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Abstract: In this study, the relation among different meteorological variables and the electrical
power from photovoltaic systems located at different selected places in Mexico were presented.
The data was collected from on-site real-time measurements from Mexico City and the State of Sonora.
The statistical estimation by the gradient descent method demonstrated that solar radiation, outdoor
temperature, wind speed, and daylight hour influenced the electric power generation when it was
compared with the real power of each photovoltaic system. According to our results, 97.63% of
the estimation results matched the real data for Sonora and 99.66% the results matched for Mexico
City, achieving overall errors less than 7% and 2%, respectively. The results showed an acceptable
performance since a satisfactory estimation error was achieved for the estimation of photovoltaic
power with a high determination coefficient R2.

Keywords: photovoltaic systems; meteorological variables; electric power; gradient descent;
sustainable development

1. Introduction

Renewables energies represent a potential alternative in the transition towards a low-carbon
society, where photovoltaic sources play a key role; however, consumers are also investors and a
project is implemented only if economic conditions are verified [1].

Solar technologies are characterized depending on the way they capture, convert, and distribute
sunlight such as photovoltaic (PV) systems and their corresponding requirements for an energy storage
arrangement [2,3]. Consequently, these technologies feed power to the electric grid by using solar
panels as generators [4–6]. In addition, concentrating solar power plants (CSP) use mirrors to focus the
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energy from the sun to drive traditional steam turbines or engines to create electricity; solar heating and
cooling (SHC) systems which collect the thermal energy from the sun use this heat to provide hot water,
space heating, and cooling for residential, commercial, and industrial applications. These technologies
displace the need to use electricity or natural gas [7–9].

A photovoltaic system is composed of several components: the solar panel and the inverter for
grid-connected systems and additionally energy storage for stand-alone systems. The fabrication of the
solar panel involves diverse stages. The first step is to define the type of panel, where the most known
is monocrystalline or polycrystalline and where the solar cells are manufactured using wafers made
of silicon [10]. Nowadays, the PV systems are widely used to generate electricity due its accessible
cost [5,6,11,12]. Some studies aimed at reducing this cost even more, e.g., in Reference [13], a design
optimization model for the residential PV systems in South Korea was proposed, where the objective
function to be minimized consisted of three costs, such as the monthly electric bill, the PV-related
construction costs, and the PV-related maintenance cost.

The solar radiation (photons) is responsible for the photovoltaic effect; nonetheless, some weather
factors have an effect on the amount of energy generated even with the optimum radiation. A cloudy
day generates a shadow on the solar panel by the time it has to capture the photons so that the
incidence of these particles will be less, achieving a minor electric power. It is well-known that clouds
are water steam concentrated in the air; in other words, humidity and temperature work together,
and such a relation is an example of how the meteorological variables impact the generation of electric
power [14,15].

Solar energy, besides wind energy, is currently the most resourceful renewable source
worldwide [16,17]. Its obtainment, unlike many others currently used, does not mean any harm
to the environment, and its resources overcome, by far, everyone else [12,18–20]. Some countries such
as Germany, Italy, Spain, United States of America, and China are ahead on solar energy research;
meanwhile in Mexico, being a country rich in solar radiation, with a great territorial extension,
and having some solar energy studies, solar energy still does not have the necessary research compared
to countries leading solar technology [4–6,11,12,21].

Figure 1 depicts the behavior of the horizontal solar radiation on the world. Similarly, if Mexico is
compared with Europe, it can be seen that the only country with a notorious radiation incidence is
Spain, achieving a maximum value between 4.8 and 5.4 kWh/m2 [22]. Mexico exceeds Spain both in
incidence territory and in radiation intensity, with an average between 5.6 and 6.2 kWh/m2, as can be
seen in Figure 2, exceeding even China, which mostly contemplates values of 4.6 kWh/m2.

Figure 1. The worldwide horizontal solar radiation [23].
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Figure 2. The Mexican solar radiation atlas [24].

Table 1 shows the data compilation from 2010 describing the global-horizontal solar radiation
for some locations in Mexico. The total irradiation provided by solar energy in the year 2018
was summarized in Reference [25]. Both reports agree that the Northwest of Mexico reached the
maximum values, the states of Sonora, Baja California, Coahuila, and Chihuahua being the main
producers/receivers.

Recently, diverse reports have studied the relations between some meteorological variables and
the electric power generated in a photovoltaic system. In Reference [26], an analysis of the climatic
factors and solar data from the Andes site was performed; nonetheless, all the data gathered for the
study was averaged every 10 min and the power measurements were estimated. In [27], the effect of
diverse meteorological variables (outdoor temperature, air pressure, humidity, wind speed, and solar
radiation) on the generated energy are mentioned, although a representative model of the plant was
not obtained and all the data was experimentally generated. In Reference [28], a statistical method was
applied to forecast the energy generated by a solar plant, though a database of 30 plants from different
locations is necessary and although it does not have real power measurements from the site and the
computational load is heavy. In Reference [29], an artificial neural network (ANN) is used to obtain a
model to forecast the photovoltaic energy; however, the solar radiation was the only meteorological
variable analyzed.

Higher Education Institutions (HEI) currently play a major role in the generation of human capital
and the associated impact on societal development; HEIs are ideal locations to focus the resources in
terms of the deployment and experimentation of decarbonization technologies to demonstrate the best
practice for a further replication within wider society [30].



Appl. Sci. 2019, 9, 1649 4 of 20

Careful planning is required to manage the future electricity demand of PV systems due to its
increasing potential demand in Mexico [31,32]. Therefore, it is vital to understand the influence of
meteorological variables on energy consumption in which a better understanding of it can contribute
to a more useful strategy in meeting the energy efficiency goal for the country.

According to the above and considering References [1,13,30], the aim of this work is to present
a statistical analysis based on the gradient descent method that is easy to implement and has a low
computational load to estimate the electric power generation from the meteorological data such as the
solar radiation, outdoor temperature, wind speed, and daylight time collected from PV systems located
in Mexico City and Sonora [33]. This is important because most of the current photovoltaic system
deployments do not monitor these factors or employ them in adaptation and prediction tasks [34–36].

The proposed methodology achieves a satisfactory estimation of the PV power with a high
determination coefficient and a fair error percentage value.

Table 1. The solar radiation on select places in Mexico (data in kWh/m2 per day) [37].

State City Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg

Sonora Hermosillo 4.0 4.6 5.4 6.6 8.3 8.5 6.9 6.6 6.7 6.0 4.7 3.9 6.0
Sonora Guaymas 4.5 5.7 6.5 7.2 7.3 6.8 5.9 5.8 6.3 5.9 5.0 5.6 5.9
Chihuahua Chihuahua 4.1 4.9 6.0 7.4 8.2 8.1 6.8 6.2 5.7 5.2 4.6 3.8 5.9
SLP SLP 4.3 5.3 5.8 6.4 6.3 6.1 6.4 6.0 5.5 4.7 4.2 3.7 5.4
Zacatecas Zacatecas 4.9 5.7 6.6 7.5 7.8 6.2 6.2 5.9 5.4 4.8 4.8 4.1 5.8
Guanajuato Guanajuato 4.4 5.1 6.1 6.3 6.6 6.0 6.0 5.9 5.8 5.2 4.8 4.6 5.6
Aguascalientes Aguascalientes 4.5 5.2 5.9 6.6 7.2 6.3 6.1 5.9 5.7 5.1 4.8 4.0 5.6
Oaxaca Salina Cruz 5.4 6.3 6.6 6.4 6.1 5.0 5.6 5.9 5.2 5.9 5.7 5.2 5.8
Oaxaca Oaxaca 4.9 5.7 5.8 5.5 6.0 5.4 5.9 5.6 5.0 4.9 4.8 4.4 5.3
Jalisco Colotlán 4.6 5.7 6.5 7.5 8.2 6.6 5.8 5.6 5.8 5.3 4.9 4.1 5.9
Jalisco Guadalajara 4.6 5.5 6.3 7.4 7.7 5.9 5.3 5.3 5.2 4.9 4.8 4.0 5.6
Durango Durango 4.4 5.4 6.5 7.0 7.5 6.8 6 5.6 5.7 5.1 4.8 3.9 5.7
Baja California La Paz 4.4 5.5 6.0 6.6 6.5 6.6 6.3 6.2 5.9 5.8 4.9 4.2 5.7
Baja California San Javier 4.2 4.6 5.3 6.2 6.5 7.1 6.4 6.3 6.4 5.1 4.7 3.7 5.5
Baja California Mexicali 4.1 4.4 5.0 5.6 6.6 7.3 7.0 6.1 6.1 5.5 4.5 3.9 5.5
Querétaro Querétaro 5.0 5.7 6.4 6.8 6.9 6.4 6.4 6.4 6.3 5.4 5.0 4.4 5.9
Puebla Puebla 4.9 5.5 6.2 6.4 6.1 5.7 5.8 5.8 5.2 5.0 4.7 4.4 5.5
Hidalgo Pachuca 4.6 5.1 5.6 6.8 6.0 5.7 5.9 5.8 5.3 4.9 4.6 4.2 5.4

2. Methodology

2.1. Statistical Method

The amount of data collected and the correlation among them are quite important to accomplish
an estimation. If the total data is scarce or the correlation between any input and the output is low,
the estimation will not be satisfactory.

The correlation analysis is one of the most used and reported statistical methods on scientist and
medical researches; its visual representation is known as a dispersion graphic. It is used to prove
or reject the existence of a relation between two different variables based on the Pearson correlation
coefficient described by Equation (1).

ρ (a, b) =
E (ab)
σaσb

(1)

where E (ab) is the crossed correlation between a and b and where σ2
a = E

(
a2) and σ2

b = E
(
b2) are the

variations of the variables a and b, respectively [38].
If “a” and “b” are the two considerate variables, then a dispersion graphic shows the location

of each ordered pair in a coordinated system. If most points appear to be close to a straight line,
this correlation is known as linear. If most points appear to be close to a curve, the correlation is known
as nonlinear. On the other hand, if a clear pattern among the ordered pairs is inexistent, then there is
no relation between both variables [39]. In order to represent the curve (curve or line regression) that
best fits the behavior of ordered pairs, Equation (2) is used.
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y = a0 + a1x + a2x2 + a3x3 + · · ·+ amxm (2)

The correlation coefficient or R requires that both a magnitude and a direction be either positive
(from 0 to 1) or negative (from −1 to 0). If R gets close to ±1, the correlation will be stronger.
The correlation does not depend on the direction or the sign: A correlation of 0.57 is equal to a
−0.57 one.

It can be also stated that the greater the absolute value of R, the greater the correlation will be.
The determination coefficient R2 is defined as the percentage of the variation of the dependent variable
values that can be explained as variations of the independent variable. In other words, a determination
coefficient R2 = 0.23 symbolizes that 23% of the dependent variables is attached to the changes of the
independent variable. Therefore, if a correlation factor of R = 0.20 was found between two variables,
the determination coefficient would be R2 = 0.04 so that only 4% of the dependent variable is affected
by the variations of the independent variable [40].

In order to create a statistical representative model of the generated power by solar energy, the
concept of gradient descent optimization (GDO) was considered due its ability to minimize the model
error by the LSR of a linear regression model, which is often used on estimation studies, but it is not as
complex to implement as an intelligent technique [29,41,42].

This optimization method has multiple applications. In Reference [43], this method was used to
optimize the geometry of the strut-and-tie truss to minimize the difference in the share of resisting
actions with respect to the prediction of the multi-action shear model. In Reference [44], a model based
on gradient descent is proposed that integrates several important parameters for ranking channels in
order to select the best communication channel from a radio spectrum for transmission, enhanced by
cognitive radio as an intelligent wireless solution.

The GDO is based on the linear regression method known as the relation among all the input
variables and the output one. Depending on the number of input variables, the regression can be
simple or multiple [45–47]. To organize all the gathered data, every input variable is considered as
a column in a matrix called “X” and the output parameter is considered as a vector “y”, as seen in
Equation (3).

X =


x11 x12 x13 · · · x1k
x21 x22 x23 · · · x2k
x31 x32 x33 · · · x3k

...
...

...
...

xn1 xn2 xn3 · · · xnk

 y =


y1

y2
...

yn

 (3)

The purpose of GDO is to find an estimation of the real output through an equation involving all
the collected data as shown in Equation (4).

hθ (x) = θ0 + θ1x1 + θ2x2 + . . . + θkxk + ε (4)

where hθ (x) is the estimated output, xk is the kth input variable, θk is the characteristic coefficient of
every variable, and ε is the error between the model and the real data [48].

As can be seen from Equation (4), θ0 is not a value of influence for any input; however, it does
locate the resulting estimation graphic on the Y-axis. If θ0 is greater than expected, the plot will have a
wide gap against the real data in the lower values; nonetheless, if θ0 is smaller than necessary, the gap
between the real and estimated model will be large on the upper zone. Therefore, both cases have a
greater error. In order to achieve the minimum error value and instead of a linear regression which
uses the least squares method, the GDO finds the right θ0 by recursive partial derivatives of the cost
function described by Equation (5)

J [θ] =
1

2m

m

∑
i=1

(
hθ

(
x(i)
)
− y(i)

)2
(5)
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where m is the total amount of rows in the matrix, x (i) represents the ith row of “X”, and y (i) is the
value of the ith row of “y”. The gradient descent, denoted by Equation (6), aims to converge to the cost
function minimum through its partial derivative. The quickness of the convergence is given by α.

θk := θk − α
∂

∂θk
J [θ] (6)

Equation (7) shows the substitution of Equation (5) into (6) which has to be repeated itself n-times
until the convergence is done.

θk := θk − α
1
m

m

∑
i=1

(
hθ

(
x(i)
)
− y(i)

)
· x(i)k (7)

2.2. Solar Data

The data gathered from the State of Sonora, specifically the city of Hermosillo, were obtained with
the support of the University of Sonora (UNISON), while the ones from Mexico City were issued by
the Centro de Investigación y de Estudios Avanzados (CINVESTAV) campus Zacatenco, with the solar
radiation (global-horizontal), outside temperature, wind speed, and daylight hour (time) as the input
meteorological variables and the electric power as the output for both PV systems. Considering that
both the solar plants are from different locations and do not have the same arrangement, their respective
output power magnitudes vary among them; Hermosillo site has an electric power maximum around
2500 W, while Mexico City site reaches values around 45 kW.

The matrix “X” and the vector “y” from Equation (3) are shown in Equation (8).

X =
[

Solar radiation Temperature Wind speed Time
]

y = [Electric Power]
(8)

By using the same variables from both locations, the aim is to achieve an acceptable statistical
estimation of the electric power even if those variables are gathered from distant geographic areas.

3. Results and Discussion

3.1. Hermosillo Site

Figure 3 shows the geographical zone where Hermosillo Site (HS) is located. This site covers a
period data of 6 months. Figures 4–7 depict the dispersion graphic and fitted curve for each input
variable against the electric power. In Tables 2 and 3, the monthly and total results of the characteristic
equations for each fitted curve and their determination coefficients are described, respectively.

Equation (7) is applied in order to calculate the values of θk for Hermosillo by using the Matlab R©

software. The optimal values found for θ are mentioned in Table 4 and substituted into Equation (4),
thereby obtaining its mathematical representation given by Equation (9). Figure 8 is obtained by
implementing six months of gathered data into Equation (9). It describes the behavior of the statistical
estimation (red) against the real data (green) obtained by the PV system in Hermosillo. For a better
appreciation of these results, Figure 9 shows a close-up from 24 November to 24 December 2018.
A tracing practically coincident with the rise and fall times for each day as a satisfactory reach of the
maximum and minimum values is observed.

hθ = 0.0044 + 2.2387x1 + 0.1156x2 + 0.0154x3 + 0.0022x4 (9)
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Figure 3. The geographical location of the Hermosillo Site (HS) [49] (29.0843293 N, −110.9583558 W).

Figure 4. The Power vs. Solar radiation of HS.

Figure 5. The Power vs. Temperature of HS.
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Figure 6. The Power vs. Wind speed of HS.

Figure 7. The Power vs. Time of HS.

Table 2. The fitted curve characteristic equation of every input from HS.

Month Input Variables

Solar radiation Temperature
Aug f (x) = 2.245x + 92.59 f (x) = −17.98x2 + 1274x− 20,920
Sep f (x) = 2.308x + 28.45 f (x) = −11.43x2 + 796.7x− 12,210
Oct f (x) = 2.276x + 50.32 f (x) = −8.751x2 + 556.5x− 7217
Nov f (x) = 2.326x− 29.48 f (x) = −6.074x2 + 354.8x− 3505
Dec f (x) = 2.25x− 36.17 f (x) = 0.08391x2 + 45.57x + 219.1
Jan f (x) = 2.398x + 8.88 f (x) = −2.016x2 + 144.8x− 752.7

TOTAL f (x) = 2.296x− 1.747 f (x) = −1.751x2 + 124.2x− 581.9

Wind speed Hour
Aug f (x) = −60.94x2 + 438.2x + 753.3 f (x) = −43,250x2 + 44,070x− 8893
Sep f (x) = −21.89x2 + 111.6x + 1352 f (x) = −42,970x2 + 43,290x− 8593
Oct f (x) = −20.63x2 + 118.4x + 1292 f (x) = −46,940x2 + 46,740x− 9314
Nov f (x) = 4.208x2 + 12.31x + 1348 f (x) = −50,610x2 + 50,160x− 10,180
Dec f (x) = −11.68x2 + 120.2x + 1005 f (x) = −51,600x2 + 51,860x− 10,900
Jan f (x) = −14.18x2 + 206.8x + 886.7 f (x) = −55,500x2 + 56,360x− 11,960

TOTAL f (x) = −14.47x2 + 138.7x + 1096 f (x) = −49,950x2 + 50,110x− 10,360
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Table 3. The determination coefficients (R2) of every input from HS.

Month Solar Radiation Temperature Wind Speed Hour

Aug 0.9917 0.1679 0.0541 0.9825
Sep 0.9981 0.1502 0.0242 0.9968
Oct 0.9523 0.1664 0.0380 0.9850
Nov 0.9708 0.1955 0.0135 0.9962
Dec 0.9851 0.0965 0.0136 0.8865
Jan 0.9609 0.1390 0.0565 0.9760

TOTAL 0.9532 0.1077 0.0140 0.8098

Table 4. The values of θk from HS by gradient descent.

θk HS

θ0 0.0044
θ1 2.2387
θ2 0.1156
θ3 0.0154
θ4 0.0022

Figure 8. The results obtained from HS by gradient descent.

Figure 9. A close-up of the results from HS.
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3.2. Data from Mexico City

The geographical zone of the Mexico City Site (MCS) is presented in Figure 10. The data covers a
period of 6 months. From Figures 11–14 the dispersion graphic and fitted curve for each input variable
against electric power are shown. In Tables 5 and 6, the monthly and total results of the characteristic
equations for each fitted curve and their determination coefficients are described, respectively.

Figure 10. The geographical location of Mexico City Site (MCS) [50] (19.5099425 N, −99.1317477 W).

Figure 11. The Power vs. Solar radiation of MCS.
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Figure 12. The Power vs. Temperature of MCS.

Figure 13. The Power vs. Wind speed of MCS.

Figure 14. The Power vs. Time of MCS.



Appl. Sci. 2019, 9, 1649 12 of 20

Table 5. The fitted curve characteristic equation of every input from MCS.

Month Input Variables

Solar radiation Temperature
Jul f (x) = 53.58x + 135 f (x) = −20.07x2 + 3392x− 44,530

Aug f (x) = 56.62x + 241.2 f (x) = −43.78x2 + 4162x− 51,030
Sep f (x) = 59.48x + 245.7 f (x) = 9.184x2 + 1875x− 25,960
Oct f (x) = 57.58x + 189.8 f (x) = −6.143x2 + 2115x− 18,990
Nov f (x) = 57.64x + 1.454 f (x) = −132x2 + 5978x− 36,790
Dec f (x) = 53.52x− 7.362 f (x) = −104.9x2 + 4312x− 18,320

TOTAL f (x) = 56.75x + 65.85 f (x) = 31.9x2 + 203.1x + 2471

Wind speed Hour
Jul f (x) = −173.8x2 + 531.6x + 20,420 f (x) = −584,100x2 + 632,300x− 137,600

Aug f (x) = −157.7x2 + 325.2x + 21,850 f (x) = −599,500x2 + 649,400x− 141,400
Sep f (x) = −156.4x2 + 459.8x + 19,960 f (x) = −632,500x2 + 686,200x− 153,700
Oct f (x) = −113x2 + 47.06x + 23,490 f (x) = −693,400x2 + 735,600x− 159,300
Nov f (x) = 66.96x2 − 1894x + 28,680 f (x) = −918,400x2 + 908,400x− 181,500
Dec f (x) = 44.08x2 − 706.9x + 22,910 f (x) = −837,800x2 + 843,100x− 175,100

TOTAL f (x) = −130.7x2 + 61.23x + 22,720 f (x) = −617,100x2 + 650,100x + 136,600

Table 6. The determination coefficients (R2) of every input from MCS.

Month Solar Radiation Temperature Wind Speed Hour

Jul 0.9997 0.4952 0.0295 0.6032
Aug 0.9990 0.3261 0.0214 0.5652
Sep 0.9950 0.3684 0.0093 0.5014
Oct 0.9923 0.2148 0.0177 0.5803
Nov 0.9995 0.1674 0.0320 0.8684
Dec 0.9995 0.1440 0.0015 0.8865

TOTAL 0.9989 0.2052 0.0178 0.5725

The determination coefficient values for Mexico City are found applying the same procedure used
in the case of Hermosillo, as shown in Table 6. Analogous to the case from Hermosillo, the coefficients
θ for Mexico City data and its mathematical representation are displayed in Table 7 and Equation (10),
respectively. Figure 15 shows a six months estimation result (red) against the real data behavior (green)
from Mexico City. In order to a better appreciation, Figure 16 shows a close-up of Figure 15 covering
the same period as that in the case of Hermosillo. The estimation result matches with the rise and fall
times of the real power.

hθ = 0.1005 + 55.9815x1 + 2.2910x2 + 0.1290x3 + 0.0533x4 (10)

Table 7. The values of θk from MCS by gradient descent.

θk MCS

θ0 0.1005
θ1 55.9815
θ2 2.2910
θ3 0.1290
θ4 0.0533
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Figure 15. The results obtained from MCS by gradient descent.

Figure 16. A close-up of the results from MCS.

3.3. Error Analysis On-Site

As seen in Section 1 and according to Reference [51], the output power of a PV array greatly
depends, among other parameters, on solar radiation; however, this variable has an intermittent nature
and suffers from rapid fluctuations. In Reference [41,51], the above is considered and some parameters
besides the solar radiation such as clear sky or weather data are added; nonetheless, for these cases,
the solar radiation is either the estimated output or an estimated input, contrary to this paper where
this variable is measured on-site.

Each coefficient θk from Equations (9) and (10) represents the characteristic magnitude of its
respective input variable xk. Its quantity values prove the influence in the mathematical model
approximation, establishing an existing relationship between the meteorological variables involved
and (responsible for solar fluctuations) the power output.
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Comparing Figures 9 and 16, an adequate behavior is observed between both results, achieving a
valid statistical estimation. Regardless of the amount of stored data, similar outcomes were obtained
from both locations.

This statement is mathematically proved through the correlation and error analysis.

3.3.1. Correlation Analysis

According to Section 2.1, the smaller an error between the estimation and real data, the greater
the determination coefficient will be. Figures 17 and 18 show the dispersion graphic of the estimation
against the real electric power for Hermosillo and Mexico City respectively. Moreover, in Table 8,
the monthly and total fitted curve characteristic equation and determination coefficients for both cases
are displayed.

Figure 17. The estimated vs. real photovoltaic power of HS.

Figure 18. The estimated vs. real photovoltaic power of MCS.
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Table 8. The monthly and total fitted curve characteristic equation and determination coefficient values
of estimation for both locations.

Location Month Fitted Curve R2

Aug f (x) = 1.005x + 84.92 0.9916
Sep f (x) = 1.032x + 20.92 0.9981
Oct f (x) = 1.031x + 44.45 0.9877

HS Nov f (x) = 1.022x− 29.74 0.9926
Dec f (x) = 1.05x− 37.57 0.9849
Jan f (x) = 1.009x + 6.707 0.9982

TOTAL f (x) = 1.025x− 4.633 0.9763

Jul f (x) = 1.003x + 91.51 0.9989
Aug f (x) = 1.01x + 184.3 0.9961
Sep f (x) = 0.9843x + 525.7 0.9946

MCS Oct f (x) = 1.003x + 140.6 0.9997
Nov f (x) = 1.007x− 40.05 0.9982
Dec f (x) = 1.004x− 44.28 0.9995

TOTAL f (x) = 1.014x + 19.18 0.9966

Both statistical models estimate favorably the real electric power for each tested day as we can
observe through the values in Table 8. A great closeness can be confirmed between the estimation and
the real data for each location, which shows that the implementation of a gradient descent optimization
achieves a satisfactory result.

3.3.2. Error Analysis

The less the difference between the estimated and the real value, the better the estimation. Two
kinds of errors were applied, where “Pm” was the measured power, “Pe” was the estimated power, “s”
was the sample in consideration, and “N” was the total amount of samples. The first one was called
Mean Absolute Error (MAE) defined by Equation (11) and was used as a standard statistical metric to
measure the model performance in meteorology, air quality, and climate research studies [42,51,52].
The second one was the percentage of the MAE known as Mean Absolute Percentage Error (MAPE)
defined by Equation (12).

Given that the results shown in Figures 9 and 16 resemble a sinusoidal behavior, (Pm − Pe) /Pm

does not present the real error between both signals. Considering Figure 19a, if the measured value is
on a high level, then the rate between the Pm − Pe and Pm values will be low; however, if the measured
value is on a low level, then the same rate will be high or close to 1, as seen in Figure 19b. According to
this, the rate is changed regarding the full range of the measured signal (max-min) instead in order to
obtain a reliable value. Equation (13) represents the modified MAPE.

MAE =

N
∑

s=1
|Pm − Pe|

N
(11)

MAPE% =

N
∑

s=1

∣∣∣ Pm−Pe
Pm

∣∣∣
N

· 100 (12)

MAPE(range)%
=

N
∑

s=1

∣∣∣ Pm−Pe
max(Pm)−min(Pm)

∣∣∣
N

· 100 (13)

With respect to the data from HS and MCS, Table 9 shows the values of the errors mentioned in
Equations (11) and (13).
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Figure 19. The difference errors between the high and low values: (a) Error value when measured data
is high; (b) Error value when measured data is low.

Table 9. The error values between the estimated and real data.

Location Month MAE MAPE (Range)

Aug 299.7928 W 11.9436%
Sep 203.7386 W 7.5643%
Oct 267.9841 W 9.2382%

HS Nov 138.1913 W 5.1418%
Dec 178.9316 W 7.0381%
Jan 184.5001 W 6.7978%

TOTAL 200.0924 W 6.8859%

Jul 590.6460 W 1.0480%
Aug 1192.3 W 2.0392%
Sep 726.2990 W 1.2646%

MCS Oct 741.8355 W 1.2660%
Nov 741.4300 W 1.3534%
Dec 812.8113 W 1.7237%

TOTAL 1130.4 W 1.9291%

Table 9 shows the errors for both locations, where the MAE result values for HS have a range
from 138.1913 W to 299.7928 W and an overall of 200.6071 W. Considering MCS, its MAE goes from
590.6460 W to 1192.3 W, with an overall of 1130.4 W. From these results we can highlight that the
values are low according to the total value range for each location, being up to 2500 W and 45 kW for
HS and MCS, respectively. This statement is proven by column 4 from Table 9, achieving a MAPE of
6.9036% in general for HS; meanwhile, for MCS, its respective results is a MAPE of 1.9291%. The above
demonstrates the estimation robustness of the statistical model.

4. Conclusions

A gradient descent method was used to calculate, through a characteristic equation,
the relationship between several variables which can be easily computed using quantitative data.

The results showed that solar radiation and daylight time are relevant in estimating the electric
power, with solar radiation being the one with the most influence over the photovoltaic power
generation; nonetheless, temperature, wind speed, and daylight hour affect this process, with their
inclusion being fundamental in the analysis to achieve a proper electric power estimation.

According to Figures 9 and 16, an acceptable approximation between the statistical simulation
results and real-time power generation has achieved. This is proven both by Table 8, where 97.63% of
the estimation results matches with the real data for HS and 99.66% match for MCS, and by Table 9,
achieving overall error values no greater than 7% and 2% for HS and MCS, respectively. An observable
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relationship between the determination coefficient values and error results is clear, concluding that the
percentage error will be lower while R2 is higher.

Several causes could perturb the correlation, resulting in a wider dispersion, with the weather
conditions as the most important for this study. Contrary to Mexico City, Hermosillo has abrupt
changes in climate throughout the year, reaching temperatures around 50 ◦C and 0 ◦C in summer and
winter, respectively, as well as sudden weather changes from a sunny day to a cloudy or even a rainy
day within hours.

However, according to the above and even if the results have a satisfactory behavior, by definition,
a statistical estimation will always have an error value. Nevertheless, these error values can be reduced,
increasing the gathered input data or by other alternative methods such as intelligent systems which
have proven to be an efficient methodology [53–56]. The above will be discussed elsewhere.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CSP Concentrated Solar Power Plants
GDO Gradient Descent Optimization
HEI Higher Education Institutions
HS Hermosillo Site
kWh/m2 Quantity of kilowatts during an hour striking a squared meter area
LSR Least Square Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCS Mexico City Site
PV Photovoltaic
SHC Solar Heating and Cooling
W Watt. It is a unit of power defined as a derived unit of 1 joule per second (J/s)
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