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Abstract: This paper investigates active broadband noise control inside vehicles with a multichannel
controller. The noncausal inversion of a practical nonminimum-phase secondary path is formulated,
and its influence on noise-reduction performance is analyzed. Based on multiple coherence between
reference signals and undesired noise, a novel formulation for identifying primary paths with
correlated excitation signals is presented and a causal optimal controller is proposed. Meanwhile,
the proposed controller can be used as an accurate predictor to estimate the maximal achievable noise
reduction and provide a reference to improve the control systems. The robustness of the proposed
algorithm is examined by varying the uncertainty of primary paths. Finally, the performance of the
proposed causal optimal controller is validated using the data measured in a car. The results show
that the proposed algorithm outperforms traditional algorithms and achieves a significant broadband
noise reduction in time-invariant systems.

Keywords: active noise control; broadband noise; nonminimum-phase secondary path

1. Introduction

The acoustic quality of a car determines its ride comfort and has been a significant marketing
issue for car manufacturers [1]. Broadband road noise inside a car, caused by road-tyre interaction,
is the main noise source when a car is driving at a relatively high speed [2]. Thus, measures have to be
taken to isolate or reduce this noise to an acceptable level. Traditionally, sound-absorbing materials
have been used to attenuate the noise. However, when they are used to reduce low-frequency noise,
the mass and space they require can be out of scale. In order to overcome this problem, the active
control system is applied [3].

Active control of the interior road noise of a car has been researched for over two decades, and a
variety of active noise control (ANC) techniques have been proposed to improve ride comfort [4–6].
Sutton et al. proved that at least six vibrational reference signals are required to attenuate broadband
road noise by using a filtered-x least mean square (FXLMS) algorithm [4]. Sano et al. used a H∞
controller to cancel the noise around front seat, although only a reduction of 10 dB at 40 Hz was
achieved [7]. Oh et al. proposed a leaky constraint multiple FXLMS algorithm, and road-booming
noise around 250 Hz was reduced about 6 dB at the error microphone positions [8]. Belgacem et al.
used an active structural acoustic control technique to reduce the vibration of suspensions, and a 4.6 dB
attenuation was measured in the 50–250 Hz on a quarter-car test bench [9]. Cheer and Elliott show
that a multi-input multi-output system was required to have a distinct reduction for the broadband
noise [10,11]. Further, Jung et al. used a headrest system to reduce interior road noise around a
listener’s ears with remote microphone technique [12]. Although many algorithms were explored,
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the constraints limiting the improvement of control performance for broadband road noise still have
not been solved [9,13].

As we know, the performance of ANC systems relies heavily on the secondary path
characteristics [14]. To improve control results, high modelling accuracy of the secondary path
is required [15,16]. However, if the secondary path is a nonminimum-phase system, it will generate a
waterbed effect on the control system, which has a significant influence on the design of the controller
and the deterioration of the control performance [13,17], regardless of the fact that the controller is
designed by FXLMS [18] or H∞ robust control algorithms [19]. Under this situation, even a perfect
modelling cannot lead to a satisfactory result [20]. Although the above adaptive control algorithms
have the ability to reduce noise with time-varying primary paths, the best control results cannot be
achieved due to their large gradient estimation deviation of the cost fuction for time-varying noise.

In this paper, a novel formulation for identifying primary paths with correlated excitation signals
is presented, and the influence of a nonminimum-phase secondary path on the control system is
investigated. Based on the theoretical analysis, a novel causal optimal controller is proposed to improve
the control performance for the time-invariant system. Besides, the traditional method to predict the
noise reduction is using the coherence between reference and noise signals [4,11,21]. The resulting
prediction has a large deviation from the practical reduction, because it does not take causality
constraint into account. Since the proposed controller considers the nonminimum-phase characteristics
of secondary paths as well as the frequency responses of systems, it can also be used as a more accurate
predictor to estimate the maximal achievable noise reduction and is more instructive in engineering.
All the work is conducted under the assumption that the control systems are linear time-invariant.

The organisation of this paper is as follows. In Section 2, the impact of a nonminimum-phase
secondary path on the noise-reduction performance is analysed and its noncausal inversion is
formulated. Section 3 presents a novel formulation for the identification of multiple primary paths with
correlated excitation signals, and a causal optimal controller is proposed. In Section 4, the robustness
and computational complexity of proposed algorithm is examined and control performance is validated.
Conclusions are provided in Section 5.

2. Secondary Path Analysis

2.1. Influence of a Secondary Path on Control Performance

The block diagram of a control system is shown in Figure 1, where z = ej2πf , P(z) and S(z)
correspond to the primary and secondary paths, W(z) is the controller, and d(n) and d̂(n) represent
the undesired noise and output signal of the control system, respectively. If the output signal is
designed to cancel the undesired noise completely, the resulting optimal controller W(z) will have the
following expression:

Wopt(z) = P(z)/S(z) (1)

Figure 1. The block diagram of an active noise control (ANC) system.

Apparently, the optimal controller is a result of the convoluting transfer functions of the primary
path and the inversion of the secondary path. Unfortunately, most of the secondary paths in the
engineering are nonminimum-phase and their inversions may be unstable [20]. To circumvent the
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problem, we expand the inversion of S(z) as a noncausal filter and use a causal filter C(z) to approximate
it as [22], as follows:

S(z)C(z) = z−D, (2)

where z−D denotes D sampling times delay. Thus, the optimal controller can be rewritten as
Wopt(z) = zDC(z)P(z). It is assumed that H(z) = P(z)C(z) and the impulse response of H(z) is hn,
n = 0,···,Nh−1; then, the optimal output signal of the controller Wopt(z) is [20], as follows:

yopt(n) = hn ∗ x(n + D) =
D−1∑
i=0

hix(n + D− i) +
Nh−1∑
i=D

hix(n + D− i), (3)

where n denotes current sampling time. If n + D − i < n, it means x(n + D − i) is a past input signal.
Similarly, if n + D − i > n, it means x(n + D − i) is a future input signal. It can be seen from above
equation that the first part of the optimal output signal yopt(n) is a linear convolution of the future
input signal with the system impulse response hn and the second part is a convolution of the past
input signal with the impulse response hn. For the controller W(z), the second part of the optimal
output signal can be generated by using the past input signal and causal part of system response.
However, to produce the first part of the optimal output signal, it needs the future input signal, which
is impossible for the controller to obtain. Therefore, the best noise-reduction performance, which is
achievable for a physical system, can be derived by designing a controller with the causal part of the
system impulse response.

2.2. Noncausal Inversion

In this part, a practical secondary path shown in Figure 2 is adopted, where Sp and Mic denote
the door loudspeaker and error microphone, respectively. The secondary path from the output of
the controller to the measured signal of Mic is identified with a 13th order infinite impulse response
(IIR) filter and its impulse response, zeros, and poles distribution are shown in Figure 3. It can be
seen from Figure 3b that there are five zeros outside the unit circle. Thus, the secondary path is a
nonminimum-phase system, and its inversion will contain both causal and noncausal parts.

Figure 2. The positions of the loudspeaker and error microphone.
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Figure 3. The identified secondary path: (a) impulse response and (b) zeros (crosses) and poles
(circles) distribution.

From Figure 3b, we know that there are no repeated zeros in the secondary path. So, its inversion
S−1(z) can be expressed using partial fraction decomposition as [23], as follows:

S−1(z) =
Q∑

q=1

Aq

1− pqz−1
, (4)

where pq is the qth pole of S−1(z) and also the qth zero of S(z) and Aq is the related coefficient.
Because all the coefficients of the filter S(z) are real, its poles and zeros must be either purely real or
appear in complex conjugate pairs. By including the unit circle into the convergence region, the term
Aq/(1 − pqz−1) of Equation (4) corresponding to purely real pq can be expanded as follows:

Xr
q(z) =


Aq
∞∑

n=0
(pqz−1)

n∣∣∣pq
∣∣∣ ≤ 1

−Aq
∞∑

n=1
(p−1

q z)n∣∣∣pq
∣∣∣ > 1.

(5)

For a pair of conjugate zeros pq and p∗q of S(z), their corresponding coefficients are also conjugate.
Thus, the expansions can be simplified from Equation (5) into an expression of conjugate pairs.
According to whether the conjugate zeros pair, pq and p∗q, are inside or outside the unit circle;
their expansion XC

q (z) can be rewritten as Equations (6), as follows:

Xc
q(z) =


∞∑

n=0
2
∣∣∣Aq

∣∣∣rn
q cos(βqn + αq)z−n

∣∣∣pq
∣∣∣ ≤ 1

−

∞∑
n=1

2
∣∣∣Aq

∣∣∣r−n
q cos(βqn− αq)zn

∣∣∣pq
∣∣∣ > 1,

(6)

where αq, βq, and rq are derived from Aq =
∣∣∣Aq

∣∣∣e jαq , pq = rqe jβq . Equation (6) corresponds to the causal
and noncausal responses of conjugate zeros pairs. By substituting Equations (5) and (6) for Equation (4),
the inversion of S(z) is obtained as follows:

S−1(z) =
∑

(Xr
q(z) + Xc

q(z)). (7)

The finite impulse response of S−1(z) in Equation (7) corresponding to the secondary path in
Figure 2 is shown in Figure 4. The noncausal part of the response is displayed in the range of [−400, 0),
which is the summation of Equation (7) when |pq| > 1. The causal part of the response is shown in the
range of [0, 100], which is the summation of Equation (7) when |pq| ≤ 1. It can be seen that it will take a
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long period for noncausal response to decay. Therefore, the nonminimum-phase secondary path S(z)
will have a significant effect on control performance, and a large proportion of the undesired noise
cannot be reduced using this secondary path.

Figure 4. The impulse response of the noncausal inversion for the secondary path.

3. Formulation of the Causal Optimal Controller

Since broadband road noise inside a car is produced by the interaction between road surface and
tires, it is complicated and at least six reference signals are required to achieve a satisfactory result [5].
Therefore, the combination of reference signals needs to be chosen according to coherence function
between input signal x(n) and output undesired noise d(n) [24]. Since the vibrational signals measured
in a vehicle are correlative to each other, the multiple coherence cannot be calculated directly, and the
partial coherence function is required, which is defined as follows:

γ2
xkd·x1···xk−1

(e j2π f ) =
∣∣∣Sxkd·x1···xk−1

(e j2π f )
∣∣∣2/[Sxkxk·x1···xk−1(e

j2π f )Sdd·x1···xk−1
(e j2π f )], (8)

where Sxkxkx1···xk−1

(
e j2π f

)
, Sddx1···xk−1

(
e j2π f

)
, and Sxkdx1···xk−1

(
e j2π f

)
are the residual power spectral density

functions and the residual cross-spectral density function of signals xk, d after removing the components
relating to the signals x1···xk−1 at frequency f. When k = 1, they are simplified as Sx1x1

(
e j2π f

)
, Sdd

(
e j2π f

)
,

and Sdx1

(
e j2π f

)
, which can be derived from the autocorrelation and cross-correlation functions using

discrete Fourier transformation [23]. The residual spectral density function can be derived using the
following expression:

Si j·x1···xk−1(e
j2π f ) = Si j·x1···xk−2(e

j2π f ) − Sixk−1·x1···xk−2(e
j2π f )Sxk−1 j·x1···xk−2(e

j2π f )/Sxk−1xk−1·x1···xk−2(e
j2π f ), (9)

where i and j denote the signals xk or d.
The partial coherence function γ2

xkdx1···xk−1

(
e j2π f

)
of Equation (8) represents the contribution of

signal xk to the power of signal d after removing signals x1···xk−1 from them. Once they are acquired,
the multiple coherence between reference signals x1···xK and the undesired noise d can be derived as
follows [24]:

γ2
x1···xKd(e

j2π f ) = 1− (1− γ2
x1d(e

j2π f ))(1− γ2
x2d·x1

(e j2π f )) · · · (1− γ2
xKd·x1···xK−1

(e j2π f )). (10)

The result of Equation (10) represents the multiple coherence between the undesired noise and
the set of reference signals. As we know, a widely accepted expression to estimate the maximal noise
reduction is [4,11,21], as follows:

NR(e j2π f ) = −10lg(1− γ2
x1···xKd(e

j2π f )). (11)
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The above equation shows that the larger the result of Equation (10), the more potential noise
reduction can be achieved. Thus, the most appropriate reference signals can be obtained according to
the calculation results of all the different combinations of K signals from all the measured vibrational
signals. The combination of K signals with the largest multiple coherence value will be used as reference
signals, and the corresponding primary paths of vibration and noise propagation are required to be
identified. Since the disturbances in the input and output signals cannot be acquired, it is appropriate
to assume that their power ratio equals one and identify the primary system paths using the following
equation [25]:

P(e j2π f ) =

{
Sdd(e j2π f ) − Sxx(e j2π f ) +

√
[Sdd(e j2π f ) − Sxx(e j2π f )]

2
+ 4

∣∣∣Sxd(e j2π f )
∣∣∣2}/[2Sdx(e j2π f )]. (12)

The first primary path P
(
e j2π f

)
can be identified directly using Equation (12). For modelling

the kth (k > 1) primary path, however, we need to remove the components related to the former
k − 1 reference signals from the signal xk and undesired noise d. Similarly, using residual power
spectral density and residual cross-spectral density functions Sxkxkx1···xk−1

(
e j2π f

)
and Sddx1···xk−1

(
e j2π f

)
,

and Sdxkx1···xk−1

(
e j2π f

)
and Sxkdx1···xk−1

(
e j2π f

)
derived from Equation (9), the kth primary path Pk

(
e j2π f

)
can be identified as follows:

Pk(e j2π f ) =
Sdd·x1 ···xk−1

(e j2π f )−Sxkxk ·x1 ···xk−1 (e
j2π f )+

√
[Sdd·x1 ···xk−1

(e j2π f )−Sxkxk ·x1 ···xk−1 (e
j2π f )]

2
+4

∣∣∣∣Sxkd·x1 ···xk−1
(e j2π f )

∣∣∣∣2
2Sdxk ·x1 ···xk−1

(e j2π f )
. (13)

Transforming Equation (13) into z domain and substituting the result and Equation (7) into
Equation (1), the optimal controller can be expressed as follows:

Wopt,k(z) = Pk(z)
(∑

(Xr
q(z) + Xc

q(z))
)
. (14)

As is explained in Section 2.1 and Figure 4, the future reference signals of an ANC system cannot
be acquired. Thus, the noncausal part of the optimal controller has to be discarded, and the causal
optimal controller (COC) is derived as follows:

Wcau,k(z) =
{
Pk(z)

(∑
(Xr

q(z) + Xc
q(z))

)}
+

, (15)

where the subscript + denotes the causal part of the optimal controller, that is, the terms with
non-positive exponential index of z. Equation (15) is a causal optimal controller for a physical system,
and the best noise-reduction result can be achieved with it. Meanwhile, Equation (15) can also be used
to predict the achievable noise-reduction performance by transforming it into frequency domain and
substituting it for the following expression:

NRcau(e j2π f ) = −10lg(1− γ2
x1···xKd(e

j2π f )
∣∣∣Wcau(e j2π f )

∣∣∣2/
(∣∣∣Wcau(e j2π f )

∣∣∣2 + ∣∣∣Wnocau(e j2π f )
∣∣∣2)). (16)

Equation (11) is a widely accepted expression to predict the noise reduction by considering the
coherence between reference and noise signals. However, the predicted performance is difficult to
achieve in the engineering since it does not take causality constraint into account. In practice, due to the
limitation of the nonminimum-phase characteristics of secondary paths, the achievable noise reduction
is far less than the predicted result of Equation (11). For the predicted result using Equation (16),
since it considers the nonminimum-phase characteristics of secondary paths as well as the frequency
responses of primary and secondary paths, the result is the maximal noise reduction that a physical
system can be achieved and is more instructive in engineering. Thus, equation (11) is more suitable to
be a criterion for selecting reference signals, while Equation (16) is more appropriate to be a predictor
for estimating the control results.
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4. Algorithm Verification and Discussion

The proposed causal optimal controller in Equation (15) is verified in this section using the
data measured from a car driving at 60 km/h in third gear with a sampling frequency of 1600 Hz.
The positions of the loudspeaker and error microphone are shown in Figure 2. Vibrational signals of
the car are adopted as reference signals, and they are acquired by installing eight triaxial accelerometers
on the chassis of the car. The positions of accelerometers are shown in Figure 5, where ACC1—ACC8
represent eight triaxial accelerometers, and Mic and Sp represent the error microphone and door
loudspeaker. Due to the distance limitation between the error microphone and ears, only the noise
below 200 Hz is expected to be cancelled.

Figure 5. The installation positions of accelerometers and error microphone on the car.

Six reference signals are selected from twenty-four vibrational signals according to the multiple
coherence results, and they are ACC2-X, ACC2-Z, ACC4-X, ACC6-X, ACC6-Y, and ACC7-Y. The multiple
coherence between the selected reference signals and the undesired noise is shown in Figure 6. It can
be observed that the average of the multiple coherence between 30 and 200 Hz is over 0.6. Therefore,
the reference signals are acceptable.

Figure 6. Multiple coherence between reference signals and the undesired noise.

Based on above analysis, a multichannel control system is designed as is shown in Figure 7, where
xi and Wi, i = 1,· · · ,6 denote six reference signals and controllers, respectively. Each controller Wi
has the expression as Equation (15). If only the broadband noise is going to be cancelled, using six
proposed causal optimal controllers can achieve a satisfactory result. If the broadband as well as engine
harmonic noises are expected to be reduced, it is appropriate to add an adaptive controller Wh into the
control system to cancel the harmonic component. The design of Wh is based on FXLMS algorithm,
and the adopted reference signal should include the engine harmonics [26].
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Figure 7. The diagram of a multichannel ANC system.

A six-channel FXLMS algorithm is also adopted here for performance comparison. The resultant
error signal of the algorithm is derived as follows:

e(n) = d(n) − s(n) ∗
6∑

i=1

yi(n), (17)

where * denotes convolution and s(n) is the impulse response of the secondary path S, which is
identified offline in advance [26]. By taking the square of the instantaneous error e(n) as a cost function,
the updating equation for each adaptive filter of FXLMS algorithm is obtained [26] as follows:

Wi(n + 1) = Wi(n) + µ/[δ+ norm(xi f )]e(n)xi f (n), i = 1, 2, · · · , 6, (18)

where µ is the step size for updating the control filter; δ is a normalization constant; and xif(n) is the
ith filtered reference signal vector, which is the convolution result of the ith reference signal and the
secondary path s(n).

The noise reduction is evaluated using the parameter Rd, which is defined as follows:

Rd = 10lg(
e2(n)
d2(n)

). (19)

4.1. Robustness and Computational Complexity Analysis

In practice, the real primary path Pk,r
(
e j2π f

)
of a physical system may vary from the identified

result Pk
(
e j2π f

)
. Thus, the robustness of the proposed control algorithm has to be examined by defining

the uncertainty of the primary path Pk,r
(
e j2π f

)
as follows:

∆ =

∥∥∥∥∥∥Pk,r(e j2π f ) − Pk(e j2π f )

Pk(e j2π f )

∥∥∥∥∥∥
∞

, (20)

where ‖ ‖∞ denotes the infinite norm of the expression.
The control performances are evaluated under different uncertainties. In the examination,

six primary paths P1,· · · ,P6 are identified using the method proposed in Section 3, and six broadband
random noise signals are applied to the real primary paths P1,r, · · · , P6,r as excitation sources
to produce a noise signal, where the real primary paths Pk,r

(
e j2π f

)
, k = 1,· · · ,6 are derived as

Pk,r
(
e j2π f

)
= (1 + ∆V)Pk

(
e j2π f

)
according to different uncertainties ∆, and V is a normalized random

signal vector with maximal amplitude of one. Meanwhile, six causal optimal controllers derived using
the identified primary paths P1,· · · ,P6 are adopted as controllers. Since the coefficients of the proposed
COC controller approximate zero when its length is larger than 768, each filter of proposed COC
algorithm and FXLMS algorithm is selected with the same memory length of 768. For the FXLMS
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algorithm, the step size and normalization constant are µ = 0.1, δ = 0.1. Under a specific uncertainty ∆,
a random signal vector V is generated to obtain the different real primary paths Pk,r

(
e j2π f

)
, k = 1,· · · ,6.

The simulation results of averaging 50 independent runs for each specific uncertainty ∆ are displayed
in Figure 8. FXLMS algorithm is adaptive, and it can adjust its coefficients to different primary paths.
Therefore, the control results of FXLMS algorithm for different primary paths are similar, and only the
result with uncertainty ∆ = 0 is shown in Figure 8.

Figure 8. Control results with different uncertainties.

It can be observed from Figure 8 that the nominal noise reduction of proposed COC (∆ = 0) is
about 8 dB, and by increasing uncertainty ∆ to 300%, the corresponding noise reduction decreases to
3 dB, which is at the same level as the result of FXLMS algorithm. Therefore, the proposed method can
achieve better noise-reduction performance if the modelling accuracy of primary paths is within 300%.
In most of cases, the modelling uncertainty can be limited within this range. Thus, the modelling errors
of primary paths do not significantly deteriorate the noise-reduction performance, and the results of
proposed algorithm are better than that of FXLMS algorithm. It should be noted that even though
all the undesired noise is caused by the reference signals, only a small reduction is obtained. This is
because the results are deteriorated by the nonminimum-phase characteristics of the secondary path.

The computational complexity of the proposed COC algorithm and FXLMS algorithm is shown
in Table 1, where L, N, M denote the length of the control filter, the secondary path, and the number
of channels; ± and × denote the manipulations of addition and subtraction, and multiplication,
respectively. Compared with the FXLMS algorithm, the proposed COC algorithm requires less
computation irrespective of cancelling broadband noise or broadband as well as harmonic noises.
Its advantage becomes more significant when the number of channels M is increased.

Table 1. Computational complexity analysis.

Noise Output Filtering Updating Total

FXLMS Broadband
and harmonics

± M(L − 1) M(N − 1) ML M(2L + N − 2)
× ML MN M(L + 1) M(2L + N + 1)

COC
Broadband

± M(L − 1) 0 0 M(L − 1)
× ML 0 0 ML

Broadband
and harmonics

± (M + 1)(L − 1) N − 1 L (M + 2)(L − 1) + N
× (M + 1)L N L + 1 (M + 2)L + N + 1

4.2. Implementation and Verification

In this subsection, the simulations are performed using the data measured from the setup of
Figures 2 and 5 when the car is driving at a rough road. Since the noise inside a car contains both



Appl. Sci. 2019, 9, 1531 10 of 12

broadband noise and harmonics of the engine, an adaptive controller Wh updated using FXLMS
algorithm is added into the control system to reduce the engine harmonic noise, and the proposed
six-channel causal optimal controllers are used to reduce the broadband noise. The parameters for
COC and FXLMS algorithms are L = 768, µ = 0.002, and δ = 0.1.

The control results in time domain are shown in Figure 9a. It can be seen that the proposed
COC algorithm outperforms FXLMS algorithm with an approximate 6 dB reduction, while FXLMS
algorithm only obtains a 2.5 dB noise reduction. Comparing Figure 9a with Figure 8, we can find
that the noise reductions of two algorithms are decreased. That is because all the undesired noise in
Figure 8 is caused by the six reference signals, while for the noise inside a car, only part of it is induced
by the reference signals. Thus, the control performance can be improved further by increasing the
number of reference signals.

Figure 9. Control results using the data from a car: (a) results in time domain and (b) results in
frequency domain.

The control results in frequency domain are shown in Figure 9b. The main attenuation occurs
around 34 and 87 Hz. The noise peak at 34 Hz is caused by the resonance of the car. After control,
FXLMS algorithm achieves about 7 dB reduction at peak, while for the proposed COC algorithm,
a maximal reduction up to 12 dB is achieved. The peak at 87 Hz is the second-order harmonic of the
engine, which is reduced distinctly under two algorithms. Meanwhile, for the noise between 30 and
130 Hz, the proposed COC algorithm achieves a significant reduction in the whole frequency band.
However, FXLMS algorithm only reduces some peaks slightly. This is because the cost function of
FXLMS algorithm is the square of the instantaneous error, which leads the FXLMS algorithm to reduce
the maximal noise component first (beforehand, the other noise components cannot be attenuated
effectively). Besides, FXLMS algorithm is derived by using the instantaneous error e2(n) to replace its
expectation E(e2(n)); its gradient estimation deviation may be large, especially under time-varying
noise. These factors will deteriorate the control result of FXLMS algorithm.

5. Conclusions

This paper analyzed the achievable noise reduction of a control system with a nonminimum-phase
secondary path, and a causal optimal controller (COC) was proposed using the convolution of noncausal
inversion of the secondary path and the identification results of primary paths. The proposed causal
optimal controller can also be used to predict the noise reduction as a complement of the multiple
coherence. Since the causality constraint was considered, the predicted result of the proposed controller
is the maximal noise reduction with which a physical control system can be achieved. Thus, it is more
instructive in terms of engineering.

The robustness examination showed that the proposed causal optimal controller outperforms
the FXLMS algorithm, provided that the uncertainties of the primary paths are within 300%. If the
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modelling errors of the primary paths are larger than 300%, the control results of the proposed algorithm
will deteriorate. The performance of the proposed causal optimal controller was validated using the
data measured in a car, and an overall noise reduction of 6 dB was predicted with the assumption that
both primary and secondary paths are linear time-invariant. Furthermore, the proposed algorithm
achieved a significant reduction in the whole frequency band of 30–130 Hz, and the maximal reduction
was found to be up to 12 dB at some peaks.
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