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Abstract: Since the concept of Industry 4.0 emerged, an increasing number of major manufacturers
have incorporated relevant technologies to monitor machinery and schedule processes so as to
increase yield and optimize production. However, most machinery monitoring technologies are far
too expensive for small- and medium-sized enterprises. Furthermore, the production processes at
small- and medium-sized enterprises are simpler and can thus be optimized without excessively
complex scheduling systems. This study therefore proposed the use of cheaper add-on sensors for
monitoring machinery and integrated them with an algorithm that can more swiftly produce results
that meet multiple objectives. The proposed algorithm is meant to extend the capabilities of small-
and medium-sized enterprises in monitoring machinery and scheduling processes, thereby enabling
them to contend on an equal footing with larger competitors. Finally, we performed an experiment at
an actual spring enterprise to demonstrate the validity of the proposed algorithm.
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1. Introduction

Since the term Industry 4.0 was coined, an increasing number of major manufacturers have
incorporated relevant technologies, such as using well-designed and embedded sensors to collect
data from machinery or the test results of various products. Then, a server receives the signal from
multiple sensors, and unifies the format of these signals, for monitoring, scheduling, and analysis [1,2].
This makes it possible for enterprises to monitor the operational status of machinery on an ongoing
basis, and in so doing enhance production efficiency, reduce maintenance costs, and optimize quality.
Industry 4.0 protocols can indeed help enterprises to improve performance and reduce costs; however,
the capital outlay required for the adoption of these technologies (e.g., sensors, cloud computing,
big data analysis) can be prohibitively high. Furthermore, the base infrastructure differs greatly from
that of conventional enterprises, thereby necessitating considerable upgrades prior to implementation.
Most large-scale enterprises are able to make these changes without difficulty; however, most small-
and medium-sized enterprises (SMEs) are unable to absorb the costs.

Many researchers have sought to lower the adoption threshold for Industry 4.0. Dassisti et al. [3]
introduced a core-meta model to help SMEs implement Industry 4.0 in their enterprises. Uriarte et al. [4]
used the technique of mechanistic modeling to predict the micromilling cutting forces. Rivelo et al. [5]
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used the internal signals of machinery to do the tool wear detection. Plapper and Weck [6] proposed
a new approach on using digital drive signals for monitoring the conditions of machine tool.
Barrio et al. [7] discussed how to use the concept of Industry 4.0 to do modeling and process monitoring
on machines. Finally, Birkel et al. [8] developed a risk framework for enterprises considering switching
over to Industry 4.0.

It should be noted that most of the methods used to monitor machinery are impractical for SMEs,
due to budgetary restrictions on the purchase of updated machinery equipped with the latest sensors.
Moreover, it is doubtful that they will purchase large numbers of the same machines at the same
time. To save money, the machines that they buy may even come from different manufacturers and
countries. Consequently, these are reasons why mutual communication among machines is difficult
for SMEs. Even if their machines had sensors that could send signals to the server, the formats of these
signals vary and are almost impossible to analyze. In other words, it is extremely difficult for SMEs to
introduce Industry 4.0 technologies [9,10]. Without these monitoring technologies, the gap between
their yield and production costs and those of large manufacturers will gradually widen, and ultimately
they will be unable to escape the fate of elimination. Some new methods are needed to address this
issue. Such methods must be inexpensive so that they are affordable by SMEs with little capital.

Optimizing process schedules plays a significant role in Industry 4.0 technologies. For this
reason, a number of researchers have proposed scheduling-related algorithms [11,12]. For instance,
Kyparisis and Koulamas [12] proposed a multi-stage scheduling algorithm that can process multiple
machineries running in parallel. Furthermore, they demonstrated that this problem is an NP-hard
problem. Next, Tahar et al. [13] presented an algorithm that can schedule a set of independent jobs;
the algorithm enables users to set the time, break up jobs, and complete them in the shortest time.
In recent years, Ivanov et al. [11] developed a scheduling algorithm that can optimize job schedules
and consider machinery statuses at the same time. Another feature of their algorithm is that it can
assist enterprises in finding multi-objective results rather than the single-objective results in previous
papers. As a result, their algorithm can provide enterprises with a variety of options and satisfy options
under different conditions. Nevertheless, it is important to understand that although the method
above solves the problem of scheduling optimization in Industry 4.0, it is too complex for SMEs.
This is because most of these enterprises, which may produce products such as screws, springs, molds,
or plastic injections, need only one step to complete the manufacturing of their products. A multi-stage
algorithm would be too time-consuming, and these SMEs rarely have the budget to purchase relevant
software and hardware to perform these calculations. Thus, some simple approaches are needed to
solve this problem.

In response to these machinery monitoring and scheduling issues, this study proposed two solutions.
First, in terms of monitoring, we present arduino-based add-on sensors to monitor machinery status. Then a
feature extraction algorithm and a dimensionality reduction algorithm are utilized on these collected signals.
Finally, a neural network is used to determine whether machinery statuses are normal. The advantage of
this method is that the arduino-based add-on sensors are extremely inexpensive, so even if an enterprise
requires a large quantity of these sensors, their cost will not be a great burden. Of course, the precision of
the data collected by the arduino-based add-on sensors is not as high as that of data collected by expensive
sensors. However, the products of SMEs, such as screws, springs, molds, or plastic products, do not require
very high precision, so these add-on sensors are adequate for monitoring.

Second, in terms of scheduling, multi-objective scheduling is the current trend [11].
Therefore, we developed an algorithm for scheduling with multiple objectives. To achieve this goal,
we incorporated the recently well-known skyline query [14–16], which can consider situations with
different conditions and send back the optimal solutions for various combinations of conditions.
With Table 1 and Figure 1 as an example, Table 1 presents the total work time and costs of different
schedules. For instance, the total work time of Schedule 1 is 560 min, and its total cost is USD 2,500.
Figure 1 displays the total work time and cost of each schedule in Table 1 using coordinates; each
point represents a schedule. The points in the very lower left corner of Figure 1 (i.e., Schedules 1,3,
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and 4) are the skyline schedule results. Schedule 1 has the shortest total work time, Schedule 4 has
the lowest total cost, and the total work time and cost of Schedule 3 falls between those of Schedules
1 and 4. Schedule 2 is not a skyline schedule result because its total work time and cost are both
higher than those of Schedule 1. Enterprise workers will certainly choose Schedule 1 over Schedule 2.
With the concept of skyline schedules, we can help enterprises identify schedules that are superior in
all aspects. However, skyline queries are known for requiring longer computation time; to resolve this
issue, we developed an innovative algorithm.

Table 1. The example of skyline schedules.

Schedule Cost Total Work Time

1 USD 2500 450 min
2 USD 3000 1400 min
3 USD 2000 670 min
4 USD 1000 800 min
5 USD 4500 500 min
6 USD 7300 650 min
7 USD 12,000 1400 min
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This paper is arranged as follows. We first introduce some related work in Section 2. Section 3
explains the approaches for monitoring the machinery. Section 4 studies the methods for scheduling.
Section 5 presents the experiment and discussion, and Section 6 contains the conclusion.

2. Related Works

2.1. Industry 4.0 in Small- and Medium-Sized Enterprises

Industry 4.0 initially enjoyed an enthusiastic response; however, many small- and medium-sized
enterprises (SMEs) have been unable to participate in this movement due to prohibitively high adoption
costs. This has led many researchers to look for ways to lower the entry threshold for SMEs. In the
following, we examine a number of the aspects pertaining to the adoption of Industry 4.0 standards
by SMEs.

One of the major issues is industrial performance objectives, which deal with flexibility,
productivity, and delivery times [9]. Many enterprises seek to synchronize various flows through the
supply chain; however, that requires considerable flexibility in responding to rapid market fluctuations.
Peng et al. [17] proposed a real-time production flow scheme by which to modify production plans
in accordance with changes in demand or disruptions in flow. Chalal et al. [18], introduced a model
with one subsystem for modeling demand and another subsystem for modeling production, making it
easier for firms to react to client demands.

Another major issue in the adoption of Industry 4.0 standards is productivity. Givehchi [19] sought
to improve efficiency by sequencing machining tasks in a more efficient manner. Dombrowski and
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Ernst [20] simulated various growth scenarios at the enterprise-level with the aim of reconfiguring
production lines to improve production flows. Other researchers focused on reducing delivery times
by synchronizing production processes using cloud computing platforms. Denkena et al. [21] used the
Internet of Things (IoT) to improve production flows by focusing on waiting times and bottlenecks as a
guide for system reconfiguration.

A third major issue in the adoption of Industry 4.0 standards is industrial managerial capacity;
that is, monitoring, control, and optimization. Monitoring system status is meant to facilitate proactive
responses. For example, Denkena et al. [21] used the IoT to measure the real time flow of parts,
whereas Velandia et al. [22] used Radio Frequency Identification (RFID) to record data throughout
the entire production process. Control refers to the interaction between employees and the system
using historical data and predetermined thresholds [9]. For example, MacKerron et al. [23] proposed
an RFID-based system to monitor supply processes and automatically alert managers of impending
inventory shortfalls. Optimization refers to efforts aimed at improving systems and processes.
However, despite the numerous methods that could be employed to reach this goal, most previous
work related to SMEs focused on simulating current industrial practices [18,24].

2.2. Feature Extraction and Dimensionality Reduction

Feature extraction and dimensionality reduction [25] are the preprocessing methods most
commonly used in the analysis of signals such as those related to speech and activity recognition.
Feature extraction refers to the identification of specific characteristics or patterns within a given
signal. For example, the average value of a speech signal could be used to indicate the loudness of
speech. The features used in the analysis of signals include mean values, correlations among axes,
mean absolute deviation, root mean square, variance, standard deviation, signal magnitude area,
and average energy. It should be noted however that the choice of feature set depends on the specifics
of the case; that is, not all features are relevant, and irrelevant features can increase the execution time
and/or undermine the precision of analysis [25]. Following feature extraction, a number of methods
can be used to identify the features best suited to the analysis of a given case.

Dimensionality reduction is the method most commonly used in the selection of features suitable
for the analysis of a particular signal. For example, dimensionality reduction can be used to sort through
a large number of features identified in the signals collected by automated sensors, such as those found
on various forms of machinery. This makes it possible to identify the features best able to verify that
a machine is working smoothly or identify cases of imminent failure. Dimensionality reduction is
commonly implemented using principal component analysis (PCA) [26] or linear discriminant analysis
(LDA) [25]. PCA is an unsupervised method, whereas LDA is a supervised method. PCA is used to
identify the projections best suited to “representing data”, whereas LDA is used for “discriminating
among data” [27,28]. This makes LDA more suitable than PCA for the monitoring of machinery status.

2.3. Classifier for Recognizing the Status of Signal

Classifiers are among the most useful tools for the recognition of signal status. A classifier is
first trained using well-defined features, the corresponding status of which is stipulated by experts.
This makes it possible to use a trained classifier to determine the status of a signal based solely on its
features. The most common classifiers include decision trees [29], K-nearest neighbors (KNN) [30],
and neural networks [31]. Bao et al. [29] formulated the C4.5 decision tree to recognize 20 daily activities
performed by humans. Karantonis et al. [32] developed an hierarchical binary classifier to enhance
the precision of classification and recognition rates. Unfortunately, the computational and memory
requirements of decision trees make them inapplicable in most real-world situations. Kose et al. [30]
and Kaghyan and Sarukhanyan [33] achieved good results using KNN to deal with signals collected
associated with human activities; however, the effectiveness of KNN can be compromised by a small
training dataset and computational overhead limits its applicability.
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Neural networks are currently the most popular method used in the recognition of signal
status [34–36], due to their excellent learning capability in the discrimination of nonlinearly separable
classes. Watanabe [36] used a feedforward neural network with triaxial accelerometer to recognize the
movements of hemiplegic patients. Jatoba et al. [34] utilized an adaptive neuro-fuzzy inference system
based on signals collected from a triaxial acceleration sensor. Yang et al. [25] recently merged a fuzzy
system with a neural network to identify human activities based on signals collected using only one
accelerometer. The results of these studies demonstrate the efficacy of using neural-network-based
techniques for signal recognition.

2.4. Scheduling

Scheduling can be used in enterprises to optimize job flow by arranging tasks in a suitable order.
Blazewicz et al. [37] and Lauff and Werner [38] discussed the problem of scheduling in multi-stage
systems. Kyparisis and Koulamas [12] considered the same problem, while taking into account the
effect of machinery processing speed on job flow. Tahar et al. [13] considered a scheduling problem in
which jobs can be split up and assigned sequence-dependent setup times. These methods have proven
effective in many situations; however, they are applicable only to single-objective scheduling problems.
Ivanov et al. [11] proposed a multi-objective, multi-stage flexible scheduling problem using in each
stage alternative machineries with different time-dependent processing speeds.

2.5. Skyline Query

Skyline query algorithms are quickly becoming the mainstay of decision support systems.
They function as an alternative to top-k algorithms, which are unable to retain the characteristic features
of the various dimensions. The skyline approach makes it possible to identify the best result for every
dimension, and tailor the results according to criteria designated by the user. Consider a situation in
which the user seeks accommodation close to a particular venue. As shown in Table 2, various forms of
information pertaining to nearby hotels must be taken into account in the selection of accommodation.
If cost and location were the only considerations, then the information could be arranged within a
two-dimensional scatter diagram, as shown in Figure 2. The black line is the skyline; it indicates that
the cost and distance of C are better than those of D. In other words, C dominates D on both criteria.
Unfortunately, a skyline algorithm is unable to choose between A and C, due to the fact that C is closer
to the desired venue but A has a lower price. In this situation, the skyline query would return both
hotels, leaving the ultimate decision up to the user. This problem becomes increasingly complex when
the number of criteria grows. For example, hotels A and C could all be considered skyline hotels,
due to the fact that they are not dominated by other hotels.

Three skyline algorithms are particularly well known: block nested loops (BNL) [39], divide and
conquer (DAC) [39], and sort limit skyline (SaLSa) [14]. The BNL algorithm compares a pair of data
points and eliminates the point that is dominated. All of the remaining data points are then compared
to one another iteratively in order to identify a single dominant candidate. This is the simplest and
most intuitive skyline method; however, computational complexity grows exponentially with an
increase in the quantity of data.

The DAC algorithm [39] breaks down data into groups, conducts a separate skyline query in
each group, and then combines the group results into a final skyline query to produce a final decision.
The elimination of many data points during the initial grouping process enhances the execution speed.

The SaLSa algorithm [14] uses summation values obtained from the raw data as threshold values
to enable the filtering out of unnecessary data points. This algorithm arranges data sequentially
according to the summation values and checks whether a given data point falls within the skyline
threshold before testing for dominance; that is, only those below the threshold value are tested for
dominance. The SaLSa algorithm has proven particularly effective in time and cost reduction.
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Table 2. Information pertaining to hotels in the vicinity of the beach.

Hotel Cost Distance to the Beach Internet Ratings

A $100 5 km 3
B $750 3.5 km 4
C $230 1 km 3
D $450 2 km 1
E $320 8 km 3
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3. Machinery Monitoring

In this chapter, we introduce a novel method for monitoring the status of machinery.
The monitoring process involves the following steps: (1) collection of signals pertaining to machinery
status using add-on sensors; (2) filtering and normalization of collected signals; (3) extraction of
feature values and the export of each piece of data as a data point using windows with a designated
range; (4) dimensionality reduction using LDA; and (5) input of results into neural network for
training and generation of neural network parameters to enable the recognition of data pertaining to
machinery status.

3.1. Add-On Sensors for the Collection of Data Related to Machinery Status

A number of researchers [40,41] have proposed the analysis of vibration data as a means by
which to monitor the status of machines. In this study, we developed a monitoring system based on
an inexpensive single chip controller, Arduino, in conjunction with triaxial accelerometers, infrared
sensors, and temperature sensors. The proposed system is inexpensive and extensible, making it ideal
for SMEs.

3.2. Filtering and Normalization of Collected Signals

The signals collected from accelerometers are filtered to remove noise prior to feature value
calculation. To deal with the various forms of noise found in different machinery, we use the main
frequency of the carrier signal for the selection of filter parameters. For example, if the frequency of
the carrier were around 10 Hz, then a low-pass filter would be employed for the removal of noise.

3.3. Feature Extraction

The calculation of feature values is achieved using a window with data length determined by the
user, such as an enterprise employee. Generally, the length should not exceed half the wavelength of
the signal. In accordance with the recommendations in a previous study [25], 50% of each window is
overlapped by the following window to enhance the precision of recognition. Figure 3 presents an
example in which the signal was collected from a machine in a spring manufacturing facility. Based on
a signal wavelength of approximately 200 Hz, the length of the window is set to 80 points with a
40-point overlap of the preceding and succeeding windows.
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Window values are represented as [X1, X2, . . . , X|w|], where |W| refers to the length of a window,
and extracted features are presented as follows:

1. Mean: Mean value of signal data in each window
2. Energy: Sum of squares of data in each window divided by the window length:

Energy =

∑|W|
i=1|Xi|

2

|W|
, (1)

3. Root mean square:

RMS =

√
1
|W|

∑
|W|

i=1
x2

i (2)

4. Variance:

variance =
1

|W| − 1

∑
|W|

i=1
(xi −m)2, (3)

where m is the mean value of Xi.
5. Average absolute deviation:

MAD =
1
|W|

∑
|W|

i=1
|xi −m|. (4)

6. Standard deviation: Root mean square of variance
7. Maximum value: Maximum value of each window.
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3.4. Dimensionality Reduction Using LDA

In a system using triaxial accelerometers, infrared sensors, and temperature sensors, the following
5 signals would be received at one time: triaxial accelerometer (3 signals), infrared sensor (1 signal),
and temperature sensor (1 signal). Extracting 7 features from each signal would result in a total of
35 features. However, this may also include irrelevant data, which could compromise recognition
performance. Thus, we employ dimensionality reduction using LDA, which maps high-dimensional
data onto a calculated vector, separates data into various categories, and tightens up data in each
category. Dimensions with high feature value are then output as results. We adopted the two dispersion
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matrices outlined in [25], including covariance matrix SB for between categories and covariance matrix
SW within categories. SB is the predicted discrete vector values near the mixed averages, which is
obtained as follows:

SB =
∑N

α=1
nα(mα

−m)(mα
−m)T (5)

and SW is the predicted vector dispersion sample of each category, which is obtained as follows:

SW =
∑N

α=1
nα

∑nα

i=1
(xi

α
−mα)(xi

α
−mα)T (6)

where N denotes the number of categories; nα is the number of samples in category α; xi
α represents

sample i of category α; mα is the sample mean vector of category α, and m is the mean vector of all data.
LDA produces mapping vector w to store the category integrity under low dimensionality, and w is
used to maximize the formula below; that is, it maximizes the covariance between different categories
and minimizes the covariance within a single category. In other words, the objective is to maximize
J(w) in Equation (7). Once w has been calculated, the data can be mapped onto coordinate systems and
new coordinates can be identified to reduce dimensionality

J(w) =
wTsBw
wTsww

(7)

Using Figure 3 as an example of dimensionality reduction, we can obtain the results in Figure 4,
in which the points in different colors represent different lengths of springs. The blue points are the
springs with their lengths greater than 194 mm. The points in red are the springs with their lengths
locate between 189 mm to 193 mm. Finally, the black points are the springs with their lengths smaller
than 188 mm.

1 

 

 

Figure 4. Example of dimensionality reduction.

3.5. Using the Neural Networks to Identify the Status of Machineries

In this section, we discuss the use of neural networks to identify the operating status of machinery.
We introduce the structure of the proposed neural network, outline the training equations, and illustrate
the process of identifying the operating status. Figure 5 presents the structure of the proposed neural
network, which includes three layers: an input layer, a hidden layer, and an output layer. The input layer
receives the features selected by the LDA, which are then relayed to the hidden layer. Thus, the number
of nodes in this layer must equal the number of selected features. The hidden layer merges the features
and then uses a set of activation functions to formulate the relationship between the features and the
status of the machinery. Note that in this study, we selected the hyperbolic tangent sigmoid function as
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an activation function, due to the fact that it features dual polarity signals, which have proven highly
effective in neural networks [42]. We opted for two nodes in this layer, based on the recommendation
of Chen and Lee [15]. The output layer has only one node, which is responsible for determining the
status of the machinery. A value is closer to 1 indicates that the machinery is working well, whereas a
value closer to −1 is an indication of abnormal operating status.
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In the following, we introduce the equations used in the proposed neural network [15].
Equations (8)–(10) are used for the input, hidden, and output layers, respectively. To facilitate
this discussion, have also included z to represent the zth set of features.

out(input layer)
i (z) = input(input layer)

i (z) (8)

out(hidden layer)
i (z) =


exp(

r∑
j=1

w1
i jout(input layer)

j (z) + bi)

− exp(−
r∑

j=1
w1

i jout(input layer)
j (z) + bi)


exp(

r∑
j=1

w1
i jout(input layer)

j (z) + bi)

+ exp(−
r∑

j=1
w1

i jout(input layer)
j (z) + bi)


(9)

y(z) =
2∑

j=1

w2
jout(hidden layer)

j (z) (10)

From the above equations, we derived the equations for training the neural network based on the
concept of back propagation [15]. We first assume that the target function intended for the training
network should be as follows:

Error(w, z) = 1/2(yd(z) − y(z))2 = 1/2error(z)2 (11)

where error(z) is the error value between the ideal output yd(z) and actual network output y(z). Based on
the theorem of back propagation, all parameter in the neural network can be adjusted using the
following function:

w(z) = w(z− 1) + ξ(−
∂+Error
∂w

)
(12)
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where w is used as w1, b, and w2 in Equations (8)–(10), respectively. Thus, we obtain the training
functions of this neural network, as follows:

w1(z) = w1(z− 1) + ξ

 error(z)w2
× input(input layer)(z)×

4/
(

exp(out(input layer)(z))
+ exp(−out(input layer)(z))

)2

 (13)

b(z) = b(z− 1) + ξ

 error(z)w2
×

4/
(

exp(out(input layer)(z))
+ exp(−out(input layer)(z))

)2

 (14)

w2(z) = w2(z− 1) + ξ(e(z)out(hidden layer)(z)), (15)

After training the neural network using Equations (13)–(15), the feature set in input to enable the
identification of machinery status. For example, if a signal collected from the machinery can be divided
into 100 windows, then these windows are transformed into a set of 100 features. Situations in which
the neural network recognizes more than half of these features are identified as abnormal; otherwise,
the operating status of the machinery is regarded as normal.

4. Scheduling Algorithms

In the following chapter, we introduce a novel multi-objective scheduling algorithm based on the
skyline query for SMEs. To the best of our knowledge, this is the first study to formulate a scheduling
algorithm using skyline queries. It should be noted that the proposed scheduling algorithm was
developed under the assumption that most of the jobs in smaller enterprises are implemented by single
machinery, and that the operation of the machinery is seldom interrupted. Furthermore, for the sake of
simplicity, we assumed that each machine in the enterprise is equal with regard to operating efficiency.

Figure 6 presents a flow chart of the proposed scheduling algorithm. For the sake of explanation,
let us assume that there are n jobs and m machines (n > m) in this problem, and the maximum delay
and the maximum flow time are our only concerns. The algorithm included a heap-based combination
pool or the storage of all temporary schedules in the process and a skyline schedule list to store the
results of the algorithm. The first step involves obtaining all possible schedules that each machine will
be assigned the first job, to be evaluated based on the maximum delay time and maximum flow time.
The example in Table 3 includes four jobs (a, b, c, and d) and three machines (A, B, and C).
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Table 3. Example results obtained from the first step of the proposed scheduling algorithm.

Possible Schedules Maximum Delay Time Maximum Flow Time

{A(a), B(b), C(c)} 1 h 3 h
{A(a), B(b), C(d)} 2.5 h 6 h
{A(a), B(c), C(d)} 3 h 5 h
{A(b), B(c), C(d)} 4 h 5.5 h

The second step involves the creation of a heap-based combination pool, wherein all of the
schedules obtained in step 2 are sorted in ascending order based on the summation of the maximum
delay time and the maximum flow time. This sorting process is used to accelerate the execution speed
of the algorithm, based on the fact that objects with a smaller summation value are more likely to be
selected as the final result in a skyline query, and should therefore be examined first [14]. Using Table 3
as an example, we obtained the results in Table 4 with all of the schedules arranged according to the
summation values of the maximum delay time and the maximum flow time.

Table 4. Example results obtained in the second step of the proposed scheduling algorithm.

Possible Schedules Maximum Delay Time Maximum Flow Time Summation

{A(a), B(b), C(c)} 1 h 3 h 4 h
{A(a), B(c), C(d)} 3 h 5 h 8 h
{A(a), B(b), C(d)} 2.5 h 6 h 8.5 h
{A(b), B(c), C(d)} 4 h 5.5 h 9.5 h

The third step of this algorithm involves a comparison of the first schedule in the combination
pool with the schedules in the skyline schedule list. Each comparison can lead to five possible results.

(1) The schedule in question includes all of the jobs and is not dominated by any schedule in
the skyline schedule list. In this case, the schedule is deemed a skyline schedule, as it is dominated
by no other schedule. It is therefore added to the skyline schedule list, whereupon we return to the
third step for further comparisons.

(2) The schedule in question includes all of the jobs and is dominated by a schedule in the
skyline schedule list. In this case, the schedule is deemed not to be a skyline schedule, as it is dominated
by other schedules. It is therefore immediately deleted from the combination pool, whereupon we
return to the third step for further comparisons.

(3) The schedule in question does not include all of the jobs and is not dominated by any
schedule in the skyline schedule list. In this case, an extension of the schedule still could still be a
skyline schedule. We therefore extend this schedule by adding new jobs and reinsert the extended
schedule back into the combination pool, whereupon we return to the third step for further comparisons.

Table 5 presents an example to illustrate this case. If the first schedule {A(a), B(b), C(c)} in the
heap is not dominated by any schedule in the skyline list, then we should extend it as{A(a, d), B(b),
C(c)}, {A(a), B(b, d), C(c)}, and {A(a), B(b), C(c, d)}. We then evaluate the summation of the maximum
delay time and maximum flow time of each schedule and reinsert them back into the heap. Table 4
presents one possible result.

Table 5. Example results obtained in the third step of the proposed scheduling algorithm.

Possible Schedules Maximum Delay Time Maximum Flow Time Summation

{A(a, d), B(b), C(c)} 1 h 3 h 4 h
{A(a), B(c), C(d)} 3 h 5 h 8 h

{A(a), B(b, d), C(c)} 2.1 h 6 h 8.1 h
{A(a), B(b), C(d)} 2.5 h 6 h 8.5 h

{A(a), B(b), C(c, d)} 4.2 h 5 h 9.2 h
{A(b), B(c), C(d)} 4 h 5.5 h 9.5 h
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(4) The schedule in question does not include all jobs and is dominated by a schedule in the
skyline schedule list. In this case, no extension of the examined schedule could be a skyline schedule.
It is immediately deleted from the heap-based combination pool, whereupon we return to the third
step for further comparisons.

(5) No schedules remain in the heap-based combination pool. In this situation, all possible
schedules have been examined; that is, the scheduling algorithm is completed.

Following the completion of the scheduling algorithm, the schedules remaining in the skyline
scheduling list represent the final results.

5. Simulations

In this chapter, we adopt actual data obtained from a small-scale enterprise involved in the
manufacture of metal springs to demonstrate the efficacy of the proposed algorithm.

5.1. Experiment Settings

Data were collected from a small Taiwanese enterprise engaged in the manufacture of springs.
Most of the springs were meant for export to enterprises in Japan, where the tolerances are particularly
low. As a result, the enterprise was eager to obtain assistance in monitoring machinery in order
to maintain/improve product quality. Furthermore, this enterprise produces items for more than
50 companies, with new orders coming in every month (many of which are urgent). This greatly
complicates scheduling, which often has to be updated several times each day. Clearly, this enterprise
requires a systematic method by which to monitor and schedule the use of machinery.

To enable the monitoring of machinery, we employed a three-axis accelerometer
(KSM001 ADXL345) with Arduino microcontroller (Uno r3) to collect vibration data from the machinery.
This system was applied to a well-worn machine (approximately 10 years old), as shown in Figure 7.
This machine was designed based on a cam mechanism mixed with an electrical 3-axis station. Also, this
machine offers a Computer Numerical Control (CNC) with an AC servo motor. Metal wire is output
from the small hole in the middle of the machine to be shaped into a spring by the surrounding tools.
The accelerometer was attached along main axis of the machine, as shown in the middle in Figure 7.
All data collect from the Arduino unit was stored in a computer as a Comma-Separated Values (CSV)
file to facilitate subsequent processing.

Scheduling was based on data pertaining to actual orders, which was held in an enterprise
database (Table 6). Note that all of these tasks were implemented on a single machine; that is, they
were not split up among multiple machines. For the sake of simplicity, we established a set time for
scheduling (31 May 2016; 22:00:00). Based on a suggestion from the enterprise workers, we focused
only on the maximum delay time and maximum flow time.

Table 6. Jobs for the spring enterprise.

Job Working Time Deadline

A 350 min 17 June 2016
B 600 min 23 May 2016
C 300 min 3 June 2016
D 500 min 10 June 2016
E 240 min 6 June 2016
F 230 min 28 May 2016
G 300 min 29 June 2016
H 400 min 30 May 2016
I 240 min 27 May 2016
J 130 min 26 June2016
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5.2. Identification of Machinery Status

Table 7 lists the dataset used for training, including 7 spring lengths indicative of normal status
and 6 spring lengths indicative of abnormal status. According to an employee in the enterprise,
a standard spring should be 191 mm in length, with variations of no more than 2 mm (i.e., between
189 mm and 193 mm). Springs outside this range of error are deemed anomalous. For each category of
data, we collected ten signals over a period of 20 s, which is the time required for the fabrication of
five springs. We then used the method outlined in Section 3 to identify the status of the machinery,
the results of which are listed in Table 8. In this table, we can see that the recognition rate for normal
springs is (5 + 6 + 5 + 4)/(10 × 4) = 50%, whereas the recognition rate for normal springsis (7 + 7 + 8 +

6 + 8 + 6 + 7 + 7)/(10 × 8) = 70%. The disappointing recognition rate can be attributed to two problems:
(1) the differences between the signals associated with different lengths were too small to be recognized
using the sensor; particularly in the range of 187 mm to 195 mm; and (2) the machinery used in this
experiment was approximately 10 year old, and therefore produced more vibration-related noise than
could be effectively filtered out.

Table 7. Training dataset (Unit of measure: millimeter).

Abnormal 171 181 188 187 195 210 230 194

Normal 189 190 191 192 193

Table 8. Recognition results for springs of all lengths.

Dataset Identity to Normal Identity to Abnormal

171 3 7
181 3 7
187 2 8
188 4 6
189 5 5
190 6 4
192 5 5
193 4 6
194 2 8
195 4 6
210 3 7
230 3 7
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5.3. Scheduling System

Table 9 lists the time costs obtained using the proposed scheduling algorithm in which ten jobs are
divided up between 3 and 5 machines. As shown in the table, the time costs assigned by the algorithm
are reduced with the number of machines. This is because an increase in the number of available
machines reduces the number of possible schedules, such that fewer schedules need to be checked
by the algorithm. Furthermore, reducing the number of possible schedules reduces the maximum
delay time and maximum flow time, thereby reducing the number of schedules that eventually become
skyline schedules. In other words, the algorithm no longer has to spend an excessive amount of time
examining the dominance relationship between the first term of heap and the schedules in the skyline
schedule list.

Table 9. Time cost of the proposed scheduling algorithm with 10 jobs.

Number of Machineries Time Cost

3 machines 18.45 s
4 machines 11.39 s
5 machines 6.22 s

Table 10 lists the results of a comparison between the proposed algorithm and two existing
scheduling algorithms: “shortest processing time first plus machinery’s load” (SOT) and “earliest due
date first plus machinery’s load” (DDate). The two existing algorithms produced only one answer,
rather than the multiple results returned by the proposed algorithm. We considered the following nine
cases: 3 machines with 8, 9 or 10 jobs, 4 machines with 8, 9 or 10 jobs, and 5 machines with 8, 9 or 10 jobs.
We then used the average results of these nine cases for comparisons. Table 9 clearly illustrates the
superiority of the proposed algorithm with regard to maximum flow time as well as maximum delay
time. The one exception is the maximum delay time of the DDate, which was designed to minimize
the maximum delay time in scheduling problems. No existing algorithm is able to outperform DDate
on this point; however, the proposed algorithm was able to match the performance of DDate. This is
a clear demonstration that the proposed algorithm is always able to obtain the optimal solution for
maximum delay time.

Table 10. Difference between the proposed scheduling algorithm and two existing algorithms.

Other Algorithms

Difference
between

SOT/DDATE and
the Proposed

Algorithm:
Maximum Flow

Time

Percentage
Improvement

Achieved by the
Proposed

Algorithm:
Maximum Flow

Time

Difference
between

SOT/DDATE and
the Proposed

Algorithm:
Maximum Delay

Time

Percentage
Improvement

Achieved by the
Proposed

Algorithm:
Maximum Delay

SOT +3.36 h 19.3% +29.44 h 9.6%
DDATE +0.81 h 5.55% 0 h 0

5.4. Information Integration

All of the information was uploaded to a web server to provide web page access to the working
status of the machinery and scheduled order of all jobs in the queue. Figure 8 presents the interface of
the web page. The green bar next to the machines indicates the current working status; that is, green
for normal and red for abnormal. The table in the middle lists the job on which the machine is currently
engaged, as well as the product quantity, time estimates, and other important data. The table at the
bottom lists the schedule including the next job in the queue.
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6. Conclusions

Since the advent of Industry 4.0, a growing number of manufacturers have been adopting
technologies for the monitoring and scheduling of machinery with the aim of increasing yields and
optimizing production efficiency. Unfortunately, many of these technological innovations are too
expensive for SMEs. In this study, we developed an inexpensive alternative to these two technologies,
including add-on sensors by which to monitor the status of machines and a simple algorithm to solve
multiple objective scheduling problems. The efficacy of the proposed algorithm was demonstrated in
an actual enterprise involved in the manufacture of metal springs. However, our simulation results
revealed two limitations of the proposed method: (1) when there is only a small difference between
normal and abnormal springs, the use of a low-cost sensor provides disappointing recognition results,
due to the low sampling rate and limited accuracy of the sensor; and (2) noise from the monitored
machine can also lower the recognition rate, particularly when using a low-cost sensor. In the future,
we will investigate the use of multiple low-cost sensors to overcome these problems. It is expected that
this will allow the collection of more data that could be used by the algorithm for error recognition.
It may also be possible to adopt another algorithm to perform wavelet analysis (i.e., to dismantling the
sensor signal) prior to the recognition process. It is very likely that other types of neural network could
also be used to enhance recognition performance.
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