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Abstract: Different versions of principal component analysis (PCA) have been widely used to extract
important information for image recognition and image clustering problems. However, owing to
the presence of outliers, this remains challenging. This paper proposes a new PCA methodology
based on a novel discovery that the widely used l1-PCA is equivalent to a two-groups k-means
clustering model. The projection vector of the l1-PCA is the vector difference between the two cluster
centers estimated by the clustering model. In theory, this vector difference provides inter-cluster
information, which is beneficial for distinguishing data objects from different classes. However,
the performance of l1-PCA is not comparable with the state-of-the-art methods. This is because
the l1-PCA can be sensitive to outliers, as the equivalent clustering model is not robust to outliers.
To overcome this limitation, we introduce a trimming function to the clustering model and propose
a trimmed-clustering based l1-PCA (TC-PCA). With this trimming set formulation, the TC-PCA
is not sensitive to outliers. Besides, we mathematically prove the convergence of the proposed
algorithm. Experimental results on image classification and clustering indicate that our proposed
method outperforms the current state-of-the-art methods.

Keywords: principal component analysis; dimensionality reduction; image processing; pattern
recognition; clustering

1. Introduction

Image classification and clustering problems are topics fundamental to various areas of machine
learning [1–3] including image recognition and image clustering. Principal component analysis (PCA)
has been widely used to perform dimensionality reduction and extract useful information for these
problems [4–11]. One of the common objectives of dimensionality reduction is to retain the most
important information that is beneficial to data processing tasks and meanwhile filter out corrupted
and noisy information from the dataset. One example is the face recognition problem. A face database
may contain face images with occlusions such as scarves, sunglasses and so forth. Obviously, the key
information that can recognize a person is the facial features not the scarves nor the sunglasses. A good
dimension reduction method can effectively extract the key facial features and, at the same time, ignore
the occluded information. Another example is the image clustering problem. The purpose of clustering
is to partition the data into different clusters and group the similar data objects together. However,
similar to the above face recognition problem, the corrupted and noisy information such as scarves
can make two facial images very different even they are taken from the same person. This makes the
clustering task very challenging. Again, a good dimension reduction method can filter out the scares
and retain the key facial features and gives a more accurate clustering result.
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The major challenge of PCA for supervised classification and unsupervised clustering problems is
how to extract important information that can distinguish the characteristics of different classes/clusters
from a corrupted and noisy dataset. For a face recognition problem, the facial features of different
persons are the key to distinguish them. However, the corrupted and noisy information can be a
factor that cause the difference among different facial images. Figure 1 shows two frontal face images
and two facial images with scares. Obviously, facial features such as eyes of these persons are a bit
different. They can be used to distinguish these persons. However, the face with scarves and the
face without scarves are different. Also, the two scarves are different too. If the dimension reduction
method wrongly identifies the scarves as the key features that cause the difference, the accuracy of
the trained recognition system may heavily depend on this occluded information and lead to a poor
recognition result. In image recognition and clustering problem, this kind of data object is known as
outlier. This means the data object carry corrupted and noisy information.
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Figure 1. Example frontal faces and faces with scarves.

Many different methods have been proposed to solve the above outlier problem. However, these
techniques still have evident defects when applied to real-world classification and clustering problems.
The very first method used to extract the important information of the data is to apply eigenvalue
decomposition to the covariance matrix of the data [12]. The eigenvectors with small eigenvalues
are discarded and the eigenvectors with large eigenvalues are retained for classification or clustering.
This method works well only if the data do not contain any outlier. This is because an eigenvector of a
covariance matrix represents the variance of the data in a specific direction. However, the occlusion of
a facial image can cause large variation as well. The eigenvectors with large eigenvalues can wrongly
identify the occluded information as important information. To address this problem, different lp
norm-based methods have been proposed. One example is the l1-PCA, which adopts the l1 norm to
measure the variation of features of the data [13,14]. This approach replaces the squared l2 norm that is
adopted by the classical PCA by a l1 norm. The l1 norm measure usually gives a much lower weight
to the data objects that are far away from the majority. Although this approach is proved to be more
robust to outliers and more effective than the classical PCA, seldom work is devoted to study how
this approach extract information that can distinguish different classes or clusters for the classification
or clustering problems. Another popular approach is the rank-based PCA method. Its idea is to
decompose the data matrix into a single low-rank matrix and a sparse component [15–17]. The low-rank
matrix approximates the common features that are linearly correlated in the data while the sparse
component approximates less frequently appeared features and these are assumed to be the corrupted
and noisy information. For face recognition or clustering problem, the low-rank matrix represents the
common facial features of different images that are highly correlated to each other. The scarves and
sunglasses are less frequently appeared features in the database. They are relatively sparse information
and belong to the sparse component. Although this approach can effectively identify the occluded
information, it may discard some information that can distinguish the characteristics of different classes
or clusters. In the low-rank formulation, the common facial features of different data objects are not
strictly linearly correlated to each other. Some people may have larger eyes while some may have
more attractive lips. These are key characteristics to distinguish different people. However, these are
less frequently appeared features. They may be discarded and treated as sparse information.
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To alleviate the aforementioned issues, we introduce a modified version of the l1-PCA, which
incorporates clustering with l1-PCA. We find that the superiority performance of the l1-PCA over the
classical PCA is not only because of the l1 norm formulation but also its ability to extract information
that is beneficial to image classification and clustering problems. We mathematically prove that the
l1-PCA can be expressed as a special two-group k-means clustering problem. The projection vector of
the l1-PCA is the vector difference between the two cluster centers obtained by the k-means clustering
problem. If the two clusters are two different classes of the data, the corresponding vector difference
represents the inter-class direction that groups data objects with similar nature together. This is
beneficial to distinguish the two classes. Figure 2 illustrates this situation. This figure shows two classes
of data. The left cluster forms a class while the right cluster forms another class. The red stars are the
cluster centers of the two different classes. The vector difference between these two centers is in the
horizontal direction. Apparently, the horizontal direction provides the key information to distinguish
the two classes. Although the l1-PCA possesses this important property, its performance is not as good
as the state-of-the-art methods. The reason is that the k-means clustering algorithm adopts the squared
l2 norm in the formulation and is not robust to outliers. In other words, the l1-PCA is not robust to
outlier. To overcome this limitation, we propose a new method, namely, trimmed-clustering based
l1-PCA (TC-PCA) that replaces the squared l2 norm by a trimming function in the special k-means
clustering algorithm. The contributions of this paper are as follows.

• We prove that the l1-PCA is equivalent to a two-group k-means clustering model. The projection
vector estimated by the l1-PCA is the vector difference between the two cluster centers that
are obtained by the k-means clustering algorithm. In other words, the projection vector of the
l1-PCA represents the inter-cluster direction, that is beneficial to distinguish data objects from
different classes.

• We propose a novel TC-PCA model by integrating a trimming set into the two-group k-means
clustering model, which makes the proposed method not sensitive to outliers.

• We mathematically prove that the estimator of TC-PCA is insensitive to outliers, which shows the
robustness of the proposed method. In addition, we mathematically prove the convergence of the
proposed algorithm.
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This paper is organized as follows. In the next section, we briefly review related work. Section 3
presents the proposed TC-PCA model and the overall implementation. In addition, we discuss the
mathematical properties and performance of the proposed method. Experimental results are shown in
Sections 4 and 5 concludes the paper.
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2. Related Work

The current PCA methodologies typically adopt the following two ways to obtain projection
vectors and they are the lp norm based estimator and the rank based estimator.

(i) lp norm based estimator: it models the projection vectors by a function of a lp norm. In contrast
with the classical squared l2 norm, the lp norm gives much smaller function values to the data
objects that are far away from the majority. This can diminish the negative effect caused by outliers.
One of the best known and most influential approaches is the l1-PCA, which produces projection
vectors by maximizing the l1-norm of the projected data. However, owing to singularity of the l1
norm, many different solvers have been proposed. In Reference [13], the l1-PCA was reformulated
as a linear programming problem, which was then solved by the simplex method. The authors in
Reference [18] adopted a relaxation approach that turns the binary constraint into a semi-definite
constraint and applied the interior point method to obtain the optimal solution. Kwak [14] reformulated
the l1-PCA and expressed the optimization problem by the composition constraints of l1 and l2-norms.
This method finds one projection vector at a time. An orthogonalization procedure is incorporated to
find the rest of the projection vectors. Later, the PCA with non-greedy l1-norm maximization [19] was
proposed. In contrast with the l1-PCA, the non-greedy approach can find all required projection vectors
at once. Zhou et al. [20] directly incorporated a l1-norm penalty to the original PCA formulation,
which performed feature selection for image classification and clustering problems. To find an optimal
solution of the l1-PCA in non-greedy form, Markopoulos et al. [21] proposed a polar expression to the
data matrix and expressed the problem in a dual form. Their method can effectively search through
all possibilities and output a very high-quality solution. Later, Markopoulos et al. [22] proposed a
different solver based on bit-flipping iterations. Kwak [23] generalized l1-PCA by replacing the l1
norm by a general lp norm. More recently, Luo et al. [24,25] proposed a novel l2,1-norm based PCA
that does not require data centralization for dimensionality reduction. Variants of l1-PCA have been
proposed and they are formulated as a minimization of a residual function. In References [26] and [27],
the authors introduced the l1-norm residual function and adopted an alternative convex optimization
together with divide-and-conquer approach, respectively, to find the projection vectors. Other than
l1 norm, Nie et al. [28] proposed the l2-norm residual function with an optimal mean strategy to
automatically obtain the center of the dataset. He et al. [29] proposed a residual function of squared
l2-norm to PCA algorithm based on maximum correntropy and solved by a half-quadratic optimization
method. More recently, Nie et al. [30] proposed a more general lp-norm based residual function named
as l2,p-norm PCA for image recognition problems. Other than the above PCA problems, lp norm
based estimators are also widely used in other types of dimensionality approaches including 2DPCA,
LDA, 2DLDA, tensor and so forth. Li et al. [31] applied the l1-norm formulation for 2DPCA [1].
Ju et al. [32] introduced a probabilistic formulation for the l1-norm based 2DPCA with the aid of
variational inference. Other than 2DPCA, it is also widely applied in LDA. Zhong et al. [33] and
Liu et al. [34] proposed the use of the l1-norm in the LDA formulation. They replaced the squared
l2-norm for distance between classes and within classes by the l1-norm. Wang et al. [35] introduced a
non-greedy l1-norm technique for the 2DLDA.

(ii) Rank-based estimator: its idea is to decompose the data matrix into a sparse matrix
and a low-rank matrix, which is a polished version of the original dataset with low-rank feature.
This approach generally assumes that all data objects are sparsely corrupted, and the key characteristics
of the data can be represented by a low-rank matrix. In References [15–17], the authors proposed a robust
PCA (RPCA) to recover the low-rank matrices via convex optimization. The idea of RPCA is to modify
the entries of data matrix in the sense of l1-norm so that the rank of matrix is minimized. The RPCA
is widely used in various applications such as video surveillance [36], dictionary learning [37,38],
compressed hyperspectral imaging and face recognition [39]. Zhang et al. [40] improved the RPCA
by introducing another l1-norm penalty that further regularizes the low-rank matrix. Sun et al. [32]
enhanced the RPCA for video surveillance problem by introducing a local regularization term to
the model that can better preserve the local structure of the image data. Wang et al. [41] proposed
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a probabilistic robust matrix factorization that formulated the sparse component with a Laplace
prior and the two matrices for the low-rank component with a Gaussian prior. Wang et al. [42]
improved the probabilistic robust matrix factorization model and proposed a new framework based on
Bayesian formulation. They imposed conjugate priors (multivariate normal distribution and Wishart
distribution) onto the low-rank component and a generalized inverse Gaussian distribution onto the
sparse errors. Zhao et al. [43] modified the aforementioned Bayesian framework and introduced a
two-level generative Gaussian approach to model the complex noise. Xue et al. [44] modified the
RPCA by introducing a total variation and rank-1 constraints to the model.

3. A Trimmed-Clustering Based l1-PCA Model

In this section, we show that the l1-PCA is equivalent to the two-group k-means clustering model.
We then mathematically prove the equivalence of these two models. After that, we present the proposed
TC-PCA model and the algorithm to obtain a set of orthonormal projection vectors. Mathematical
properties and performance of the proposed method will also be discussed.

3.1. Relating l1-PCA to Two-Groups K-Means Clustering

Consider the following l1-PCA

max
‖u‖2=1

∑
n
i=1|(xi − c)Tu|, (1)

where u is the projection vector and c is a centroid of the dataset. The centroid c is usually set as the
mean or median of the whole data. In our proposed model, the projection vector u can be obtained
without necessity of data centralization procedure. This will be explained later. Now, we show that the
l1-PCA can be expressed as the two-group k-means clustering model below

J(û, c, l) =
∑

n
i=1(li,1‖xi − (û + c)‖22 + li,2‖xi − (−û + c)‖22), (2)

where ‖ ‖2 is the l2 norm distance. l =
{
li,1, li,2

}
is the indicator variable with li,k = 1, k = 1, 2, if xi

belongs to the kth cluster and 0 otherwise and li,2 = 1 − li,1. This clustering model partitions the
data to two disjoint parts. They are represented by the two centroids, û + c and −û + c. The data
points that are closer to û + c are classified as first cluster and the rest are the second cluster. Now,
we examine this property in l1-PCA model. The absolute term of this model can be expressed as
|(xi − c)Tu| = sign((xi − c)Tu)((xi − c)Tu). This expression introduces another interpretation of the
l1-PCA. The sign function virtually assigns {−1, 1} to each data point and each data point belongs to
one of the two regions or sign((xi − c)Tu) = −1. This assignment means that if the point xi − c is in the
same semi-plane as u, it is assigned as the first cluster (i.e., sign((xi − c)Tu) = 1). Otherwise, it is the
second cluster (i.e., sign((xi − c)Tu) = −1). In other words, the point xi that is closer to u + c belongs
to the first cluster. If it is closer to −u + c, it belongs to the second cluster. This is the same as the
two-group clustering model. Figure 3 gives a visual illustration to this relationship. Figure 3a shows
the 1st projection vector obtained by the l1-PCA on the 2-dimensional normal dataset with zero mean
and variances 1 and 10, whereas Figure 3b shows the same dataset with the cluster centers estimated
by the two-group k-means clustering model. In Figure 3a, the data points xi − c that are in the same
semi-plane ((xi − c)Tu > 0, the upper half of the data) of the vector u belong to the first cluster (shaded
region). Otherwise, they are in the opposite semi-plane ((xi − c)Tu < 0, the lower half of the data) and
belong to the second cluster (non-shaded region). In Figure 3b, the data are partitioned into two parts.
The data points closer to the upper centroid belong to the first cluster (shaded region) while the rest
of them belong to the second cluster (non-shaded region). With this connection, we can see that the
vector difference between the two clusters (or û + c− (−û + c)) shown in Figure 3b is the projection
vector u shown in Figure 3a. This will be mathematically justified next.
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The following gives a mathematical justification about the equivalence between the l1-PCA model
and the special two-group k-means clustering model. By expressing each absolute term as a binary
variable si, Equation (1) becomes

max
‖u‖2=1

n∑
i=1

|(xi − c)Tu| = max
‖u‖2=1

max
si∈{−1,1}

n∑
i=1

si(xi − c)Tu = max
si∈{−1,1}

‖

n∑
i=1

si(xi − c)‖
2

. (3)

The first equality holds because |x| = max
s∈{−1,1}

sx. The second equality holds because max
‖u‖2=1

xTu = ‖x‖2.

It is noted that the maximum point of the l2 norm function is the same as the squared l2 norm function.
That is,

max
si∈{−1,1}

‖

n∑
i=1

si(xi − c)‖
2

∝ max
si∈{−1,1}

‖

n∑
i=1

si(xi − c)‖
2

2

. (4)

We will see that the variable si in the l1-PCA model is the difference of the two indicator variables of
the k-means clustering algorithm. That is, si = li,1 − li,2. The above squared l2 norm function leads to
the following binary quadratic programming problem:

max
s∈{−1,1}n

sTXc
TXcs (5)

where Xc = [x1 − c, x2 − c, . . . , xn − c] and s = [s1, s2, . . . , sn] ∈ Rn. Let si = li,1 − li,2 ∈ {−1, 1}, û = λ·u
with ‖u‖2 = 1 and λ is a constant. The theoretical justification is complete if Equation (2) can be
expressed as the above binary quadratic programming problem. It is noted that Equation (2) can be
rewritten as

J(û, c, l) =
n∑

i=1
(li,1‖(xi − c) − û‖22 + li,2‖(xi − c) + û‖22)

=
n∑

i=1
(li,1(‖xi − c‖22 − 2(xi − c)Tû + λ2) + li,2(‖xi − c‖22 + 2(xi − c)Tû + λ2))

=
n∑

i=1
‖|xi − c|‖22 − 2λ

n∑
i=1

si((xi − c)Tu) + nλ2

(6)

The second and third equality hold because ‖û‖22 = λ2 and û = λ·u. Thus,

J(û, c, l) =
n∑

i=1

‖|xi − c|‖22 − 2λ
n∑

i=1

si((xi − c)Tu) + nλ2 (7)

To minimize (7) with respect to λ, we need the following claim.
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Claim: The global minimum value of the FUNCTION f (x) = −2γx + nx2 is f (γ) = −γ
2

n . Here, γ
and n are constants. n is a positive number.

Proof: f ′(x) = 2nx− 2γ. f ′(x) = 0⇒ x = γ/n ,

f ′′ (x) = 2n > 0⇒ x = γ/n is the global minimum.

By taking γ = 2
∑n

i=1 si((xi − c)Tu) and x = λ in the above claim, Equation (7) is written as

min
û,I

J(û, c, l) = min
si∈{−1,1}

min
u

 n∑
i=1
‖|xi − c|‖22 −

1
n

(
n∑

i=1
si((xi − c)Tu)

)2
= min

si∈{−1,1}
min

u
−

1
n

(
n∑

i=1
si((xi − c)Tu)

)2

= min
si∈{−1,1}

−
1
n‖

n∑
i=1

si(xi − c)‖
2

2
= min

s∈{−1,1}n
−

1
n sTXc

TXcs

∝ max
s∈{−1,1}n

sTXc
TXcs,

which is equal to (5). The third equality holds because min
‖u‖2=1

− xTu = −‖x‖2. In other words, the l1-PCA

is essentially equivalent to the two-group k-means clustering model. This equivalence has three
major implications. First, the projection vector u estimated by the l1-PCA is the normalized vector
difference between the two cluster centers, û+ c and û− c, obtained by the clustering algorithm. That is,
u = û/‖û‖2. Second, the binary vector si introduced in Equation (3) is the difference of the two indicator
variables of the two-group k-means clustering model. Third, the projection vector u can be obtained
without data centralization procedure.

3.2. The Proposed Model

Based on the two-group k-means clustering model in (2), we propose the following
trimmed-clustering based l1-PCA (TC-PCA) model:

Jobj(v, l, Ω(p)) =
∑

xi∈Ω(p)

(li,1‖xi − v1‖
2
2 + li,2‖xi − v2‖

2
2), (8)

where v = {v1, v2} is a set of cluster centers, l =
{
li,1, li,2

}
is the indicator variable with li,2 = 1− li,1 and

Ω(p) = {xi : the f irst pth percentile o f li,1‖xi − v1‖
2
2 + li,2‖xi − v2‖

2
2} (9)

is a trimming set containing samples that are close to the cluster centers. When p = 100, all sample
data will be considered whereas the trimming set is an empty set if p = 0. A trimming set has been
proved to be a robust M-estimator and has a high breakdown point property [45–47]. Following the
parameter setting used in References [48] and [49], in this paper, we only consider 75% (i.e., p = 75) of
data to estimate the projection vectors.

Note that (8) is a special case of (2) by incorporating the trimming set into the two-group k-means
clustering model and setting c + û = v1 and c− û = v2. Solving these two equations leads to

û =
1
2
(v1 − v2) (10)

3.3. The Overall Implementation

We shall provide the optimality conditions for (8) and present the overall implementation of the
algorithm to estimate a collection of projection vectors.
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Taking the first derivative of (8) with respect to vk and set it to zero, we obtain the optimality
condition for vk

0 =
∂Jobj(v, l, Ω(p))

∂vk
=

∑
xi∈Ω(p)

li,k(vk − xi), k = 1, 2.

That is, we have

vk =
1∑

xi∈Ω(p) li,k

∑
xi∈Ω(p)

li,kxi, k = 1, 2, (11)

which is the average of sample data in both the trimming set and the kth cluster. The optimality
conditions for the indicator variables are

li,1 =

1, i f ‖xi − v1‖
2
2 ≤ ‖xi − v2‖

2
2

0, otherwise
li,2 = 1− li,1.

(12)

The condition (12) simply takes li,k = 1, k = 1, 2, if xi is closer to the kth cluster. The optimization
of (8) with the trimming set (9) is performed by the alternating minimization between v and l as well as
the update of Ω(p). In what follows, we present an algorithm for extracting a single projection vector
and the overall algorithm to estimate a set of orthonormal projection vectors.

Algorithm 1. Single Projection Vector Extraction

Step 1. Input p and tmax. Set J = ∞ and t = 0.
Step 2. Randomly choose two samples from the dataset as initial cluster centers.
Step 3. Update the trimming set Ω(p) via (9).
Step 4. Update the cluster center vk via (11).
Step 5. Update the indicator function li,k via (12).
Step 6. If there is a change of the indicator functions li,k, go to Step 3. Otherwise, compute Jobj via (8).
Step 7. If Jobj < J, compute û via (10) and J = Jobj and set t = 0. Otherwise, set t = t + 1.
Step 8. If t ≤ tmax, go to Step 2. Otherwise, Compute u = û/‖û‖2 and stop.

The implementation of Single Projection Vector Extraction Algorithm (SPVEA), Algorithm 1 is
summarized as follows. There are two input parameters (Step 1): the percentage of data used for
estimating the projection vector (p) and the maximum number of re-initialization of the algorithm
(tmax). We then randomly select two samples from the dataset as initial cluster centers, followed by
updating the trimming set, cluster centers and indicator functions (Step 2–Step 5). If there is no change
for the assignment li,k of sample data to the cluster centers, the function value of TC-PCA is computed
(Step 6). The above process is repeated tmax times and the optimal solution is obtained corresponding
to the least value of Jobj (Step 7–Step 8). In our experiments, we set tmax = 10. That means, we use 10
different sets of initial guesses for cluster center initialization and the one with the smallest objective
function value is outputted.

To construct an entire set of orthonormal projection vectors U = [u1, u2, . . . , uD] ∈ Rd×D,
we follow [14] which estimates the projection vectors in a one-by-one manner. After obtaining
the first projection vector using the SPVEA, the dataset X is projected to the subspace in order to
construct the second projection vector via the following x(τ)i

x(τ+1)
i = (I − uτuT

τ )x
(τ)
i , τ = 1, 2, . . . , D− 1, (13)

where I is an identity matrix and x(τ+1)
i is the projected dataset for the estimation of uτ+1 with x(1)i = xi.

The complete orthonormal projection vectors are obtained via the proposed TC-PCA algorithm, which
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iteratively applies the SPVEA with updated subspace. The TC-PCA algorithm stops until D projection
vectors are obtained. This is Algorithm 2.

Algorithm 2. Trimmed-Clustering based l1-PCA

Step 1. Input D and set τ = 1. Apply the SPVEA (Algorithm 1) to obtain u1.
Step 2. Obtain the subspace x(τ+1)

i via (13).
Step 3. Use x(τ+1)

i as an input dataset of SPVEA (Algorithm 1) to obtain uτ+1. Set τ = τ+ 1.
Step 4. If τ ≤ D, go to Step 2; otherwise, output U and stop.

3.4. Mathematical Properties

In this subsection, we prove that the estimator of the proposed TC-PCA model is insensitive
to outliers by breakdown point analysis. Here, to simplify the proof, we assume that the outliers
are a group of points that are far away from the majority. We also prove that the proposed TC-PCA
algorithm converges.

In robust statistics, the breakdown point measures the ability of a statistic to resist the outliers
contained in the dataset [50]. The higher the breakdown point of an estimator, the more robust it is.

Theorem 1. The estimator of TC-PCA model has a breakdown point of 1− p%, where p is a parameter of the
trimming set (9).

Proof. Suppose that X = {x1, x2, . . . , xn} is a sample of size n. Without loss of generality, we assume
that the first n·p% samples are fixed and xi →∞ for n·p% + 1 ≤ i ≤ n, where · is a floor
function. With the definition of Ω(p) in (9), the last n·(1− p%) samples will be discarded and thus
Ω(p) =

{
xi : i = 1, 2, . . . , n·p%

}
. Therefore, the breakdown point of the estimator of TC-PCA model is

n·(1− p%)/n = 1− p%.
Theorem 1 reveals that the estimator of TC-PCA model is insensitive to outliers and reliable if

less than 1− p% of data are outliers in the dataset. Using similar techniques as in Theorem 1, it can be
shown that the breakdown point of l1-PCA is zero, which implies that any outlier exists in the dataset
will affect the estimation of a projection vector.

In addition to the breakdown property of the proposed method, the convergence of the TC-PCA
algorithm to obtain a collection of orthonormal projection vectors is of paramount importance. Since
the major part of the proposed TC-PCA algorithm is SPVEA, which depends on (8), this is equivalent
to proving the objective function of TC-PCA is decreasing and bounded. �

Theorem 2. The proposed TC-PCA algorithm converges.

Proof. Let vt =
{
vt

1, vt
2

}
, lt = {lti,1, lti,2}, Ω(p)t and Jobj(vt, lt, Ω(p)t) be the cluster center, indicator

function, trimming set and the function value of TC-PCA at the tth iteration, respectively.
Consider the above variables at the (t + 1)th iteration, the algorithm starts by updating the

trimming set which selects samples in the first pth percentile of lti,1‖xi − vt
1‖

2
2 + lti,2‖xi − vt

2‖
2
2 such that

Jobj(vt, lt, Ω(p)t) ≥ Jobj(vt, lt, Ω(p)t+1). (14)

Next, we consider the update of cluster center. It is noted that
∂2 Jobj

∂v2
k

= 2I, k = 1, 2, which is positive

definite. This means at the (t + 1)th iteration given lt and Ω(p)t+1, the function g(v) = Jobj(v, lt, Ω(p)t+1)

is convex. As Equation (11) must satisfy the first order optimality condition of g(v), this implies the
update leads to a global optimum of g(v). That is,

Jobj(vt, lt, Ω(p)t+1) ≥ Jobj(vt+1, lt, Ω(p)t+1). (15)
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Finally, the indicator variable selects the smallest of the two terms ‖xi − vt+1
1 ‖

2
2 and ‖xi − vt+

2 ‖
2
2 and

thus, the update of indicator variables leads to a smaller objective function value, as follows:

Jobj(vt+1, lt, Ω(p)t+1) ≥ Jobj(vt+1, lt+1, Ω(p)t+1). (16)

Combining (14)–(16) shows that the objective function is decreasing and bounded, as shown below:

Jobj(vt, lt, Ω(p)t) ≥ Jobj(vt+1, lt+1, Ω(p)t+1) ≥ 0,

and hence the proposed TC-PCA algorithm converges. �

3.5. Synthetic Analysis

We demonstrate the robustness of the proposed TC-PCA to the data with outliers. Figure 4 shows
the first projection vectors estimated by the l1-PCA and the proposed TC-PCA in a noisy environment.
The dataset with outliers is obtained by adding 50 2-dimensional Gaussian noise into the dataset used
in Figure 3. With 4.8% (50/(1000 + 50)) outliers in the dataset, the projection vector obtained by the
l1-PCA is influenced by outliers (see Figure 4a), whereas the projection vector estimated by the TC-PCA
is not affected by outliers (see Figure 4b). This is mainly due to the fact that the TC-PCA adopts the
trimming set which retains only p% of samples that are close to the cluster centers for the estimation
of projection vector while the remaining 1 − p% of the data that include outliers will be discarded.
It is important to note that the percentage of data discarded by the trimming set should be greater
than the percentage of outliers in the dataset so that an accurate projection vector can be obtained
(see Theorem 1).
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4. Experiments

The proposed method is applied to image classification and clustering with various configurations.
We shall compare the performance of TC-PCA with the current existing methods including
PCA [12,51,52], half-quadratic PCA (HQ-PCA) [29], l1-PCA [14], robust PCA (RPCA) [15], optimal
mean RPCA (OM-RPCA) [28] and avoid mean PCA (AM-PCA) [24,25] using Japanese Female Facial
Expression Database (JAFFE) [53], Yale [54], A.M. Martinez and R. Benavente (AR) [55] face and
Columbia University Image Library (COIL)-20 image [56,57] databases. To show the effectiveness of
dimensionality reduction, the performance of the data with all dimensions (All Dim.) is also included.

The JAFFE face database contains 213 images of 7 facial expressions posed by 10 Japanese female
models. Each image is in 256 gray scales per pixel and resized to 90 × 90 pixels. The Yale face database
consists of 165 8-bit grayscale images of 15 individuals. Each image is resized to 81×61 pixels aligned
by the positions of the two eyes and each individual has 11 images with 8 normal faces and 3 face
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images under different lighting conditions. The AR face database consists of 126 individuals with
various facial expressions, illumination conditions and occlusions. The face portion of each image
was cropped and resized to 99 × 72 pixels. Each individual has 8 normal faces, 6 faces under various
lighting conditions, 6 faces with sunglasses and 6 faces with scarves. The COIL-20 database involves
1440 images, in which the images are separated into twenty categories and every category includes
72 images. Each image is resized to 90 × 90. In this paper, we shall use all images from JAFFE and Yale
face databases, whereas 5 men and 5 women are randomly selected from the AR face database for our
experiments. For Coil-20 database, we randomly selected 10 objects with 6 views that are near-frontal
views of the objects. We artificially impose outliers to two of the objects by imposing random bars at
the middle part of the images. Figure 5 shows some examples of images with various configurations of
the four databases.
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Figure 5. (a) JAFFE face database: images with various facial expressions. (b) Yale face database:
1st–3rd images: normal faces; 4th–6th images: faces under various lighting conditions. (c) AR face
database: 1st–2nd images: normal faces; 3th–4th images: faces under various lighting conditions;
5th–6th images: faces with sunglasses; 7th–8th images: faces with scarves. (d) COIL-20 image database:
1st–2nd images: normal objects; 3rd–4th images: objects with artificial blocking.

4.1. Image Classification

To evaluate the classification performance for outlier problems of various methodologies, we first
divide the images of each database into two parts, namely, non-standard and standard. The former is
defined as a group of images under lighting conditions or with occlusions whereas the latter represents
normal images with various forms or facial expressions. Let Ni, i = 1, 2, . . . , q, be the number of images
of the ith individual in the standard part for a particular database with q represents the number of
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individuals in the respective database and r be the number of images randomly selected within these
Ni images. In the training phase, Ni − r images in the standard part and half of the images in the
non-standard part are randomly selected to form the training set whereas the remaining images (i.e.,
r images of each individual in the standard part and the other half of the images in the non-standard
part) are used for testing. Let Φ be any image in the training set and Ψ be the testing image. Both Φ
and Ψ are projected onto u to obtain the weight vectors wΦ = uT(Φ −m) and wΨ = uT(Ψ −m) [58],
where m is the mean of training set. Then the testing image is assigned to a class based on the
1-nearest neighbor classifier, which has been extensively used in image classification problems [24,28].
To quantify the classification performance of each methodology, we adopt the averaged maximum
classification rate (AMCR) and averaged maximum F1-score (AMF1-score) with respect to the optimal
number of orthonormal projection vectors. The formula for classification rate is defined as

CR =

∑
c (TP(c) + TN(c))∑

c (TP(c) + FP(c) + FN(c) + TN(c))
(17)

where TP(c), FP(c), FN(c) and TN(c) are the true positive, false positive, false negative and true
negative for class c respectively. The maximum classification rate is the classification rate with the
optimal number of projection vectors. The F1-score is defined as follows:

F1− score =
∑

c
2

precision(c) × recall(c)
precision(c) + recall(c)

(18)

Precision and recall are calculated as follows:

precision(c) =
TP(c)

TP(c) + FP(c)
(19)

recall(c) =
TP(c)

TP(c) + FN(c)
(20)

Similar to the classification rate, the maximum F1-score is the F1-score with the optimal number of
projection vectors. Now, we explain the procedure to obtain the optimal number of projection vectors.

For each r per above random training set, the optimal number of vectors is selected by the holdout
set method [59]. First, a pair of holdout sets is created by splitting the above training set into two.
70% of the samples are randomly selected to form the holdout set for training while the rest of them
form the holdout set for testing. The optimal number of projection vectors is then the number of
dimensions that produces the best classification rate (i.e., CR) with the 1-nearest neighbor being applied
to the holdout set for testing 10 times. The averaged maximum classification rate (AMCR), averaged
maximum F1-score (AMF1-score) and averaged optimal number of projection vectors (Avg. Dim.) are
then computed by repeating all the above procedures to the training and testing sets 10 times.

Table 1 shows the comparative classification performance AMCR, Avg. Dim. (in the bracket) and
AMF1-score (in the square bracket) with respect to the number of testing images selected (r = 1 to 9) for
each individual in the standard part using the JAFFE face database. Note that both training and testing
sets contain only standard images and thus, we shall evaluate the performance of various methods
without non-standard images. As can be seen from Table 1, the proposed method generally performs
better than the other methods. The TC-PCA usually achieves the highest AMCR and AMF1-score
regardless of the number of testing images. Moreover, the TC-PCA provides a more effective way for
dimensionality reduction than other PCA methods as it usually performs better than the classifier with
all dimensions. This may not be the case for other PCA methods.
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Table 1. Comparative Classification Performance for JAFFE Face Database.

r All Dim.
AMCR (Avg. Dim.) [AMF1-Score]

PCA HQ-PCA l1-PCA RPCA OM-RPCA AM-PCA TC-PCA

1 Overall
1.000
( – )

1.000
(34.30)

1.000
(40.40)

1.000
(29.50)

1.000
(26.80)

1.000
(30.50)

1.000
(31.60)

1.000
(34.80)

[1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

2 Overall
0.975
( – )

0.980
(32.80)

0.990
(31.40)

0.980
(27.70)

0.990
(21.50)

0.980
(25.30)

0.980
(30.50)

0.990
(31.80)

[0.973] [0.979] [0.989] [0.979] [0.989] [0.979] [0.979] [0.989]

3 Overall
0.983
( – )

0.987
(21.50)

0.990
(35.80)

0.987
(28.00)

0.990
(30.90)

0.987
(27.90)

0.983
(22.40)

0.990
(30.20)

[0.983] [0.986] [0.99] [0.986] [0.99] [0.986] [0.983] [0.99]

4 Overall
0.995
( – )

0.995
(31.30)

0.995
(48.00)

0.995
(28.40)

0.995
(34.30)

0.995
(34.30)

0.995
(30.30)

0.995
(35.10)

[0.995] [0.995] [0.995] [0.995] [0.995] [0.995] [0.995] [0.995]

5 Overall
0.994
( – )

0.996
(31.70)

0.996
(44.00)

0.996
(32.60)

0.996
(38.90)

0.996
(31.30)

0.996
(32.40)

0.996
(36.00)

[0.994] [0.994] [0.994] [0.994] [0.996] [0.994] [0.996] [0.998]

6 Overall
0.983
( – )

0.987
(30.20)

0.993
(37.00)

0.988
(30.90)

0.992
(36.70)

0.988
(35.20)

0.987
(27.10)

0.993
(37.50)

[0.983] [0.987] [0.992] [0.987] [0.992] [0.988] [0.987] [0.993]

7 Overall
0.981
( – )

0.986
(25.00)

0.986
(48.10)

0.983
(34.00)

0.984
(33.10)

0.983
(26.90)

0.984
(30.20)

0.987
(32.90)

[0.981] [0.981] [0.985] [0.981] [0.985] [0.984] [0.981] [0.988]

8 Overall
0.984
( – )

0.989
(28.40)

0.990
(44.20)

0.988
(35.20)

0.993
(34.50)

0.988
(41.80)

0.986
(26.80)

0.984
(26.30)

[0.984] [0.987] [0.991] [0.99] [0.989] [0.987] [0.986] [0.985]

9 Overall
0.990
( – )

0.991
(28.00)

0.990
(46.50)

0.991
(35.40)

0.989
(36.00)

0.989
(28.70)

0.989
(29.70)

0.991
(34.30)

[0.99] [0.992] [0.988] [0.988] [0.99] [0.991] [0.988] [0.991]

Table 2 summarizes the AMCR and AMF1-score with respect to r using the Yale face database.
We remark that the training and testing sets consist of both standard (i.e., normal face images)
and non-standard images (i.e., face images under different lighting conditions). The percentages
of non-standard images in the training set when r = 1, 2, 3 and 4 are 17.97%, 20.35%, 23.47% and
27.71%, respectively. In addition to reporting the overall AMCR and AMF1-score, we shall assess the
performance of various methodologies in classifying non-standard and standard images. The following
are some discussions and the main points we observe from Table 2.

1. The overall AMCR and AMF1-score of TC-PCA is usually the highest among the PCA methods
for any number of testing images. It is higher than other PCA methods up to 4.6% for both
AMCR and AMF1-score. When the number of testing images is one (i.e., r = 1), the proposed
method performs better than the second best, OM-RPCA method by 2.4% for AMCR and 1.4%
for AMF1-score. Besides, the overall AMCR and AMF1-score of any PCA method increases with
the number of testing images and approximately converges to 81%. As the number of standard
images increases (i.e., more testing images), the recognition problems are easier for most methods,
which lead to higher overall AMCRs and AMF1-scores. For a smaller number of testing images,
the portion of non-standard images are higher in the testing set and the method must learn more
precise features to correctly classify the images. This shows that the proposed method learns
more effective features than other PCA methods.

2. The TC-PCA outperforms other methods in classifying non-standard images up to 8.26% for
AMCR and 7.2% for AMF1-score. These results experimentally justify that the proposed method
can successfully discard information given by the non-standard images such as face images under
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various lighting conditions. On the other hand, the performance of all methods in classifying
standard images are similar (around 97%–100%), which is consistent with the findings of JAFFE
face database shown in Table 1.

3. The overall classification accuracy and F1-score vary with the number of testing images for
the Yale face database whereas the classification performance is not sensitive to the number of
testing images for the JAFFE face database. Such a difference is mainly due to the ability of
each methodology in recognizing non-standard images. Our experimental results reveal that the
proposed method has a superior classification performance in classifying standard images and
moreover, the use of trimming set in the TC-PCA model makes the proposed method not sensitive
to outliers, which can improve the non-standard image classification performance. These results
indicate that the overall classification performance of all methods is comparable for the face
databases with only standard images while the proposed method outperforms all other methods
for the face databases consisting of both standard and non-standard images.

4. The proposed method needs 9 to 21 fewer number of projection vectors to achieve high classification
rates and F1-scores compared with other PCA methods. Experiments also show that the TC-PCA
method usually performs better than the classifier with all dimensions (i.e., the size of an image,
which is 81× 61 = 4941) and it only needs 18 to 35 dimensions to achieve good results. This may
not be the case for other dimensionality reduction techniques. This shows that the TC-PCA
method can effectively discard the noisy information caused by the curse of dimensionality and
also better represent the key characteristics of the data.

Table 2. Comparative Classification Performance for Yale Face Database.

r All Dim.
AMCR (Avg. Dim.) [AMF1-Score]

PCA HQ-PCA l1-PCA RPCA OM-RPCA AM-PCA TC-PCA

1

Overall
0.670
( – )

0.654
(43.10)

0.635
(47.70)

0.651
(42.70)

0.641
(39.60)

0.657
(40.80)

0.654
(43.10)

0.681
(32.50)

[0.681] [0.669] [0.642] [0.666] [0.648] [0.67] [0.667] [0.684]

Non-standard
0.470 0.443 0.413 0.439 0.422 0.448 0.443 0.487

[0.429] [0.408] [0.37] [0.399] [0.379] [0.41] [0.407] [0.429]

Standard
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

[1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

2

Overall
0.750
( – )

0.744
(34.70)

0.731
(33.40)

0.742
(38.80)

0.731
(34.10)

0.742
(43.60)

0.746
(38.90)

0.763
(18.7)

[0.761] [0.756] [0.739] [0.753] [0.74] [0.753] [0.756] [0.77]

Non-standard
0.443 0.430 0.404 0.426 0.400 0.430 0.435 0.483

[0.386] [0.372] [0.353] [0.377] [0.346] [0.371] [0.378] [0.425]

Standard
0.993 0.993 0.990 0.993 0.993 0.990 0.993 0.986

[0.993] [0.993] [0.989] [0.993] [0.993] [0.989] [0.993] [0.986]

3

Overall
0.809
( – )

0.809
(39.20)

0.800
(36.20)

0.801
(44.90)

0.796
(37.20)

0.803
(41.70)

0.809
(44.90)

0.809
(35.20)

[0.821] [0.821] [0.81] [0.813] [0.805] [0.815] [0.82] [0.814]

Non-standard
0.470 0.457 0.435 0.448 0.426 0.452 0.461 0.457

[0.414] [0.405] [0.382] [0.399] [0.375] [0.409] [0.405] [0.393]

Standard
0.986 0.993 0.991 0.986 0.989 0.986 0.991 0.993

[0.986] [0.993] [0.99] [0.985] [0.988] [0.986] [0.99] [0.985]

4

Overall
0.816
( – )

0.816
(50.70)

0.809
(37.60)

0.813
(51.70)

0.813
(32.00)

0.812
(43.40)

0.813
(48.70)

0.816
(30.60)

[0.826] [0.825] [0.817] [0.823] [0.823] [0.82] [0.822] [0.826]

Non-standard
0.400 0.400 0.387 0.396 0.378 0.400 0.391 0.400

[0.375] [0.368] [0.351] [0.365] [0.352] [0.371] [0.363] [0.37]

Standard
0.978 0.978 0.973 0.976 0.983 0.973 0.978 0.978

[0.978] [0.978] [0.972] [0.976] [0.983] [0.973] [0.978] [0.978]
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Next, we compare the classification performance of all methods using AR face database. In this
database, we perform three experiments. The first experiment (Normal + Lighting) uses all normal
face images and images under lighting conditions. Similarly, the second and third experiments use
all normal face images and images with sunglasses (Normal + Sunglasses) and scarves (Normal +

Scarves), respectively. Note that the percentages of non-standard images in the training set when r = 1,
2, 3 and 4 are 17.65%, 20.00%, 23.08% and 27.27%, respectively and the classification results are shown
in Tables 3–5.

Table 3. Comparative Classification Performance for AR Face Database (Normal + Lighting).

r All Dim.
AMCR (Avg. Dim.) [AMF1-Score]

PCA HQ-PCA l1-PCA RPCA OM-RPCA AM-PCA TC-PCA

1

Overall
0.588
( – )

0.556
(32.30)

0.580
(52.80)

0.564
(36.10)

0.552
(32.80)

0.556
(27.40)

0.564
(32.50)

0.680
(20.80)

[0.605] [0.573] [0.598] [0.581] [0.57] [0.578] [0.581] [0.692]

Non-standard
0.333 0.267 0.320 0.287 0.253 0.273 0.287 0.467

[0.325] [0.248] [0.318] [0.275] [0.24] [0.268] [0.274] [0.446]

Standard
0.970 0.990 0.970 0.980 1.000 0.980 0.980 1.000
[0.96] [0.987] [0.96] [0.973] [1.000] [0.973] [0.973] [1.000]

2

Overall
0.674
( – )

0.666
(31.60)

0.657
(26.10)

0.663
(33.90)

0.669
(31.10)

0.671
(29.10)

0.666
(36.70)

0.726
(27.70)

[0.693] [0.687] [0.684] [0.682] [0.692] [0.693] [0.685] [0.744]

Non-standard
0.273 0.260 0.207 0.253 0.227 0.260 0.260 0.380

[0.282] [0.277] [0.222] [0.252] [0.223] [0.276] [0.269] [0.367]

Standard
0.975 0.970 0.995 0.970 1.000 0.980 0.970 0.985

[0.973] [0.965] [0.995] [0.968] [1.000] [0.979] [0.968] [0.984]

3

Overall
0.758
( – )

0.742
(33.40)

0.749
(32.80)

0.742
(33.10)

0.751
(39.20)

0.751
(35.30)

0.744
(35.40)

0.773
(20.90)

[0.766] [0.75] [0.76] [0.751] [0.761] [0.76] [0.753] [0.776]

Non-standard
0.347 0.313 0.293 0.307 0.280 0.333 0.313 0.373

[0.319] [0.291] [0.279] [0.278] [0.259] [0.312] [0.292] [0.361]

Standard
0.963 0.957 0.977 0.960 0.987 0.960 0.960 0.973

[0.962] [0.955] [0.976] [0.958] [0.985] [0.958] [0.958] [0.969]

4

Overall
0.782
( – )

0.775
(26.30)

0.776
(28.40)

0.776
(28.50)

0.793
(23.90)

0.784
(25.20)

0.771
(23.00)

0.784
(23.90)

[0.786] [0.779] [0.785] [0.781] [0.799] [0.789] [0.776] [0.79]

Non-standard
0.313 0.293 0.273 0.300 0.267 0.300 0.280 0.293

[0.329] [0.299] [0.287] [0.305] [0.265] [0.308] [0.28] [0.286]

Standard
0.958 0.955 0.965 0.955 0.990 0.965 0.955 0.968

[0.956] [0.953] [0.964] [0.954] [0.99] [0.964] [0.953] [0.967]

Similar to the experimental results of JAFFE and Yale face databases, the proposed method
performs well and its overall AMCR and AMF1-score are usually the highest. It usually outperforms
other methods in classifying non-standard images for all three experiments. We remark that the
proposed method performs significantly better than the other methods in recognizing non-standard
images by 36%–42.7% in the “Normal + Sunglasses” experiment with r = 2. Besides, the overall
AMCRs and AMF1-scores indicate that the TC-PCA again performs better than the classifier with
all dimensions for any number of testing images. This may not be achieved by other PCA methods.
However, the AMCRs of non-standard image classification of all methods are less than 20% in the
“Normal + Scarves” experiment. The unsatisfactory non-standard image classification performance
in the “Normal + Scarves” experiment suggests that more advanced facial features are necessary to
correctly classifying some non-standard images.

Now, we show that the projection vectors estimated by the proposed TC-PCA can provide
inter-cluster information that is beneficial to classification and clustering problems. Figure 6 shows
projected data with projection vectors estimated by the l1-PCA and the proposed TC-PCA in three
different cases (AR (Normal + Light), AR (Normal + Sunglasses) & AR (Normal + Scarves)). Here,
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we select AR (Normal + Light) as an example. It is obvious that the projected data consists of two
compact clusters with some outliers. The proposed TC-PCA can ignore the negative impact of the
non-standard images and successfully identify the two clusters, in which the data objects in the
same cluster belong to the same classes. No data objects from the same classes are assigned to the
two different clusters. Moreover, the vector difference between the two cluster centers, which is the
projection vector estimated by the TC-PCA, provides the inter-class information. This is important for
classification and clustering problems. However, the l1-PCA is greatly affected by the non-standard
images and the first projection vectors are driven towards to the images. This explains why the
performance of TC-PCA is better than other methods by 6% and 10%–21% better for r = 1 in AR
(Normal + Scarves), AR (Normal + Light) and AR (Normal + Sunglasses).

Table 4. Comparative Classification Performance for AR Face Database (Normal + Sunglasses).

r All Dim.
AMCR (Avg. Dim.) [AMF1-Score]

PCA HQ-PCA l1-PCA RPCA OM-RPCA AM-PCA TC-PCA

1

Overall
0.588
( – )

0.592
(31.70)

0.576
(40.10)

0.592
(28.30)

0.572
(36.30)

0.592
(24.40)

0.588
(29.30)

0.816
(15.10)

[0.595] [0.598] [0.582] [0.599] [0.588] [0.599] [0.597] [0.817]

Non-standard
0.333 0.333 0.313 0.333 0.300 0.333 0.333 0.693

[0.312] [0.309] [0.28] [0.312] [0.284] [0.31] [0.316] [0.665]

Standard
0.97 0.980 0.970 0.980 0.980 0.980 0.970 1.000

[0.96] [0.973] [0.96] [0.973] [0.973] [0.973] [0.96] [1.000]

2

Overall
0.694
( – )

0.669
(20.90)

0.691
(31.30)

0.680
(25.60)

0.663
(38.50)

0.680
(24.80)

0.671
(27.90)

0.840
(18.10)

[0.708] [0.69] [0.711] [0.697] [0.685] [0.696] [0.691] [0.845]

Non-standard
0.32 0.253 0.287 0.280 0.220 0.287 0.260 0.647

[0.329] [0.266] [0.308] [0.277] [0.235] [0.292] [0.271] [0.597]

Standard
0.975 0.980 0.995 0.980 0.995 0.975 0.980 0.985

[0.973] [0.979] [0.995] [0.979] [0.995] [0.973] [0.979] [0.984]

3

Overall
0.744
( – )

0.738
(28.60)

0.742
(45.80)

0.736
(35.60)

0.753
(35.80)

0.744
(37.20)

0.736
(34.60)

0.869
(16.10)

[0.749] [0.744] [0.748] [0.74] [0.761] [0.751] [0.741] [0.871]

Non-standard
0.307 0.287 0.293 0.273 0.273 0.300 0.300 0.660

[0.286] [0.267] [0.284] [0.248] [0.274] [0.278] [0.285] [0.614]

Standard
0.963 0.963 0.967 0.967 0.993 0.967 0.953 0.973

[0.962] [0.962] [0.965] [0.965] [0.993] [0.965] [0.948] [0.973]

4

Overall
0.794
( – )

0.776
(30.60)

0.780
(29.90)

0.771
(32.70)

0.795
(31.80)

0.789
(26.10)

0.776
(33.50)

0.815
(26.70)

[0.788] [0.785] [0.787] [0.779] [0.799] [0.785] [0.777] [0.822]

Non-standard
0.32 0.280 0.300 0.280 0.273 0.307 0.287 0.38

0
[0.314] [0.312] [0.297] [0.292] [0.259] [0.293] [0.282] [0.38]

Standard
0.958 0.963 0.960 0.955 0.990 0.970 0.960 0.978

[0.956] [0.959] [0.962] [0.957] [0.99] [0.964] [0.956] [0.977]

We also compare the performance of different PCA methods for an object classification problem
using Coil image database. In this experiment, the percentages of non-standard images in the training
set when r = 1, 2, 3 are 16.67%, 20% and 25% respectively. The classification rates are shown in Table 6.
The proposed method usually performs well and the overall AMCR and AMF1-score are usually
the highest. Similar to the face databases, the proposed method performs better than other PCA
methods in recognizing the non-standard images. Moreover, the proposed method usually uses a
fewer number of projection vectors to give good results. It is also remarked that the performance of the
proposed method is as good as all dimensional case. However, the proposed method uses a much
lower dimension to get the same results. This shows that the proposed method can extract useful
information that can effectively represent the data.
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Table 5. Comparative Classification Performance for AR Face Database (Normal + Scarves).

r All Dim.
AMCR (Avg. Dim.) [AMF1-Score]

PCA HQ-PCA l1-PCA RPCA OM-RPCA AM-PCA TC-PCA

1

Overall
0.472
( – )

0.444
(30.90)

0.444
(37.60)

0.452
(34.80)

0.440
(39.30)

0.448
(30.30)

0.444
(26.90)

0.512
(36.30)

[0.494] [0.467] [0.469] [0.473] [0.462] [0.475] [0.468] [0.531]

Non-standard
0.14 0.093 0.093 0.107 0.087 0.100 0.093 0.200

[0.136] [0.086] [0.077] [0.099] [0.077] [0.09] [0.087] [0.191]

Standard
0.97 0.970 0.970 0.970 0.970 0.970 0.970 0.980

[0.96] [0.96] [0.96] [0.96] [0.96] [0.96] [0.96] [0.973]

2

Overall
0.617
( – )

0.594
(20.90)

0.609
(30.60)

0.589
(16.30)

0.606
(36.50)

0.594
(14.90)

0.600
(24.70)

0.629
(20.70)

[0.633] [0.61] [0.632] [0.603] [0.623] [0.61] [0.615] [0.641]

Non-standard
0.14 0.080 0.100 0.073 0.087 0.073 0.100 0.153

[0.107] [0.054] [0.086] [0.052] [0.068] [0.046] [0.07] [0.124]

Standard
0.975 0.980 0.990 0.975 0.995 0.985 0.975 0.985

[0.973] [0.979] [0.989] [0.973] [0.995] [0.984] [0.973] [0.984]

3

Overall
0.691
( – )

0.684
(23.10)

0.691
(30.70)

0.680
(24.40)

0.696
(31.80)

0.689
(23.10)

0.673
(24.30)

0.713
(19.40)

[0.704] [0.699] [0.706] [0.693] [0.713] [0.701] [0.688] [0.727]

Non-standard
0.147 0.120 0.127 0.120 0.113 0.127 0.093 0.180

[0.158] [0.12] [0.137] [0.119] [0.122] [0.126] [0.098] [0.165]

Standard
0.963 0.967 0.973 0.960 0.987 0.970 0.963 0.980

[0.962] [0.965] [0.972] [0.957] [0.985] [0.968] [0.961] [0.979]

4

Overall
0.723
( – )

0.751
(22.60)

0.756
(32.30)

0.760
(23.40)

0.773
(21.40)

0.758
(22.30)

0.747
(25.90)

0.762
(18.70)

[0.759] [0.758] [0.765] [0.768] [0.782] [0.769] [0.755] [0.769]

Non-standard
0.207 0.200 0.193 0.200 0.187 0.200 0.187 0.200

[0.191] [0.187] [0.181] [0.2] [0.178] [0.194] [0.177] [0.199]

Standard
0.958 0.958 0.968 0.970 0.993 0.968 0.958 0.973

[0.956] [0.957] [0.967] [0.969] [0.992] [0.967] [0.957] [0.972]

Table 6. Comparative Classification Performance for Coil.

r All Dim.
AMCR (Avg. Dim.) [AMF1-Score]

PCA HQ-PCA l1-PCA RPCA OM-RPCA AM-PCA TC-PCA

1

Overall
1.000
( – )

0.97
(2.7)

0.985
(4.1)

0.995
(5.5)

0.98
(5.5)

0.95
(5.6)

0.995
(4.2)

1.000
(3.6)

[1.000] [0.973] [0.985] [0.995] [0.984] [0.956] [0.996] [1.000]

Non-standard
1.000 0.94 0.97 0.99 0.96 0.9 0.99 1.000

[1.000] [0.962] [1.000] [1.000] [0.964] [0.93] [0.99] [1.000]

Standard
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

[1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

2

Overall
1.000
( – )

0.98
(3.8)

0.983
(2.5)

0.987
(4.4)

0.967
(4.5)

0.99
(3.9)

0.987
(4.4) 1.000 (2.9)

[1.000] [0.98] [0.983] [0.988] [0.969] [0.99] [0.988] [1.000]

Non-standard
1.000 0.94 0.95 0.96 0.9 0.97 0.96 1.000

[1.000] [0.951] [0.942] [0.963] [0.891] [0.971] [0.959] [1.000]

Standard
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

[1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

3

Overall
1.000
( – )

0.993
(7.5)

0.995
(7.2)

0.995
(9)

0.985
(6.5)

0.995
(8.4)

0.993
(8.8)

0.998
(14.7)

[1.000] 0.993 0.996 0.996 0.986 0.996 0.993 0.997

Non-standard
1.000 0.97 0.98 0.98 0.94 0.98 0.97 0.99

[1.000] 0.972 0.983 0.981 0.943 0.981 0.973 0.99

Standard
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

[1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000]
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4.2. Image Clustering

In addition to face image classification, experimental results [60,61] showed that PCA can be used
as a pre-processing step to enhance the accuracy of k-means clustering. In this experiment, we shall
show that the clustering performance of the TC-PCA’s subspace is better than that of the other PCA’s
subspaces. The experimental setting is as follows: the database is projected onto U and the clustering
performance is evaluated on the respective subspace. The clustering rate is obtained based on the
known class labels via the following

Clustering rate =

∑
best(Ci ∩ T j(i))

#elements
, (21)

where Ci and T j(i) are ith cluster and corresponding set of training labels, respectively. In the above
calculation, each cluster Ci is assigned to one training label j(i) only. No two or more clusters are
assigned to the same training label. Since estimating the optimal number dimension for unsupervised
learning problem is still a challenging research problem, we use the normalized area under the curve
(NAUC) of clustering rates over the number of orthonormal projection vectors, D, to quantify the
results. Note that for each value of D, we repeat the k-means clustering 30 times with the same starting
vectors and the clustering result with the smallest objective value is obtained.
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To evaluate the robustness of PCA methods for data clustering problem with the presence of outliers
and noisy dimensions, we consider the following synthetic dataset. The dataset has 103 dimensions.
The first three dimensions have 10 clusters with 100 outliers around them. Each cluster follows a
normal distribution with 100 samples. Thus, the dataset has totally 1100 samples. The remaining
dimensions are generated by a mixture of normal and uniform distributions. They do not carry any
information about the 10 clusters. They are generated by a mixture of normal and uniform distributions.
To compute the clustering rate as shown in Equation (21) of different PCA methods, we only consider
the class labels of the 10 clusters and ignore the outliers in the calculation. In other words, we applied
the k-means clustering algorithm to 1100 samples and only evaluate on 1000 samples, which are the
10 clusters. Table 7 shows the clustering results after applying different PCA methods. The TC-PCA
method performs the best. It is 40% better than the clustering result without applying any PCA
method. Besides, it performs better than other PCA methods such as RPCA nearly 35%. This implies
that the proposed method is not confused by the noisy dimensions and is able to cluster the data
more effectively.

Table 7. K-Means Clustering Accuracy.

All Dim.
NAUC

PCA HQ-PCA l1-PCA RPCA OM-RPCA AM-PCA TC-PCA

Synthetic Data 3 0.354 0.596 0.605 0.653 0.409 0.652 0.650 0.654
JAFFE 0.676 0.673 0.686 0.680 0.684 0.677 0.674 0.691
Yale 0.545 0.519 0.538 0.521 0.525 0.528 0.520 0.547

AR (Normal + Lighting) 0.476 0.491 0.495 0.490 0.498 0.487 0.489 0.509
AR (Normal + Sunglasses) 0.491 0.464 0.467 0.469 0.465 0.467 0.465 0.509

AR (Normal + Scarves) 0.464 0.434 0.441 0.437 0.440 0.436 0.436 0.484
3 For the synthetic data, the range of D is from 1 to 3.

Table 7 shows the comparative clustering performance for the databases used in the face image
classification experiments. Generally speaking, the proposed method performs better than HQ-PCA
and RPCA by around 0.5%–4.80% and the rest by around 1.78%–5.03%. The results indicate that
TC-PCA’s subspace is better than the other PCA’s subspaces for clustering. Moreover, the NAUC of
the proposed method is higher than the clustering results with all dimensions in all five experiments,
which may not be achieved by other PCA methods.

4.3. Parameter Study

In this section, we study the effectiveness of the two parameters of SPVEA. First, we study the
effectiveness of the trimming parameter, p, which is set as 75 in all the experiments. Then, we study
the robustness of the cluster center initialization of the SPVEA.

4.3.1. Effectiveness of the Trimming Parameter

In this subsection, we shall have the parameter study of TC-PCA, including the parameter of
trimming set, p and the number of testing images selected for each individual in the standard part, r,
to the classification performance, as shown in Table 8. Here, we choose p = 75, 80, 85, 90, 95 and r =

1, 2, 3, 4. There are two important points that can be observed from Table 8. First, the classification
performance is not sensitive to r for the JAFFE face database whereas the AMCR increases with r for
the Yale and AR face databases at the same value of p, which are consistent with our previous results
in Section 4.1 (see also discussions in the same section). Second, the classification performance for the
JAFFE face database is stable for any value of p whereas the AMCR improves from p = 95 to p = 75 for
Yale and AR face databases at the same value of r. These results further justify that the AMCR for the
databases with both standard and non-standard images increases gradually by removing a portion
of outlier images in the training set, which in turn, reveals the effectiveness of trimming set in the
TC-PCA model. It is important to note that we fix the parameter D from 1 to 70 for image classification
and clustering but our experimental results show that increasing the value of D to more than 70 does
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not affect the AMCR and NAUC. Other than the above analysis, we also find that the parameter setting
p = 75 is the best for these face databases. We compare the performance of this setting with parameter
estimation using the holdout method as described in Section 4.1, which has been used to estimate the
optimal number of projection vectors. The result is shown in Table 9. We can see that other than r = 2
for AR (Normal + Sunglasses) and r = 4 for AR (Normal + Scarves), the parameter setting p = 75
performs better than automatic parameterization. This shows that the parameter setting p = 75 is the
best for these face databases.

Table 8. Classification Performance (averaged maximum classification rate (AMCR)) of TC-PCA for
Various Parameters.

p Database
r

1 2 3 4

95

JAFFE 1.000 0.995 0.993 0.988
Yale 0.643 0.737 0.806 0.811

AR (Normal + Lighting) 0.568 0.663 0.753 0.787
AR (Normal + Sunglasses) 0.604 0.683 0.751 0.784

AR (Normal + Scarves) 0.448 0.600 0.693 0.742

90

JAFFE 1.000 0.995 0.993 0.988
Yale 0.646 0.744 0.802 0.810

AR (Normal + Lighting) 0.556 0.657 0.749 0.787
AR (Normal + Sunglasses) 0.596 0.683 0.760 0.787

AR (Normal + Scarves) 0.472 0.600 0.702 0.742

85

JAFFE 1.000 0.995 0.997 0.990
Yale 0.654 0.739 0.796 0.805

AR (Normal + Lighting) 0.588 0.709 0.753 0.786
AR (Normal + Sunglasses) 0.652 0.714 0.782 0.800

AR (Normal + Scarves) 0.476 0.603 0.722 0.744

80

JAFFE 1.000 0.995 0.997 0.99
Yale 0.681 0.729 0.794 0.816

AR (Normal + Lighting) 0.604 0.726 0.747 0.789
AR (Normal + Sunglasses) 0.820 0.803 0.791 0.820

AR (Normal + Scarves) 0.504 0.620 0.716 0.747

75

JAFFE 1.000 0.990 0.990 0.995
Yale 0.681 0.763 0.809 0.816

AR (Normal + Lighting) 0.680 0.726 0.773 0.784
AR (Normal + Sunglasses) 0.816 0.840 0.869 0.815

AR (Normal + Scarves) 0.512 0.629 0.713 0.762

Table 9. Classification Performance (AMCR) of TC-PCA with Holdout Estimation for the
Trimming Parameter.

Database
r

1 2 3 4

JAFFE 1.000 0.975 0.987 0.995
Yale 0.659 0.744 0.809 0.812

AR (Normal + Lighting) 0.632 0.683 0.773 0.795
AR (Normal + Sunglasses) 0.812 0.860 0.829 0.802

AR (Normal + Scarves) 0.480 0.617 0.709 0.767

4.3.2. Sensitivity Analysis of Cluster Centers Initialization of the SPVEA

In this subsection, we study the robustness of cluster center initialization procedure of the SPVEA.
We apply SPVEA 30 times with different sets of initial guesses to each of the four face databases with
r = 1 and obtain projection matrices. We measure the difference among these projection matrices by
the following formula

Di f f (DV) = std(‖V(i)TV( j)‖1/DV), (22)

where V(i) is the projection matrices obtained by SPVEA with ith set of initial guesses and Dv is the
number of projection vectors of the projection matrix. Di f f (DV) is to compute the standard deviation
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of all the dot products of any two projection matrices obtained by different sets of initial guesses.
If all projection matrices V(i) are similar to each other, the ‖V(i)TV( j)‖1 will be close to one and thus,
obtain a very small standard deviation. Table 10 below shows the values of Di f f (DV) to the four face
databases under three settings: DV = 1, DV = 10 and DV = 20. We can see that all values are very
small and close to zero. This shows that the projection vectors generated by SPVEA is robust to cluster
center initialization.

Table 10. Difference Scores Among Different Initialization of Single Projection Vector Extraction
Algorithm (SPVEA).

Database
No. of Projection Vectors

1 10 20

JAFFE 1.606× 10−4 3.109× 10−3 5.829× 10−4

Yale 1.337× 10−3 3.330× 10−3 5.149× 10−4

AR (Normal + Lighting) 1.068× 10−16 2.203× 10−3 5.394× 10−4

AR (Normal + Sunglasses) 1.068× 10−16 2.373× 10−3 5.469× 10−4

AR (Normal + Scarves) 1.068× 10−16 2.374× 10−3 5.173× 10−4

4.4. Discussions for Large Number of Outliers

In this subsection, we investigate the case when the number of outliers exceeds 50%. We set
r = 8 for the four face databases. That means there are around 60% non-standard images in each
situation. The results are shown in Table 11. We can observe that the performance of any PCA method
is usually not as good as the one without applying any PCA method. The reason may be that current
PCA methods attempt to find the common components that can best represent the data. Given the
scatter nature of outliers, this can confuse most PCA methods. Although the proposed method does
not perform as good as the one without applying any PCA method, it performs the best, 2nd best and
3rd best among the PCA methods in Yale, AR (Normal + Lighting), AR (Normal + Sunglasses) and AR
(Normal + Scarves) respectively.

Table 11. Comparative Classification Performance of Different PCA Methods with Around 60% Outliers.

Database All Dim.
AMCR (Avg. Dim.) [AMF1-Score]

PCA HQ-PCA l1-PCA RPCA OM-RPCA AM-PCA TC-PCA

Yale

Overall
0.804
( – )

0.80
(25)

0.758
(27.5)

0.797
(22.70)

0.821
(26.80)

0.80
(28.70)

0.802
(24.30)

0.806
(31.40)

[0.799] [0.796] [0.754] [0.792] [0.821] [0.796] [0.798] [0.801]

Non-standard
0.339 0.33 0.317 0.335 0.313 0.335 0.33 0.352

[0.316] [0.308] [0.3] [0.318] [0.3] [0.315] [0.304] [0.325]

Standard
0.907 0.904 0.856 0.899 0.934 0.903 0.906 0.907

[0.898] [0.897] [0.845] [0.89] [0.93] [0.894] [0.899] [0.897]

AR (Normal
+ Lighting)

Overall
0.785
( – )

0.702
(13.10)

0.648
(13.45)

0.702
(14.50)

0.742
(14.40)

0.739
(17.15)

0.746
(15.10)

0.71
(12.75)

[0.781] [0.697] [0.64] [0.695] [0.742] [0.733] [0.741] [0.705]

Non-standard
0.367 0.283 0.257 0.283 0.24 0.303 0.297 0.28

[0.313] [0.267] [0.242] [0.267] [0.225] [0.282] [0.283] [0.253]

Standard
0.874 0.792 0.732 0.791 0.849 0.832 0.843 0.802

[0.868] [0.781] [0.719] [0.778] [0.846] [0.822] [0.833] [0.792]

AR (Normal
+ Sunglasses)

Overall
0.793
( – )

0.774
(14.90)

0.634
(9.80)

0.731
(13.30)

0.726
(14.20)

0.754
(16.20)

0.712
(14.20)

0.74
(12.90)

[0.79] [0.771] [0.622] [0.723] [0.723] [0.752] [0.708] [0.737]

Non-standard
0.427 0.427 0.313 0.38 0.32 0.413 0.367 0.353

[0.405] [0.391] [0.293] [0.335] [0.29] [0.384] [0.324] [0.335]

Standard
0.871 0.849 0.703 0.806 0.813 0.827 0.786 0.823

[0.865] [0.844] [0.687] [0.795] [0.804] [0.822] [0.779] [0.814]

AR (Normal
+ Scarves)

Overall
0.767
( – )

0.645
(9.60)

0.581
(10.10)

0.582
(7.40)

0.486
(7.90)

0.676
(11.20)

0.655
(10.9)

0.669
(11.60)

[0.767] [0.643] [0.578] [0.578] [0.48] [0.674] [0.656] [0.667]

Non-standard
0.28 0.213 0.187 0.167 0.18 0.253 0.227 0.2

[0.271] [0.185] [0.158] [0.158] [0.154] [0.242] [0.219] [0.191]

Standard
0.871 0.737 0.666 0.671 0.551 0.767 0.747 0.77

[0.865] [0.735] [0.662 [0.662] [0.543] [0.76] [0.742] [0.764]
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5. Conclusions

In this paper, we show that the l1-PCA is equivalent to the two-group k-means clustering
model. This equivalence indicates that the projection vector of the l1-PCA is the vector difference
between the two cluster centers obtained by the clustering algorithm. In other words, the projection
vector incorporates inter-cluster information, which is beneficial to distinguish data objects from
different classes. However, this equivalence also indicates that the l1-PCA may be sensitive to outlier.
To overcome this limitation, a novel trimmed-clustering based l1-PCA (TC-PCA) model is proposed.
The TC-PCA is developed by incorporating a trimming set into the aforementioned clustering model
so that the proposed method is not sensitive to outliers. In addition, the TC-PCA does not require data
centralization procedure to obtain the projection vectors. Furthermore, we mathematically prove that
the proposed TC-PCA algorithm converges. Comparative experimental results with current existing
PCA approaches show that our method achieves remarkable success in face image classification and
clustering problems.

While our proposed method provides promising classification and clustering results, we shall
study the following as future work:

1. The proposed TC-PCA model works well in image classification and clustering. More analysis of
the proposed method to different applications such as video surveillance and image segmentation
should be done.

2. We adopt the hold-out method to estimate the optimal number of projection vectors for
classification problems. However, this method did not give the best solutions in the experiments.
A more robust estimation should be developed.

3. Many PCA methods such as the traditional PCA can be extended to the so-called 2D-PCA.
Like these methods, a nature extension of the proposed method to 2D-PCA should be investigated.
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