optimal
PMUs placement. IEEE Trans. Ind. Inform. 2017, 13, 3124–3133. [CrossRef]

16. Aghaei, J.; Baharvandi, A.; Rabiee, A.; Akbari, M.A. Probabilistic PMU placement in electric power networks:
An MILP-based multiobjective model. IEEE Trans. Ind. Inform. 2015, 11, 332–341. [CrossRef]

17. Nikkhah, S.; Aghaei, J.; Safarinejadian, B.; Norouzi, M.-A. Contingency constrained phasor measurement
units placement with n − k redundancy criterion: A robust optimisation approach. IET Sci. Meas. Technol.
2017, 12, 151–160. [CrossRef]

18. Asgari, A.; Firouzjah, K.G. Optimal PMU placement for power system observability considering network
expansion and N−1 contingencies. IET Gener. Transm. Distrib. 2018, 12, 4216–4224. [CrossRef]

19. Alimardani, A.; Therrien, F.; Atanackovic, D.; Jatskevich, J.; Vaahedi, E. Distribution system state estimation
based on nonsynchronized smart meters. IEEE Trans. Smart Grid 2015, 6, 2919–2928. [CrossRef]

20. Primadianto, A.; Lu, C.N. A review on distribution system state estimation. IEEE Trans. Power Syst. 2017, 32,
3875–3883. [CrossRef]

21. Suh, J.; Hwang, S.; Jang, G. Development of a transmission and distribution integrated monitoring and
analysis system for high distributed generation penetration. Energies 2017, 10, 1282. [CrossRef]

22. Pau, M.; Ponci, F.; Monti, A.; Angioni, A.; Muscas, C.; Pegoraro, P.A.; Sulis, S. Bayesian approach for
distribution system state estimation with non-gaussian uncertainty models. IEEE Trans. Instrum. Meas. 2017,
66, 2957–2966. [CrossRef]

23. Angioni, A.; Schlösser, T.; Ponci, F.; Monti, A. Impact of pseudo-measurements from new power profiles on
state estimation in low-voltage grids. IEEE Trans. Instrum. Meas. 2016, 65, 70–77. [CrossRef]

24. Ou, T.C.; Lu, K.H.; Huang, C.J. Improvement of transient stability in a hybrid power multi-system using a
designed NIDC (Novel Intelligent Damping Controller). Energies 2017, 10, 488. [CrossRef]

25. Su, H.Y.; Liu, T.Y. A PMU-based method for smart transmission grid voltage security visualization and
monitoring. Energies 2017, 10, 1103. [CrossRef]

26. Usman, M.U.; Faruque, M.O. Validation of a PMU-based fault location identification method for smart
distribution network with photovoltaics using real-time data. IET Gener. Transm. Distrib. 2018, 12, 5824–5833.
[CrossRef]

27. Ou, T.C.; Hong, C.M. Dynamic operation and control of microgrid hybrid power systems. Energy 2014, 66,
314–323. [CrossRef]

28. Muscas, C.; Pau, M.; Pegoraro, P.A.; Sulis, S. Effects of measurements and pseudomeasurements correlation
in distribution system state estimation. IEEE Trans. Instrum. Meas. 2014, 63, 2813–2823. [CrossRef]

29. Dzafic, I.; Jabr, R.A.; Huseinagic, I.; Pal, B.C. Multi-phase state estimation featuring industrial-grade
distribution network models. IEEE Trans. Smart Grid 2017, 8, 609–618. [CrossRef]

30. Pau, M.; Pegoraro, P.A.; Sulis, S. Efficient branch-current-based distribution system state estimation including
synchronized measurements. IEEE Trans. Instrum. Meas. 2013, 62, 2419–2429. [CrossRef]

31. Mouwafi, M.T.; El-Sehiemy, R.A.; Abou El-Ela, A.A.; Kinawy, A.M. Optimal placement of phasor measurement
units with minimum availability of measuring channels in smart power systems. Electr. Power Syst. Res.
2016, 141, 421–431. [CrossRef]

32. Rahman, N.H.A.; Zobaa, A.F. Optimal PMU placement using topology transformation method in power
systems. J. Adv. Res. 2016, 7, 625–634. [CrossRef]

33. Esmaili, M. Inclusive multi-objective PMU placement in power systems considering conventional
measurements and contingencies. Int. Trans. Electr. Energy Syst. 2016, 26, 609–626. [CrossRef]

34. Khajeh, K.G.; Bashar, E.; Rad, A.M.; Gharehpetian, G.B. Integrated model considering effects of zero injection
buses and conventional measurements on optimal PMU placement. IEEE Trans. Smart Grid 2017, 8, 1006–1013.
[CrossRef]

35. Jamil, E.; Rihan, M.; Anees, M.A. Towards optimal placement of phasor measurement units for smart
distribution systems. In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON),
Delhi, India, 5–7 December 2014; pp. 1–6. [CrossRef]

36. Manousakis, N.M.; Korres, G.N. A weighted least squares algorithm for optimal PMU placement. IEEE Trans.
Power Syst. 2013, 28, 3499–3500. [CrossRef]

http://dx.doi.org/10.1016/j.ijepes.2017.06.028
http://dx.doi.org/10.1109/TII.2017.2708724
http://dx.doi.org/10.1109/TII.2015.2389613
http://dx.doi.org/10.1049/iet-smt.2017.0158
http://dx.doi.org/10.1049/iet-gtd.2018.5874
http://dx.doi.org/10.1109/TSG.2015.2429640
http://dx.doi.org/10.1109/TPWRS.2016.2632156
http://dx.doi.org/10.3390/en10091282
http://dx.doi.org/10.1109/TIM.2017.2728398
http://dx.doi.org/10.1109/TIM.2015.2454673
http://dx.doi.org/10.3390/en10040488
http://dx.doi.org/10.3390/en10081103
http://dx.doi.org/10.1049/iet-gtd.2018.6245
http://dx.doi.org/10.1016/j.energy.2014.01.042
http://dx.doi.org/10.1109/TIM.2014.2318391
http://dx.doi.org/10.1109/TSG.2016.2592978
http://dx.doi.org/10.1109/TIM.2013.2272397
http://dx.doi.org/10.1016/j.epsr.2016.07.029
http://dx.doi.org/10.1016/j.jare.2016.06.003
http://dx.doi.org/10.1002/etep.2099
http://dx.doi.org/10.1109/TSG.2015.2461558
http://dx.doi.org/10.1109/POWERI.2014.7117773
http://dx.doi.org/10.1109/TPWRS.2013.2242698


Appl. Sci. 2019, 9, 1515 22 of 22

37. Aminifar, F.; Fotuhi-Firuzabad, M.; Safdarian, A. Optimal PMU placement based on probabilistic cost/benefit
analysis. IEEE Trans. Power Syst. 2013, 28, 566–567. [CrossRef]

38. Li, Q.; Cui, T.; Weng, Y.; Negi, R.; Franchetti, F.; Ilic, M.D. An information-theoretic approach to PMU
placement in electric power systems. IEEE Trans. Smart Grid 2013, 4, 446–456. [CrossRef]

39. Maji, T.K.; Acharjee, P. Multiple solutions of optimal PMU placement using exponential binary PSO algorithm
for smart grid applications. IEEE Trans. Ind. Appl. 2017, 53, 2550–2559. [CrossRef]

40. Jamuna, K.; Swarup, K.S. Multi-objective biogeography based optimization for optimal PMU placement.
Appl. Soft Comput. J. 2012, 12, 1503–1510. [CrossRef]

41. Shafiullah, M.; Abido, M.A.; Ismail Hossain, M.; Mantawy, A.H. An improved OPP problem formulation for
distribution grid observability. Energies 2018, 11, 3069. [CrossRef]

42. Gopakumar, P.; Jaya Bharata Reddy, M.; Mohanta, D.K. Pragmatic multi-stage simulated annealing for
optimal placement of synchrophasor measurement units in smart power grids. Front. Energy 2015, 9, 148–161.
[CrossRef]

43. Kazemi Karegar, H.; Dalali, M. Optimal PMU placement for full observability of the power network with
maximum redundancy using modified binary cuckoo optimisation algorithm. IET Gener. Transm. Distrib.
2016, 10, 2817–2824. [CrossRef]

44. Khiabani, V.; Erdem, E.; Farahmand, K.; Nygard, K. Genetic algorithm for instrument placement in smart
grid. In Proceedings of the 2013 World Congress on Nature and Biologically Inspired Computing, Fargo,
ND, USA, 12–14 August 2013; pp. 214–219. [CrossRef]

45. Shi, L.; Yang, S.L.; Li, K.; Yu, B. Developing an evaluation approach for software trustworthiness using
combination weights and TOPSIS. J. Softw. 2012, 7, 532–543. [CrossRef]

46. Zhou, X.; Sun, H.; Zhang, C.; Dai, Q. Optimal placement of PMUs using adaptive genetic algorithm
considering measurement redundancy. Int. J. Reliab. Qual. Saf. Eng. 2016, 23, 1640001. [CrossRef]

47. Abdelsalam, H.A.; Abdelaziz, A.Y.; Osama, R.A.; Salem, R.H. Impact of distribution system reconfiguration
on optimal placement of phasor measurement units. In Proceedings of the 2014 Clemson University Power
Systems Conference, Clemson, SC, USA, 11–14 March 2014; pp. 1–6. [CrossRef]

48. Chen, X.; Chen, T.; Tseng, K.J.; Sun, Y.; Amaratunga, G. Customized optimal µPMU placement method for
distribution networks. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering
Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 135–140. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRS.2012.2198312
http://dx.doi.org/10.1109/TSG.2012.2228242
http://dx.doi.org/10.1109/TIA.2017.2666091
http://dx.doi.org/10.1016/j.asoc.2011.12.020
http://dx.doi.org/10.3390/en11113069
http://dx.doi.org/10.1007/s11708-015-0344-z
http://dx.doi.org/10.1049/iet-gtd.2016.0287
http://dx.doi.org/10.1109/NaBIC.2013.6617865
http://dx.doi.org/10.4304/jsw.7.3.532-543
http://dx.doi.org/10.1142/S0218539316400015
http://dx.doi.org/10.1109/PSC.2014.6808114
http://dx.doi.org/10.1109/APPEEC.2016.7779485.1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Network Compression 
	The Observability of Distribution Network 
	Network Compression Based on Pre-Configuration and Existing Measurements 

	Hybrid State Estimator Considering PMU Measurements 
	The Basic Model of State Estimation 
	Estimator with PMU Measurements 

	Multi Objective Model of Optimal PMU Placement 
	The Basic Model of OPP Considering Cost and State Estimation Accuracy 
	Updated Constraint Considering ZIB Measurement 
	Updated Constraint Considering SCADA Measurement 
	The Final OPP Model 

	Solution Methodology Based on NSGA-II and TOPSIS 
	Optimization Based on NSGA-II 
	Initialization Based on Network Compression 
	Fitness Calculation 
	Genetic Operations Based on Pre-Configuration 
	Fast Nondominated Sorting 
	Crowding-Distance Calculation 
	Optimization Process 

	Selection Based on TOPSIS 

	Simulation Results and Discussion 
	Conclusions 
	
	References

