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Abstract: Recently, the increasing demand for voice-based authentication systems has encouraged
researchers to investigate methods for verifying users with short randomized pass-phrases with
constrained vocabulary. The conventional i-vector framework, which has been proven to be
a state-of-the-art utterance-level feature extraction technique for speaker verification, is not considered
to be an optimal method for this task since it is known to suffer from severe performance degradation
when dealing with short-duration speech utterances. More recent approaches that implement
deep-learning techniques for embedding the speaker variability in a non-linear fashion have shown
impressive performance in various speaker verification tasks. However, since most of these techniques
are trained in a supervised manner, which requires speaker labels for the training data, it is difficult
to use them when a scarce amount of labeled data is available for training. In this paper, we propose
a novel technique for extracting an i-vector-like feature based on the variational autoencoder (VAE),
which is trained in an unsupervised manner to obtain a latent variable representing the variability
within a Gaussian mixture model (GMM) distribution. The proposed framework is compared with
the conventional i-vector method using the TIDIGITS dataset. Experimental results showed that
the proposed method could cope with the performance deterioration caused by the short duration.
Furthermore, the performance of the proposed approach improved significantly when applied in
conjunction with the conventional i-vector framework.
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1. Introduction

Speaker verification is the task of verifying the claimed speaker identity in the input speech.
The speaker verification process is composed of three steps: acoustic feature extraction, utterance-level
feature extraction, and scoring. In the first step, spectral parameters—also referred to as acoustic
features—are extracted from short speech frames. One of the most popular acoustic features are the
Mel-frequency cepstral coefficients (MFCCs), which represent the spectral envelope of the speech
within the given time-frame [1]. However, since most classification or verification algorithms operate
on fixed dimensional vectors, acoustic features cannot be directly used with such methods due to the
variable duration property of speech [1]. Therefore, in the second step, the frame-level acoustic features
are aggregated to obtain a single utterance-level feature, which is also known as an embedding vector.
The utterance-level feature is a compact representation of the given speech segment or utterance,
conveying information on the variability (variability refers to the spread of the data distribution) caused
by various factors (e.g., speaker identity, recording channel, environmental noise). In the final step,
the system compares two utterance-level features and measures the similarity or the likelihood of the
given utterances produced by the same speaker.
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Many previous studies on utterance-level features focused on efficiently reducing the
dimensionality of a Gaussian mixture model (GMM) supervector, which is a concatenation of the
mean vectors of each mixture component [2], while preserving the speaker-relevant information
via factorization (e.g., eigenvoice adaptation and joint factor analysis) [3,4]. Particularly the i-vector
framework [5,6], which projects the variability within the GMM supervector caused by various factors
(e.g., channel and speaker) onto a low-dimensional subspace, has become one of the most dominant
techniques used in speaker recognition. The i-vector framework is essentially a linear factorization
technique which decomposes the variability of the GMM supervector into a total variability matrix and
a latent random variable. However, since these linear factorization techniques assume the variability
as a linear function of the latent factor, the i-vector framework is not considered to fully capture the
whole variability of the given speech utterances.

Recently, various studies [7–13] have been carried out for non-linearly extracting utterance-level
features via deep learning. In [7], a deep neural network (DNN) for frame-level speaker classification
was trained and the activations of the last hidden layer—namely, the d-vectors—were taken as
a non-linear speaker representation. In [8,9], a time delay neural network (TDNN) utterance
embedding technique is proposed where the embedding (i.e., the x-vector) is obtained by statistically
pooling the frame-level activations of the TDNN. In [10], the x-vector framework was further
improved by incorporating long short-term memory (LSTM) layers to obtain the embedding. In [11],
gradient reversal layer and adversarial training were employed to extract an embedding vector robust
to channel variation. In [12,13], the embedding neural networks were trained to directly optimize the
verification performance in an end-to-end fashion. However, since most of the previously proposed
deep learning-based feature extraction models are trained in a supervised manner (which requires
speaker or phonetic labels for the training data), it is impossible to use them when little to no labeled
data are available for training.

At present, due to the increasing demand for voice-based authentication systems, verifying users
with a randomized pass-phrase with constrained vocabulary has become an important task [14].
This particular task is called random digit-string speaker verification, where the speakers are enrolled
and tested with random sequences of digits. The random digit string task highlights one of the most
serious causes of feature uncertainty, which is the short duration of the given speech samples [15].
The conventional i-vector is known to suffer from severe performance degradation when short duration
speech is applied to the verification process [16–18]. It has been reported that the i-vectors extracted
from short-duration speech samples are relatively unstable (as the duration of the speech is reduced,
the vector length of the i-vector decreases and its variance increases; this may cause low inter-speaker
variation and high intra-speaker variation of the i-vectors) [16–18]. The short duration problem can be
critical when it comes to real-life applications, since in most practical systems, the speech recording for
enrollment and trial is required to be short [16].

In this paper, we propose a novel approach to speech embedding for speaker recognition.
The proposed method employs a variational inference model inspired by the variational autoencoder
(VAE) [19,20] to non-linearly capture the total variability of the speech. The VAE has an autoencoder-like
architecture which assumes that the data are generated through a neural network driven by a random
latent variable (more information on the VAE architecture is covered in Section 3). Analogous to the
conventional i-vector adaptation scheme, the proposed model is trained according to the maximum
likelihood criterion given the input speech. By using the mean and variance of the latent variable
as the utterance-level features, the proposed system is expected to take the uncertainty caused by
short-duration utterances into account. In contrast to the conventional deep learning-based feature
extraction techniques, which take the acoustic features as input, the proposed approach exploits
the resources used in the conventional i-vector scheme (e.g., universal background model and
Baum–Welch statistics) and remaps the relationship between the total factor and the total variability
subspace through a non-linear process. Furthermore, since the proposed feature extractor is trained in
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an unsupervised fashion, no phonetic or speaker label is required for training. Detailed descriptions of
the proposed algorithm are given in Section 4.

In order to evaluate the performance of the proposed system in the random digits task,
we conducted a set of experiments using the TIDIGITS dataset (see Section 5.1 for details
on the TIDIGITS dataset). Moreover, we compared the performance of our system with the
conventional i-vector framework, which is the state-of-the-art unsupervised embedding technique [21].
Experimental results showed that the proposed method outperformed the standard i-vector framework
in terms of equal error rate (EER), classification error, and detection cost function (DCF) measurements.
It is also interesting that a dramatic performance improvement was observed when the features
extracted from the proposed method and the conventional i-vector were augmented together.
This indicates that the newly proposed feature and the conventional i-vector are complementary
to each other.

2. I-Vector Framework

Given a universal background model (UBM), which is a GMM representing the
utterance-independent distribution of the frame-level features, an utterance-dependent model can
be obtained by adapting the parameters of the UBM via a Bayesian adaptation algorithm [22].
The GMM supervector is obtained by concatenating the mean vectors of each mixture component,
summarizing the overall pattern of the frame-level feature distribution. However, since the GMM
supervector is known to have high dimensionality and contains variability caused by many different
factors, various studies have focused on reducing the dimensionality and compensating the irrelevant
variability inherent in the GMM supervector.

Among them, the i-vector framework is now widely used to represent the distinctive
characteristics of the utterance in the field of speaker and language recognition [23]. Similar to the
eigenvoice decomposition [3] or joint factor analysis (JFA) [4] techniques, i-vector extraction can be
understood as a factorization process decomposing the GMM supervector as

m(X) = u + Tw(X), (1)

where m(X), u, T, and w(X) indicate the ideal GMM supervector dependent on a given speech
utterance X, UBM supervector, total variability matrix, and i-vector, respectively. Hence, the i-vector
framework aims to find the optimal w(X) and T to fit the UBM parameters to a given speech utterance.
Given an utterance X, the 0th and the 1st-order Baum–Welch statistics are obtained as

nc(X) =
L

∑
l=1

γl(c), (2)

f̃c(X) =
L

∑
l=1

γl(c)(xl − uc), (3)

where for each frame l within X with L frames, γl(c) denotes the posterior probability that the lth frame
feature xl is aligned to the cth Gaussian component of the UBM, uc is the mean vector of the cth mixture
component of the UBM, and nc(X) and f̃c(X) are the 0th and the centralized 1st-order Baum–Welch
statistics, respectively.

The extraction of the i-vector can be thought of as an adaptation process where the mean of
each Gaussian component in the UBM is altered to maximize the likelihood with respect to a given
utterance. Let Σc denote the covariance matrix of the cth mixture component of the UBM and F be the
dimensionality of the frame-level features. Then, the log-likelihood given an utterance X conditioned
on w(X) can be computed as
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logP(X|T, w(X)) =
C

∑
c=1

(nc(X) log
1

(2π)F/2|Σc|1/2

− 1
2

L

∑
l=1

γl(c)(xl −mc(X))tΣ−1
c (xl −mc(X))),

(4)

where mc(X) is the mean of the cth mixture component of m(X) and the superscript t indicates matrix
transpose. From lemma 1 in [3], the log-likelihood given X obtained by marginalizing (4) over w(X)
turns out to be

logP(X|T) =logEw[P(X|T, w)]

=log
∫

P(X|T, w)N (w|0, I)dw

=G(X)− 1
2

log|ξ(X)|

+
1
2

C

∑
c=1

(m̃c(X)− uc)
tΣc
−1qc(X),

(5)

where G(X) represents the log-likelihood of the UBM, ξ−1(X) is the covariance matrix of the posterior
distribution of the i-vector given utterance X, m̃c(X) is the cth component of the GMM supervector
conditioned on E[w(X)], and qc(X) is the averaged frame of X centralized by the cth Gaussian
component which is defined by:

qc(X) =
L

∑
l=1

(xl − uc). (6)

Analogous to the eigenvoice method, the total variability matrix T is trained to maximize the
log-likelihood (5) using the expectation-maximization (EM) algorithm [3], assuming that each utterance
is spoken by a separate speaker.

Once the total variability has been obtained, the posterior covariance and mean of the i-vector can
be computed as follows [3]:

E[w(X)wt(X)] = (I +
C

∑
c=1

nc(X)Tt
cΣ−1

c Tc)
−1, (7)

E[w(X)] = E[w(X)wt(X)]
C

∑
c=1

Tt
cΣ−1

c f̃c(X), (8)

where Tc is a partition matrix of T corresponding to the cth GMM component. Usually, the posterior
mean E[w(X)] is used as the utterance-level feature of X. Interested readers are encouraged to refer
to [5,6] for further details of the i-vector framework.

3. Variational Autoencoder

The VAE is an autoencoder variant aiming to reconstruct the input at the output layer [19].
The main difference between the VAE and an ordinary autoencoder is that the former assumes that the
observed data x is generated from a random latent variable z which has a specific prior distribution,
such as the standard Gaussian. The VAE is composed of two directed networks: encoder and decoder
networks. The encoder network outputs the mean and variance of the posterior distribution p(z|x)
given an observation x. Using the latent variable distribution generated by the encoder network,
the decoder network tries to reconstruct the input pattern of the VAE at the output layer.

Given a training sample x, the VAE aims to maximize the log-likelihood, which can be written
as follows [19]:

logpθ(x) = DKL(qφ(z|x)‖pθ(z|x)) +L (θ, φ; x). (9)
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In (9), φ denotes the variational parameters and θ represents the generative parameters [19].
The first term on the right-hand side (RHS) of (9) means the Kullback–Leibler divergence
(KL divergence) between the approximated posterior qφ(z|x) and the true posterior pθ(z|x) of the
latent variable, which measures the dissimilarity between these two distributions. Since the KL
divergence has a non-negative value, the second term on the RHS of (9) becomes the variational lower
bound on the log-likelihood, which can be written as:

logpθ(x) ≥L (θ, φ; x)

=− DKL(qφ(z|x)‖pθ(z))

+Eqφ(z|x)[log pθ(x|z)],
(10)

where qφ(z|x) and pθ(x|z) are respectively specified by the encoder and decoder networks of the VAE.
The encoder and the decoder networks of the VAE can be trained jointly by maximizing the

variational lower bound, which is equivalent to minimizing the following objective function [24]:

EVAE(x) =DKL(qφ(z|x)‖pθ(z))

−Eqφ(z|x)[log pθ(x|z)]. (11)

The first term on the RHS of (11) is the KL divergence between the prior distribution and the
posterior distribution of the latent variable z, which regularizes the encoder parameters [19]. On the
other hand, the second term can be interpreted as the reconstruction error between the input and
output of the VAE. Thus, the VAE is trained not only to minimize the reconstruction error but also to
maximize the similarity between the prior and posterior distributions of the latent variable.

4. Variational Inference Model for Non-Linear Total Variability Embedding

In the proposed algorithm, it is assumed that the ideal GMM supervector corresponding to
a speech utterance X is obtained through a non-linear mapping of a hidden variable onto the total
variability space. Based on this assumption, the ideal GMM supervector is generated from a latent
variable z as follows:

m(X) = u + g(z(X)), (12)

where g is a non-linear function which transforms the hidden variable z(X) to the adaptation factor
representing the variability of the ideal GMM supervector m(X). In order to find the optimal function
g and the hidden variable z(X), we apply a VAE model consisting of an encoder and a decoder network
as shown in Figure 1. In the proposed VAE architecture, the encoder network outputs an estimate of
the hidden variable and the decoder network serves as the non-linear mapping function g.

Analogous to the i-vector adaptation framework, the main task of the proposed VAE architecture
is to generate a GMM so as to maximize the likelihood given the Baum–Welch statistics of the utterance.
The encoder of the proposed system serves as a non-linear variability factor extraction model. Similar
to the i-vector extractor, the encoder network takes the 0th and 1st-order Baum–Welch statistics of
a given utterance X as input and generates the parametric distribution of the latent variable. The latent
variable z is assumed to be a random variable following a Gaussian distribution, and each component
of z is assumed to be uncorrelated with each other. In order to infer the distribution of the latent
variable z(X), it is sufficient for the encoder to generate the mean and the variance of z(X). The decoder
of the proposed system acts as the GMM adaptation model, generating the GMM supervector from the
given latent variable according to the maximum likelihood criterion.
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Figure 1. Proposed variational autoencoder (VAE) for non-linear feature extraction. Blue shows the
loss terms. Red shows the sampling operations. GMM: Gaussian mixture model; UBM: universal
background model.

4.1. Maximum Likelihood Training

Once the GMM supervector m̂(X) is generated at the output layer of the decoder,
the log-likelihood conditioned on the latent variable z(X) can be defined in a similar manner with (4) as:

logP(X|φ, θ, z(X)) =
C

∑
c=1

(nc(X) log
1

(2π)F/2|Σc|1/2

− 1
2

L

∑
l=1

γl(c)(xl − m̂c(X))tΣ−1
c (xl − m̂c(X))), (13)

where m̂c(X) denotes the cth component of m̂(X). Using Jensen’s inequality, the lower bound of the
marginal log-likelihood can be obtained as follows:

logP(X|φ, θ) =logEz[P(X|φ, θ, z)]

≥Ez[logP(X|φ, θ, z)]. (14)

The marginal log-likelihood can be indirectly maximized by maximizing the expectation of the
conditioned log-likelihood (13) with respect to the latent variable z. The reparameterization trick
in [19] can be utilized to compute the Monte Carlo estimate of the log-likelihood lower bound as
given by

Ez[logP(X|φ, θ, z)]' 1
S

S

∑
s=1

logP(X|φ, θ, zs(X)), (15)

where S is the number of samples used for estimation and zs(X) is the reparameterized latent variable
defined as follows:

zs(X) = µ(X) + σ(X)εs. (16)

In (16), εs ∼ N (0, I) is an auxiliary noise variable, and µ(X) and σ(X) are respectively the mean
and standard deviation of the latent variable z(X) generated from the encoder network. By replacing
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the reconstruction error term of the VAE objective function (11) with the estimated log-likelihood lower
bound, the objective function of the proposed system can be written as:

EProp(X) =DKL(qφ(z|X)‖pθ(z))

− 1
S

S

∑
s=1

logP(X|φ, θ, zs(X)).
(17)

From (17), it is seen that the proposed VAE is trained not only to maximize the similarity between
the prior and posterior distributions of the latent variable, but also to maximize the log-likelihood of
the generated GMM by minimizing EProp via error back-propagation. Moreover, we assume that the
prior distribution for z is pθ(z) = N (z|0, I) analogous to the prior for w in the i-vector framework.

4.2. Non-Linear Feature Extraction and Speaker Verification

The encoder network of the proposed VAE generates the latent variable mean µ(X) and
the log-variance log σ2(X). Once the VAE has been trained, the encoder network is used as
a feature extraction model, as shown in Figure 2. Similar to the conventional i-vector extractor,
the encoder network takes the Baum–Welch statistics of the input speech utterance and generates
a random variable with a Gaussian distribution, which contains essential information for modeling
an utterance-dependent GMM. The mean of the latent variable µ(X) is exploited as a compact
representation of the variability within the GMM distribution dependent on X. Moreover, since the
variance of the latent variable σ2(X) represents the variability of the distribution, it is used as a proxy
for the uncertainty caused by the short duration of the given speech samples. The features extracted by
the proposed VAE can be transformed via feature compensation techniques (e.g., linear discriminant
analysis (LDA) [1]) in order to improve the discriminability of the features.

Encoder

𝐗𝒕𝒆𝒔𝒕

Baum-Welch statistics 

computation
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Encoder
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𝜇(𝐗1 𝑝 ) log 𝜎2(𝐗1 𝑝 )

 𝐟(𝐗1 𝑝 )𝑛(𝐗1 𝑝 )

LDA
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PLDA

PLDA decision score
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 𝐟(𝐗1 𝑝 )𝑛(𝐗1 𝑝 )

LDA

Average

Speaker

modelling

Figure 2. Flow chart of the speaker verification process using the proposed feature extraction scheme.

Given a set of N(p) enrollment speech samples spoken by an arbitrary speaker p

X(p) = {X1(p), X2(p), · · · , XN(p)(p)}, (18)

the speaker model for p is obtained by averaging the features extracted from each speech sample.
To determine whether a test utterance Xtest is spoken by the speaker p, analogous to the i-vector
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framework, probabilistic linear discriminant analysis (PLDA) is used to compute the similarity between
the feature extracted from Xtest and the speaker model of p.

Unlike the conventional i-vector framework, which only uses the mean of the latent variable
as feature, the proposed scheme utilizes both the mean and variance of the latent variable to take
the uncertainty into account. Providing the speaker decision model (e.g., PLDA) with information
about the uncertainty within the input speech, which is represented by the variance of the latent
variable, may improve the speaker recognition performance. This is verified in the experiments shown
in Section 5.

5. Experiments

5.1. Databases

In order to evaluate the performance of the proposed technique in the random digit speaker
verification task, a set of experiments was conducted using the TIDIGITS dataset. The TIDIGITS
dataset contains 25,096 clean utterances spoken by 111 male and 114 female adults, and by 50 boys
and 51 girls [25]. For each of the 326 speakers in the TIDIGITS dataset, a set of isolated digits and
2–7 digit sequences were spoken. The TIDIGITS dataset was split into two subsets, each containing
12,548 utterances from all 326 speakers, and they were separately used as the enrollment and trial data.
In the TIDIGITS experiments, the TIMIT dataset [26] was used for training the UBM, total variability
matrix, and the embedding networks.

5.2. Experimental Setup

For the experimented systems, the acoustic feature involves 19-dimensional MFCCs and the
log-energy extracted every 10 ms, using a 20 ms Hamming window via the SPro library [27].
Together with the delta (first derivative) and delta-delta (second derivative) of the 19-dimensional
MFCCs and the log-energy, the frame-level acoustic feature used in our experiments was given by
a 60-dimensional vector.

We trained the UBM containing 32 mixture components in a gender- and age-independent manner,
using all the speech utterances in the TIMIT dataset. Training the UBM, total variability matrix, and the
i-vector extraction was done by using the MSR Identity Toolbox via MATLAB [28]. The encoders and
decoders of the VAEs were configured to have a single hidden layer with 4096 rectified linear unit
(ReLU) nodes, and the dimensionality of the latent variables was set to be 200. The implementation of
the VAEs was done using Tensorflow [29] and trained using the AdaGrad optimization technique [30].
Additionally, dropout [31] with a fraction of 0.8 and L2 regularization with a weight of 0.01 were
applied for training all the VAEs, and the Baum–Welch statistics extracted from the entire TIMIT dataset
were used as training data. A total of 100 samples were used for the reparameterization shown in (15).

For all the extracted utterance-level features, linear discriminant analysis (LDA) [1] was applied
for feature compensation, and the dimensionality was finally reduced to 200. PLDA [32] was used for
speaker verification, and the speaker subspace dimension was set to be 200.

Four performance measures were evaluated in our experiments: classification error (Class. err.),
EER, minimum NIST SRE 2008 DCF (DCF08), and minimum NIST SRE 2010 DCF (DCF10).
The classification error was measured while performing a speaker identification task where each trial
utterance was compared with all the enrolled speakers via PLDA, and the enrolled speaker with the
highest score was chosen as the identified speaker. Then, the ratio of the number of wrongly classified
trial samples to the total number of trial samples represented the classification error. The EER and
minimum DCFs are widely used measures for speaker verification, where the EER indicates the error
when the false positive rate (FPR) and the false negative rate (FNR) are the same [1], and the minimum
DCFs represent the decision cost obtained with different weights to FPR and FNR. The parameters for
measuring DCF08 and DCF10 were chosen according to the weights given by the NIST SRE 2008 [33]
and the NIST SRE 2010 [34] protocols, respectively.
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5.3. Effect of the Duration on the Latent Variable

In order to investigate the ability of the latent variable to capture the uncertainty caused
by short duration, the differential entropies (the differential entropy—or the continuous random
variable entropy—measures the average uncertainty of a random variable) of the latent variables
were computed. Since the latent variable z(X) in the proposed VAE has a Gaussian distribution,
the differential entropy can be formulated as follows:

h(z(X)) =
1
2

log(2πe)K +
1
2

log
K

∏
k=1

σ2
k (X). (19)

In (19), K represents the dimensionality of the latent variable and σ2
k (X) is the kth element of σ2(X).

From each speech sample in the entire TIDIGITS dataset, 200-dimensional latent variable variance
was generated using the encoder network of the proposed framework and used for computing the
differential entropy.

In Figure 3, the differential entropies averaged in six different duration groups (i.e., less than 1 s,
1–2 s, 2–3 s, 3–4 s, 4–5 s, and more than 5 s) are shown. As can be seen in the result, the differential
entropy computed using the variance of the latent variable gradually decreased as the duration
increased. Despite a rather small time difference between the first duration group (i.e., less than 1 s)
and the sixth duration group (i.e., more than 5 s), the relative decrement in entropy was 29.91%.
This proves that the latent variable variance extracted from the proposed system was capable of
indicating the uncertainty caused by the short duration.

<1 1 2 3 4 5<
Duration (sec.)

0

50

100

150

200

250

D
if

fe
re

nt
ia

l e
nt

ro
py

Figure 3. Average differential entropy computed using the latent variable variance extracted from the
proposed VAE on different durations.

5.4. Experiments with VAEs

To verify the performance of the proposed VAE trained with the log-likelihood-based
reconstruction error function, we conducted a series of speaker recognition experiments on the
TIDIGITS dataset. For performance comparison, we also applied various feature extraction approaches.
The approaches compared with each other in these experiments were as follows:

• I-vector: standard 200-dimensional i-vector;
• Autoencode: VAE trained to minimize the cross-entropy between the input Baum–Welch statistics

and the reconstructed output Baum–Welch statistics;
• Classify: VAE trained to minimize the cross-entropy between the softmax output and the one-hot

speaker label;
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• Proposed: the proposed VAE trained to minimize the negative log-likelihood-based reconstruction error.

Autoencode is a standard VAE for reconstructing the input at the output, and was trained to
minimize EVAE (11) given the Baum–Welch statistics as input. On the other hand, Classify is a VAE for
estimating the speaker label, which was trained to minimize the following loss function:

EClass(x) =DKL(qφ(z|x)‖pθ(z))−EY[log Ŷ], (20)

where Y denotes the one-hot speaker label of utterance X and Ŷ is the softmax output of the decoder
network. The network structure for Classify is depicted in Figure 4. In this experiment, only the mean
vectors of the latent variables were used for Autoencode, Classify, and Proposed.

The results shown in Table 1 tell us that the VAEs trained with the conventional criteria
(i.e., Autoencode and Classify) performed poorly compared to the standard i-vector. On the other hand,
the proposed VAE with likelihood-based reconstruction error was shown to provide better performance
for speaker recognition than the other methods. The feature extracted using the VAE trained with
the proposed criterion provided comparable verification performance (i.e., EER, DCF08, DCF10)
to the conventional i-vector feature. Moreover, in terms of classification, the proposed framework
outperformed the i-vector framework with a relative improvement of 5.8% in classification error.
Figure 5 shows the detection error tradeoff (DET) curves obtained from the four tested approaches.

Encoder

Decoder

𝐗

Baum-Welch statistics 

computationUBM

Sample 𝐳 from 

𝒩(𝜇 𝐗 , 𝜎2 𝐗 )

𝜇(𝐗) log 𝜎2(𝐗)

 𝐟(𝐗)𝑛(𝐗)

−𝔼𝐘 log  𝐘

𝐷𝐾𝐿 𝑞𝜙 𝐳 𝐗 ||𝑝𝜃 𝐳

Regularization term

Cross-entropy
Estimated speaker prob.  𝐘

One-hot 

speaker label 𝐘

Figure 4. Network structure of the baseline VAE Classify.
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Figure 5. DET curves of the speaker verification experiments using the i-vector and the mean latent
variables extracted from VAEs trained for different tasks.

Table 1. Comparison of results between using the i-vector and the mean latent variables extracted from
VAEs trained for different tasks. Class. Err.: classification error; DCF08: minimum NIST SRE 2008 DCF;
DCF10: minimum NIST SRE 2010 DCF; EER: equal error rate.

Class. Err. (%) EER (%) DCF08 DCF10

i-vector 12.62 3.36 2.00 0.07
Autoencode 24.59 6.06 2.69 0.09

Classify 40.01 8.13 4.21 0.10
Proposed 11.89 3.61 2.09 0.07

5.5. Feature-Level Fusion of I-Vector and Latent Variable

In this subsection, we tested the features obtained by augmenting the conventional i-vector with
the mean and variance of the latent variable extracted from the proposed VAE. For performance
comparison, we applied the following six different feature sets:

• I-vector(400): standard 400-dimensional i-vector;
• I-vector(600): standard 600-dimensional i-vector;
• LM+LV: concatenation of the 200-dimensional latent variable mean and the log-variance, resulting

in a 400-dimensional vector;
• I-vector(200)+LM: concatenation of the 200-dimensional i-vector and the 200-dimensional latent

variable mean, resulting in a 400-dimensional vector;
• I-vector(200)+LV: concatenation of the 200-dimensional i-vector and the 200-dimensional latent

variable log-variance, resulting in a 400-dimensional vector;
• I-vector(200)+LM+LV: concatenation of the 200-dimensional i-vector and the 200-dimensional

latent variable mean and log-variance, resulting in a 600-dimensional vector.

As seen from Table 2 and Figure 6, the augmentation of the latent variable greatly improved the
performance in all the tested cases.
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Figure 6. DET curves of the speaker verification experiments using a 400-dimensional i-vector and
combinations of two features out of the 200-dimensional i-vector, latent variable mean (LM), and the
log-variance of the latent variable (LV).

Table 2. Comparison of results between various feature-level fusions of the conventional i-vector and
mean and log-variance of the latent variable extracted from the proposed VAE.

ine Class. Err. (%) EER (%) DCF08 DCF10

i-vector(400) 7.67 2.68 1.54 0.06
LM + LV 6.94 2.03 1.23 0.05

i-vector(200) + LM 5.36 1.78 0.97 0.05
i-vector(200) + LV 4.99 1.65 0.94 0.04

i-vector(600) 5.07 2.17 1.29 0.05
i-vector(200) + LM + LV 2.75 0.97 0.61 0.03

By using only the mean and log-variance of the latent variable together (i.e., LM+LV), a relative
improvement of 24.25% was achieved in terms of EER, compared to the conventional i-vector
with the same dimension (i.e., i-vector(400)). The concatenation of the standard i-vector and the
latent variable mean (i.e., i-vector(200)+LM) also improved the performance. Especially in terms
of EER, i-vector(200)+LM achieved a relative improvement of 33.58% compared to i-vector(400).
This improvement may be attributed to the non-linear feature extraction process. Since the latent
variable mean is trained to encode the various variability within the distributive pattern of the given
utterance via a non-linear process, it may contain information that is not obtainable from the linearly
extracted i-vector. Thus, by supplementing the information ignored by the i-vector extraction process,
a better representation of the speech can be obtained.

The best verification and identification performance out of all the 400-dimensional features
(i.e., i-vector(400), LM+LV, i-vector(200)+LM, and i-vector(200)+LV) was obtained when concatenating the
standard i-vector and the latent variable log-variance (i.e., i-vector(200)+LV). I-vector(200)+LV achieved
a relative improvement of 38.43% in EER and 34.94% in classification error compared to i-vector(400).
This may have been due to the capability of the latent variable variance of capturing the amount of
uncertainty, which allows the decision score to take advantage of the duration dependent reliability.

Concatenating the standard i-vector with both the mean and log-variance of the latent
variable (i.e., i-vector(200)+LM+LV) further improved the speaker recognition performance. Using the
i-vector(200)+LM+LV achieved a relative improvement of 55.30% in terms of EER, compared to the
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standard i-vector with the same dimension (i.e., i-vector(600)). Figure 7 shows the DET curves obtained
when i-vector(200)+LM+LV and i-vector(600) were applied.
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Figure 7. DET curves of the speaker verification experiments using 600-dimensional i-vector and
combined feature of 200-dimensional i-vector, latent variable mean, and the log-variance of the
latent variable.

5.6. Score-Level Fusion of I-Vector and Latent Variable

In this subsection, we present the experimental results obtained from a speaker recognition task
where the decision was made by fusing the PLDA scores of i-vector features and VAE-based features.
Given a set of independently computed PLDA scores Sr, r = 1, · · · , R, the fused score S f used was
computed by simply adding them as

S f used =
R

∑
r=1

Sr. (21)

We compared the following scoring schemes:

• I-vector: PLDA score obtained by using the standard 200-dimensional i-vector;
• LM: PLDA score obtained by using the 200-dimensional latent variable mean;
• LV: PLDA score obtained by using the 200-dimensional latent variable log-variance;
• I-vector+LM: fusion of the PLDA scores obtained by using the 200-dimensional i-vector and the

200-dimensional latent variable mean;
• I-vector+LV: fusion of the PLDA scores obtained by using the 200-dimensional i-vector and the

200-dimensional latent variable log-variance;
• LM+LV: fusion of the PLDA scores obtained by using the latent variable mean and log-variance;
• I-vector+LM+LV: fusion of the PLDA scores obtained by using the standard 200-dimensional

i-vector and the 200-dimensional latent variable mean and log-variance.

Table 3 and Figure 8 give the results obtained through these scoring schemes. As shown in
the results, using the latent variable mean and log-variance vectors as standalone features yielded
comparable performance to the conventional i-vector method (i.e., LM and LV). Additionally, fusing
the latent-variable-based scores with the score provided by the standard i-vector feature further
improved the performance (i.e., i-vector+LM and i-vector+LV). The best score-level fusion performance
was obtained by fusing all the scores obtained by the standard i-vector and the latent variable mean
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and log-variance vector (i.e., i-vector+LM+LV), achieving a relative improvement of 25.89% in terms of
EER compared to i-vector. However, the performance improvement produced by the score-level fusion
methods was relatively smaller than the feature-level fusion methods presented in Table 2. This may
have been because the score-level fusion methods compute the scores of the i-vector and the latent
variable-based features independently, and as a result the final score cannot be considered an optimal
way to utilize their joint information.
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Figure 8. DET curves of the speaker verification experiments using various score-level fusions of
the conventional i-vector and the mean and log-variance of the latent variable extracted from the
proposed VAE.

Table 3. Comparison of results between various score-level fusions of the conventional i-vector and the
mean and log-variance of the latent variable extracted from the proposed VAE.

Class. Err. (%) EER (%) DCF08 DCF10

i-vector 12.62 3.36 2.00 0.07
LM 11.89 3.61 2.09 0.07
LV 17.78 4.65 2.57 0.08

i-vector+LM 7.03 2.63 1.63 0.06
ine i-vector+LV 7.39 2.76 1.69 0.06

LM+LV 10.26 3.50 2.02 0.07
i-vector+LM+LV 5.75 2.49 1.57 0.06

6. Conclusions

In this paper, a novel unsupervised deep-learning model-based utterance-level feature extraction
for speaker recognition was proposed. In order to capture the variability that has not been fully
represented by the linear projection in the traditional i-vector framework, we designed a VAE for GMM
adaptation and exploited the latent variable as the non-linear representation of the variability in the
given speech. Analogous to the standard VAE, the proposed architecture is composed of an encoder
and a decoder network, where the former estimates the distribution of the latent variable given the
Baum–Welch statistics of the speech and the latter generates the ideal GMM supervector from the
latent variable. Moreover, to take the uncertainty caused by short duration speech utterances into
account while extracting the feature, the VAE is trained to generate a GMM supervector in such a way
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as to maximize the likelihood. The training stage of the proposed VAE uses a likelihood-based error
function instead of the conventional reconstruction errors (e.g., cross-entropy).

To investigate the characteristics of the features extracted from the proposed system in a practical
scenario, we conducted a set of random-digit sequence experiments using the TIDIGITS dataset.
We observed that the variance of the latent variable generated from the proposed network apparently
demonstrated the level of uncertainty which gradually decreased as the duration of the speech
increased. Additionally, using the mean and variance of the latent variable as features provided
comparable performance to the conventional i-vector and further improved the performance when
used in conjunction with the i-vector. The best performance was achieved by feature-level fusion of
the i-vector and the mean and variance of the latent variable.

In our future study, we will further develop training techniques for the VAE not only to maximize
the likelihood but also to amplify the speaker discriminability of the generated latent variable.
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