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Featured Application: The paper presents a proposal of a measurement system for determination of
optical parameters of the phantoms imitating animal tissues. The system can be used in veterinary
medicine to ensure compliance of phantoms properties with the properties of live tissues.

Abstract: This paper describes the construction of a system for the quasi-spectral determination of
absorption and scattering parameters of animal tissue phantoms. Several tissue phantoms, including
one reference and two modified for examination, were prepared from polydimethylsiloxane (PDMS).
The phantoms were measured using a system based on an integrating sphere and the light sources of
wavelengths commonly used for the treatment of various diseases in veterinary medicine, including
635 nm (red), 532 nm (green) and 447 nm (blue). The obtained results are consistent with data
provided in reference sources and can also be approximated for the entire spectral range of visible
radiation (380-780 nm). The developed system is suitable for further measurements of phantoms,
which can be adapted to imitate different tissues.

Keywords: integrating spheres; optical parameters; tissue phantoms; phantom scattering parameters;
veterinary medicine

1. Introduction

Animal treatment with the use of modern technologies utilizing light has become increasingly
popular in veterinary medicine. One of the most significant groups of therapies is laser treatment,
especially low-level laser therapy (LLLT), which includes cases of treatment of open, sterile and infected
wounds, as well as acute and chronic inflammatory lesions [1,2]. To aid in the treatment of various
afflictions, laser radiation from a wide range of the visible spectrum is used.

A radiation wavelength of 635 nm is used to accelerate the healing of soft tissues in acute and
chronic inflammatory conditions and during postoperative treatment [2]. Lasers with an operational
wavelength of 532 nm are useful in eliminating superficial vascular skin changes, e.g., bruises,
ecchymosis and decubitus [3], as well as the treatment of diverse pathomorphological prostatitis
inflammation in the male species belonging to Canis lupus f. domestica [4—6]. Lasers with a wavelength
of 447 nm, however, are used for intravascular laser biostimulation (ILB) during the treatment of
bacterial and viral diseases. ILB was successfully used to fight hepatitis C viruses and to treat diseases
caused by spirochetes, e.g., Lyme disease. To date, the assessment of the effectiveness of combining
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the 447 nm wavelength with photosensitization indicates even larger prospective applications of this
wavelength [7]. Research regarding the visual inspection of tissues, e.g., the operative field, is also
currently being conducted [8].

Because veterinary medicine requires multiple ranges of the visible spectrum wavelengths to
treat a variety of diseases, this paper focuses on the utilization of three wavelengths—each from a
different range.

While treating tissues, preliminary examinations are performed on optical phantoms—materials
mimicking the selected optical parameters of tissue [9,10]. The utilization of optical phantoms, in
either medicine or veterinary medicine, eliminates the necessity of upholding bioethical principles
and laboratories, in which the tests are performed, do not have to comply with strict norms [11].
Optical phantoms are also very durable. Unlike real tissues, they are resistant to degradation and
therefore preserve their optical parameters—which is beneficial during the long-term examination of
the relationship between light and matter [12,13].

Understanding the interaction between light and matter is crucial when developing light-based
technologies, especially for applications in medicine. Thus, research groups are employing various
optical methods for tissue and tissue phantom characterization. The dynamic laser speckle technique
was used to evaluate the viability of tissues by performing ex vivo measurements on healthy and
burned skin tissue [14]. The optical properties of a skin microcirculation phantom were investigated
by means of Laser Doppler flowmetry utilizing self-mixing interferometry, enabling the generation
of flow maps [15]. Diffuse optical tomography combined with the utilization of the optomechanical
technique allowed for the accurate detection of pathological changes mimicked by a phantom [16].

Important optical parameters affecting the propagation of optical radiation in a medium are the
refractive index n and the absorption coefficient y,. In case of high-scattering media, like biological
matter (tissues) or their artificial equivalent (optical phantoms), very important parameters are also
the scattering coefficient pis and the scattering anisotropy g, or the reduced scattering coefficient
ps” = ps (1 = g) [17]. Knowing the absorption and scattering parameters allows us to analyze, model
and understand phenomena occurring in the tissue during its interaction with light radiation, which is
essential for medical diagnosis and the evaluation of a laser’s influence on the tissue.

The determination of the absorption and scattering coefficients can be performed with a
measurement setup using frequency domain near-infrared spectroscopy [18], a frequency domain
imaging system [19] or a broadband spectroscopy setup [20]. Goniometric methods [21] or the
utilization of integrating spheres [22-24] are also commonly used. Goniometric techniques allow for
the establishment of the directional distribution of scattered radiation. For materials of a substantial
thickness, however, the directional characteristic exhibits a near-Lambertian distribution due to the
blurring of directional properties. Moreover, obtaining the total scattered flux requires numerical
integration over the entire hemisphere, i.e., employing the measured directional distribution of
scattered radiation.

Measurements using integrating spheres can be performed in configuration with one or two
spheres. When using two spheres, advanced algorithms have to be used to eliminate the influence of the
spheres on one another (especially during measurements with wide sample ports) [9,25]. This problem
can be solved by using only one sphere. In this case, the sample is examined for two modes of
operation—transmissive and reflective. The absorption coefficient and reduced scattering coefficient
can be calculated based on the Kubelka—Munk model [26].

Scattering parameters are mainly dependent on the wavelength, therefore selecting the right
wavelength for a measurement is crucial. The spectrometer measurements require a broadband light
source, which must be properly collimated—which is even challenging in some commercial solutions.
Furthermore, the power of such a beam is highly limited, which, when combined with popular
miniature spectrometers (with low sensing ability), causes low spectral power density. Therefore,
detection setup noise influences the results.
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In this paper, a measurement system for the quasi-spectral determination of absorption and
scattering parameters of tissue phantoms for veterinary applications is presented. This solution
is characterized by a relatively simple configuration and data analysis. Moreover, an acceptable
alternative for spectral measurements is provided, allowing for the determination of the absorption
and scattering parameters for a set of selected wavelengths which are used in veterinary medicine.

2. Measurement Setup and Method

The measurement system was constructed using a 4P-GPS-053-SL (Labsphere Inc., North Sutton,
NH, USA) integrating sphere. The internal diameter of the sphere is 5.3 in (13.46 cm), while the
sample port diameter is 1 in (2.54 cm) [27]. The sphere utilizes a Spectralon® coating (Labsphere Inc.,
North Sutton, NH, USA), which provides a highly reflective surface—a diffuse reflection coefficient
of above 99% for wavelengths from 400 to 1500 nm. Laser modules (Roithner Lasertechnik, Vienna,
Austria) of red, green and blue radiation were used as the light sources during this investigation, i.e.,
a laser diode module with a wavelength of 635 nm (LDM635-03-08X25, red), a diode pumped solid state
(DPSS) laser module operating on the second-harmonic with a wavelength of 532 nm (CW532-5-831,
green) and a laser pointer with a wavelength of 447 nm (GLP-447-20, blue). These laser sources were
supplied by voltages of 3 V (red), 3.3 V (green) and 4.7 V (blue). To ensure power stability for the
standard GLP-447-20 laser pointer, the 2 X 3 V CR2 battery power supply was replaced by a laboratory
power supply and the voltage was reduced to 4.7 V.

All light sources utilized during the examination are of wavelengths within the visible spectral
range [28]. They are also used for animal treatment in veterinary medicine. To ensure the accuracy
and repeatability of the performed measurements, an L-100 luxmeter with a dedicated measuring
head (Sonopan, Biatystok, Poland) was used as a detector. The measuring head of a luxmeter has a
Lambertian input characteristic. The white calibration plate CS-A21 (Konica Minolta, Tokyo, Japan)
was used as a reflectance standard (reflection coefficient—96.9%) [29]. The measurement system
scheme is presented in Figure 1.

Figure 1. Measurement system. (a) Mode for the measurement of diffuse reflectance Ry, (b) mode for

the measurement of diffuse transmittance T4. 1—Light source, 2—detector, 3—balffle, 4—sample port,
5—examined sample, 6—unused plugged port.

The integrating sphere, the light source and the luxmeter measuring head were precisely mounted
on a 15 x 60 cm optical breadboard (Thorlabs, Newton, NJ, USA) to provide acceptable system stability,
which allows for the acquisition of accurate results. Furthermore, the integrating sphere can be rotated
around its own axis, which helps to quickly change between configurations for transmittance and
reflectance measurement. The stoppers, properly set on either side of an integrating sphere, guarantee
that the sphere rotates exactly 180°.

The determination of scattering and absorption coefficients of a sample are based on relative
measurements (absolute output is not very significant, provided it is in the sensitivity range of the
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detector). However, before performing measurements, each source was turned on for approximately
30 min (45 min in case of the blue source) for stabilization of the thermal condition. Room temperature
was stabilized to 23 °C with an accuracy of 1 °C. Additionally, the aforementioned quick change
between configurations allowed us to take measurements within a short amount of time (1-2 min),
which is a key factor for relative measurements. The system operator aimed to eliminate all possible
external light sources to maintain un-biased results. Therefore, all lighting was obscured during
measurements. Figure 2 presents the physical implementation of the measurement system.

Figure 2. Setup for the measurement of diffuse reflectance Rq. 1—integrating sphere Labsphere,
2—luxmeter measuring head, 3—light source, 4—luxmeter, 5—rotation stoppers, 6—optical breadboard,
7—prepared phantoms, 8—white calibration plate C5-A21 by Konica Minolta.

To verify the correct operation of the system, measurements of diffuse reflectance and transmittance
were executed. Furthermore, the coefficients of reduced scattering and absorption in a few scattering
media (phantoms) were calculated [30]. Examined phantoms were prepared from the silicon-based
organic polymer polydimethylsiloxane (PDMS) (Sylgard® 184, Dow Corning, Midland, MI, USA)
and high clarity glycerol (Sigma-Aldrich, St. Louis, MO, USA). The details were described by
Wrdbel et al. [30]. All the samples were disks with a diameter of 45 mm and a thickness of 2-2.6 mm.
One of the phantoms (A) was a reference sample with known parameters. Various amounts of India ink
were added to the two remaining samples (B, C) to pre-evaluate the possibility of increased absorption
of these samples, as the estimated absorption of the reference sample is small—close to zero. All the
samples are shown in Figure 3.

The measurements were executed using one integrating sphere in two modes of operation:
reflective and transmissive. The principle of operation in both modes is presented in Figure 1. In each
configuration, the detector head is firmly installed on the 90° port, while the north pole port is plugged
to maintain the repeatability of measurements and to eliminate the external influence of light. At the
beginning of each measurement, the CS-A21 white calibration plate was mounted to the sample port
to provide a reference. The luxmeter indicator is proportional to the total power of the source Pyeference-
In the reflectance measurement mode, the white calibration plate is replaced with the investigated
sample. In this configuration the light propagates through the reduced 180° port and the sphere,
illuminating the sample. Part of the radiation, reflected to the sphere (PR sample), is measured by the
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luxmeter. Next, the sphere is rotated 180° around its axis, so that the baffle changes its position for
the measurement of transmittance. In this configuration, the 180° port is plugged. The light directly
illuminates the sample. Similarly, the luxmeter measured part of the radiation that was transmitted
into the sphere (Pt sample)- Figure 4 presents a block diagram of the data analysis algorithm.

Figure 3. Produced phantoms. A—reference @ = 45 mm, d = 2 mm; B—with the addition of India ink
(5 uL) @ = 45 mm, d = 2.6 mm; C—with the addition of India ink (20 uL) @ = 45 mm, d = 2.3 mm.

Figure 4. Block diagram of the data analysis algorithm, where Pr—reference measurement using
the CS-A21 white calibration plate in reflectance mode. PR sample; PT sample—measurements of the

investigated phantom in reflectance and transmittance modes, respectively. Tq—diffuse transmittance.
Ryq—diffuse reflectance. y,—absorption coefficient. ys’—reduced scattering coefficient.

The obtained measurement values were used to calculate the diffuse reflectance R4 and the diffuse
transmittance T4 according to Formulas (1) and (2):

PR sampl

Ry = sample ( 1)
p reference
PT sampl

Ty = sample ( 2)
P reference

where PR sample and PR reference are measurements in reflectance mode obtained from the investigated
phantom and of the CS-A21 white calibration plate, respectively. Similarly, P sample is @ measurement
obtained by the investigation in transmittance mode. The calculated values of diffuse reflectance
R4 and diffuse transmittance T4 were used as a basis for determination of absorption coefficient
and reduced scattering coefficient us" according to the Kubelka-Munk model using the following
formulas [26]:

1 [1-Rq-(a—b)
KKM: (a—l)*SKM (4)

where Sxy—Kubelka-Munk scattering coefficient, Kxy—Kubelka—Munk is the absorption coefficient,
d—sample thickness, and:

1+R%+ T3
1= ——p—(@=1)Skm )

b= VaZ-1. )
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Finally, the absorption coefficient p, and reduced scattering coefficient us” can be calculated as:

3 1

uy = ZSKM - EKKM ()
1,

Ug = Eus (8)

3. Results

The results of the measurements performed with the use of the three light sources, 635, 532 and
447 nm for each phantom, are presented in Table 1.

Table 1. Obtained measurement results of phantoms A, B and C.

Phantom Ry Tq Ha s’

light source—635 nm

A 0.37 0.57 0.07 £ 0.02 1.67 +0.05

B 0.39 0.48 0.18 + 0.03 2.67 £0.1

C 0.23 0.25 0.92 +0.03 1.83+0.1
light source—532 nm

A 0.38 0.57 0.05 + 0.02 1.75 £ 0.05

B 0.40 0.47 0.19 £ 0.03 2.75+0.1

C 0.24 0.22 0.98 +0.03 2.04+0.1
light source—447 nm

A 0.39 0.56 0.06 + 0.02 1.83 +0.05

B 0.42 0.48 0.14 £ 0.03 2.86 +0.1

C 0.25 0.22 0.97 +0.03 211+0.1

The obtained results are consistent with those of [30]. The order of magnitude of the reduced
scattering coefficient is about 1.60-1.65 for a wavelength of 635 nm and 1.70-1.75 for a wavelength of
532 nm (reference sample). Reference data presented in [30] do not include the scattering coefficient for
a wavelength of 447 nm. The values obtained from the measurements, using the system described in
this paper, are 1.67 and 1.75 for wavelengths of 635 and 532 nm, respectively. The absorption coefficient
results are also consistent with reference [30] and within the range of 0.05-0.06.

The measurement results for samples B and C show a significant change in the absorption
coefficient with the addition of small amounts of ink. However, further studies are planned to
accurately determine the quantitative ink concentration.

While maintaining due diligence, the uncertainty of measurement for the reference sample (A) was
estimated to be +0.02 for u, and +0.05 for us’. The estimated uncertainty of measurement for samples
B and C are greater, mainly due to the noticeable non-uniformity of the thickness of these samples.

Based on the gathered data, a few relevant observations can be made. Firstly, the ability to obtain
a high-scattering medium with a minimum absorption was verified. Secondly, it was found that
wavelength does not influence the absorption coefficient. Furthermore, the correlation between the
reduced scattering coefficient and wavelength was demonstrated. Based on the measurements of the
three wavelengths, this parameter could be approximated in the spectral range.

4. Conclusions

A measurement system for the quasi-spectral determination of scattering parameters of veterinary
tissue phantoms was constructed to examine artificial scattering media mimicking tissues—optical
phantoms. The measurements were performed with the use of the three light sources: 635, 532 and
447 nm. These wavelengths were chosen because of their common applications in veterinary medicine.
The data obtained from sample measurements correlate with those gathered from reference sources,
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therefore verifying the effectiveness of the described system. Furthermore, the ability to tailor the
optical parameters of phantoms allows future investigation.
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