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Abstract: Knee kinematic data consist of a small sample of high-dimensional vectors recording
repeated measurements of the temporal variation of each of the three fundamental angles
of knee three-dimensional rotation during a walking cycle. In applications such as knee
pathology classification, the notorious problems of high-dimensionality (the curse of dimensionality),
high intra-class variability, and inter-class similarity make this data generally difficult to interpret.
In the face of these difficulties, the purpose of this study is to investigate knee kinematic data
classification by a Kohonen neural network generalized to encode samples of multidimensional
data vectors rather than single such vectors as in the standard network. The network training
algorithm and its ensuing classification function both use the Hotelling T2 statistic to evaluate the
underlying sample similarity, thus affording efficient use of training data for network development
and robust classification of observed data. Applied to knee osteoarthritis pathology discrimination,
namely the femoro-rotulian (FR) and femoro-tibial (FT) categories, the scheme improves on the
state-of-the-art methods.
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1. Introduction

Frequent knee pain affects approximately one adult in four, limiting function and diminishing
quality of life. Knee pain in people 50 years or older is predominantly caused by osteoarthritis (OA)
and it is a major reason for knee replacements among knee osteoarthritis patients in general [1,2].
This severe impact on human health and the soaring financial cost justify the recent accrued research
interest in computer-aided, objective knee disease diagnosis methods. Such methods would facilitate
diagnosis and improve its accuracy so that the disease can be treated more effectively. Several studies
have addressed the problem of distinguishing asymptomatic and OA groups [3–7] and assessing the
severity of the OA disease according to the Kellgren Lawrence (KL) score [8]. However, none has
considered distinguishing two classes of knee OA pathologies, namely femero-rotulian (FR) and
femero-tibilal (FT), or further consider, in addition to FR and FT, category FR-FT representing the
incidence of both diseases FR and FT in a same individual.

Currently, three-dimensional (3D) knee kinematic data, which can be easily acquired in clinical
settings [9], is the foremost, most effective description of knee movement to develop a classification
algorithm, an essential component in objective, computer-aided, knee pathology diagnosis [3,10].
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Knee kinematic data measurements consist of three high-dimensional vectors that describe the
temporal variation during a full gait cycle of locomotion of the three fundamental angles of knee
rotation, namely the knee angles with respect to the sagittal, frontal, and transverse planes (Figure 1).
The curse of dimensionality [11], the high intra-class variability and inter-class similarity in applications
such as osteoarthritis pathology classification, make knee kinematic data categorization difficult [12].

These are the angles in three-dimensional (3D) space between the tibia and femur,
corresponding to flexion/extension in the sagittal plane, abduction/adduction in the frontal
plane, and internal-external rotation in the transverse plane. To measure and record these angles,
the participant walks at a self-paced, comfortable speed on a conventional treadmill with the
non-invasive knee attachment of the KneeKG system [13]. The setup is illustrated in Figure 2.
The device is first calibrated to define the origin and axes of the 3D Cartesian reference system
of the knee angle coordinates. The measurements produce three discrete kinematic curves, one for
each angle. Curves are normalized by resampling to some fixed number of equally spaced points [9],
one hundred in this study.
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Figure 1. A family of twenty knee kinematic data curves measured for a particular participant : (a)
Flexion/extension, (b) Abduction/adduction, and (c) Internal/external rotation. Each curve was interpolated and
re sampled from 1% to 100% (100 points) of the gait cycle. 1% corresponds to the initial contact (IC) and 100%
to the end of the swing phase.

Figure 2. The KneeKG system

Although the KneeKG system is accurate, a participant knee angle variation pattern varies in general,40
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to classification. Moreover, the availability of a sample of several pattern measurements for each individual47

opens up the unique opportunity to use statistical inference and apply potent statistical tests of hypothesis to48

Figure 1. A family of twenty knee kinematic data curves measured for a particular participant:
(a) flexion/extension, (b) abduction/adduction, and (c) internal/external rotation. Each curve was
interpolated and re-sampled from 1% to 100% (100 points) of the gait cycle. Moreover, 1% corresponds
to the initial contact (IC) and 100% to the end of the swing phase.
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Figure 1. A family of twenty knee kinematic data curves measured for a particular participant : (a)
Flexion/extension, (b) Abduction/adduction, and (c) Internal/external rotation. Each curve was interpolated and
re sampled from 1% to 100% (100 points) of the gait cycle. 1% corresponds to the initial contact (IC) and 100%
to the end of the swing phase.
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Although the KneeKG system is accurate, a participant knee angle variation pattern varies in
general, sometimes significantly, from one cycle to another during locomotion, due to the inherently
uneven nature of a walker’s cadence. However, current studies implicitly attribute these variations to
noise, of the same structure across knee pathologies and individuals, and which does not, therefore,
inform gait classification. As a result, an individual’s measurements are repeated a few times, typically
for ten to fifteen times, and the average of these is taken to be the individual’s knee movement
representative data for subsequent classification. However, summarizing a population by its average
removes information about spread that might be essential to classification. Moreover, the availability
of a sample of several pattern measurements for each individual opens up the unique opportunity to
use statistical inference and apply potent statistical tests of hypothesis to measure similarity between
class data and, consequently, determine the class of membership of a measurement or observation [14].
Such effective tests would not be applicable otherwise.

In this study, we investigate a Kohonen neural network generalized to encode data in the form of
samples, which we apply to knee OA pathology categorization using knee kinematic data samples.
Datasets of knee kinematic measurements are generally small, containing samples from typically fewer
than one hundred subjects, each sample composed of about a dozen kinematic curves as described
earlier. Kohonen neural networks, which are potent classifiers [15–20], are particularly apposite
for such small-sized training data sets because they are associative memories that represent classes
each by several patterns which training determines, and do so such that neighboring representations
correspond to neighboring classes. Sample similarity evaluation, which underlies both training,
to determine this spatially organized layout of representation patterns, and classification, to assign
a category to observations, is done using the two-sample Hotelling T2 statistic. This will be explained
further when we the describe the sample-encoding generalization of the Kohonen network in greater
detail subsequently. This sample-based Kohonen neural network outperformed other classifiers in
knee OA experimentation to distinguish between two types of knee osteoarthritis pathologies, namely
femero-rotulian (FR) and femero-tibilal (FT).

The remainder of this paper is organized as follows: Section 2.1 describes the knee kinematic data
and its collection. Section 2.2 explains the sample-encoding Kohonen associative memory, expounding
its structure, the Hotelling T2 statistic and its use to measure similarity between pattern samples,
training, and classification role. Section 3 describes the experimental results to classify FR knee
pathology versus FT, as well as three-class problems involving classes FR and FT as well as class FR-FT
representing the joint occurrence of pathologies FR and FT in the same individual. Finally, Section 4
contains a discussion of the results and the last Section contains a conclusion.

2. Materials and Methods

2.1. Knee Kinematic Data Collection

Knee kinematic data describe the temporal variations of the knee movement three rotation angles
during a walking cycle. Participants walk on a conventional treadmill at a self-paced, comfortable
speed and the three angles of knee rotation are recorded by the KneeKG system using a non-invasive
knee attachment [13]. The device is first calibrated with respect to the reference points and axes
which serve to measure the three angles. The three angles of knee rotation are then recorded as the
walk progresses for a full cycle. Each resulting discrete curve is normalized by a smooth fit of its
points followed by resampling to some number of equally spaced gait cycle percentage points [9].
As illustrated in Figure 1, 1% corresponds to the initial contact and 100% to the end of the swing phase.

Because a person’s gait varies from one cycle to another, albeit slightly, the kinematic curves
are produced several times, typically about fifteen times, and then averaged under the informal
assumption that unwanted outlying measurements are present which must be removed because they
adversely affect classification. As a result, current methods take the average curve to be the participant’s
representative curve in subsequent analysis and classification. In this study, all of a participant’s curves
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are retained and used together as a sample rather than reducing them to a single curve of representation
(Figure 1a–c) because such a reduction suppresses information that might be relevant to classification.

The dataset contains data from 21 patients of each class, FR, FT, and FR-FT. The demographic
characteristics of the data in the three classes are shown in Table 1.

Table 1. Demographic characteristics of the data in the three classes (columns FR, FT, and FR-FT)

Characteristics C1:FR C2:FT C3:FR-FT

Age (years) 46.1 * ± 11.7 59.5 * ± 10.1 59.6± 11.4
Height (m) 1.71± 0.07 1.66± 0.09 1.66± 0.11
Weight (kg) 82.9± 20.7 76.2± 11.2 84.3± 15.9

BMI (kg/m2) 28.3± 7.1 27.4± 3.9 30.3± 5.5
Men% 45 38 33.3

2.2. Classification by a Sample-Encoding Generalization of the Kohonen Neural Network

The Kohonen neural network is organized into an array of nodes, generally two-dimensional as
illustrated in Figure 3. The purpose of the original network conception [21] was to materialize the
development and function of an associative memory which runs an unsupervised algorithm to encode
its input sequentially in the form of weight vectors, of the same data type as the input, which it stores in
the nodes.
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Figure 3. A 5 × 5 Kohonen neural network.

The network is said to be topologically ordered because the encoding is realized in such a way
that neighboring nodes have neighboring values. The network is also called a self organizing map,
abbreviated SOM, because of this topologically-ordered encoding capacity. In the practice of pattern
classification, mapping labeled data into a Kohonen neural network, once it is topologically ordered
and its weights settle, affords a class label to each node and, therefore, provides the network with
a classification function as an associative memory: to an input pattern, it associates the class label
of the node with the closest weight. The Kohonen neural network can be looked at as a vector
quantizer [22,23] for its ability to reduce a data set to a group of representation prototypes. Several
variants of a standard Kohonen network training algorithm have been investigated, such as the the
Gibbs density modelling network [24], the probabilistic self-organizing map (PRSOM) [25], and the
soft topographic mapping with kernels (STMK) [26].

In this study, we investigate a generalization of the standard Kohonen neural network algorithm
that encodes input in the form of a sample of pattern characteristic vectors rather than a single such
vector as with the standard algorithm. Pattern similarity, which underlies both network training and
the network subsequent classification function, is defined in this generalization by the two-sample
Hotelling T2 statistic as presented next.
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2.2.1. Sample Similarity and the Two-Sample Hotelling T2 Statistic

Let X = {x1, ..., xN} and W = {w1, ..., wM} be samples of independent realizations of two
D-variate multinomial random variables of equal covariance matrices and with means µX and µW .
Let X̄ and W̄ be the sample means of X and W, respectively:

X̄ =
1
N

n

∑
i=1

xi; W̄ =
1
M

m

∑
i=1

wi, (1)

and CX , CW the sample covariances:

CX = 1
N−1

N
∑

i=1
(xi − X̄)(xi − X̄)T ,

CW = 1
M−1

M
∑

i=1
(wi − W̄)(wi − W̄)T .

(2)

Finally, let C be the pooled (combined) covariance estimate of X, W given by:

C =
(N − 1)CX + (M− 1)CW

N + M− 2
. (3)

The two-sample Hotelling T2 statistic is defined by [27]:

T2 =
NM

N + M
(X̄− W̄)TC−1(X̄− W̄). (4)

This statistic is ordinarily used in statistical hypothesis testing to test the null hypothesis H0 : µX = µW
against the hypothesis H1 : µX 6= µW [14]. For large samples, the distribution under the null hypothesis
of the T2 statistic is approximately the χ2 (Chi-squared) distribution with D degrees of freedom.
For small sample sizes, as in our case of knee kinematic data, it is better approximated, under the null
hypothesis, by the F distribution with D degrees of freedom for the numerator, and N + M− 1− D
degrees of freedom for the denominator:

N + M− D− 1
(N + M− 2)D

T2 ∼ F(D, N + M− 1− D). (5)

The F distribution in Label (5) can be a good approximation of the T2 statistic distribution when the
dimension of the data is less than the size of the samples [28]. For high-dimensional vectors, like knee
kinematic data vectors, this study is dealing with dimensionality reduction, for instance by principal
component analysis (PCA) or wavelet representation, affords a means to satisfy this condition. The F
distribution with 11 degrees of freedom for the numerator and denominator, close to what we have in
the knee data classification application of this study.

The two-samples T2 statistic is in a fixed positive proportion to the squared Mahalanobis distance
between the two samples means [29], as evident in Equation (4). Therefore, it is a legitimate measure
of similarity of two samples, particularly when it is used to determine among a set of samples the
closest to a given reference sample, as it is used in the sample-encoding generalization of the Kohonen
memory which we describe next.

2.2.2. Sample-Encoding Kohonen Network Algorithm

The output of the network algorithm are samples of size N, Wj = {w1j, . . . wNj}, of D-dimensional
weight vectors wij = (w1

ij, . . . , wD
ij ), i = 1, . . . N, stored at nodes j = 1, . . . , J. In our application,

each vector wi,j, i = 1, . . . N, at node j, encodes a kinematic data curve and we use the network as
a knee pathology classifier. The network runs an algorithm which updates its weights iteratively as
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inputs, in the form of samples of multi-dimensional vectors, are sequentially presented. This algorithm
can be summarized as follows:

Algorithm 1 Network algorithm
Input X = {x1, ..., xN}, i = 1, . . . , N
Output Wj = {w1j, . . . , wNj}, j = 1, . . . , J

• Initialize samples Wj stored at nodes j, j = 1, . . . , J.
• Get input sample X and compute the similarities (the Hotelling T2 statistics) sj(X, Wj) between

X and samples Wj stored at nodes j, j = 1, . . . , J.
• Determine the node with weight vector closest to input:

j∗ = arg min
j

sj, (6)

• Update samples Wj = {w1j, . . . wNj} stored at nodes j, j = 1, . . . , J.

w1j(t + 1) = w1j(t) + ε(t)h(t)j,j∗(X̄−w1j(t))
. . .
wNj(t + 1) = wnj(t) + ε(t)h(t)j,j∗(X̄−wNj(t)),

(7)

ε(t) = εi

(
ε f

εi

) t
tmax

, σ(t) = σi

(
σf

σi

) t
tmax

, (8)

h(t)j,j∗ = exp− ||j− j∗||2
2σ(n)2 . (9)

The samples of weight vectors at the network nodes are initialized randomly. They are then
modified iteratively, each modification triggered by an input sample, X. The update consists of
finding the node j∗ with weight closest, most similar, to the current input and modifying the weight
vectors at each node j according to its grid distance from j∗. Closeness is in terms of the two-sample
Hotelling T2 statistic, as explained earlier. For multivariate data, the two-sample Hotelling T2 statistic
is proportional to the squared Mahalanobis distance between the means of the two samples. The update
equations, for multivariate data, are given by Equation (7), where t designates the iteration index.
Function hj,j∗ , given by Equation (9), defines the influence of “winning” node j∗ on node j: Every
vector of the sample stored at each network node j is corrected by “pulling” it toward the current
input sample by an amount decreasing with increasing grid distance from node j∗. This correction also
lessens in time as a function of parameter σ which decreases between initial and final values σi and σf .
This is shown in Equation (1). Finally, the correction is modulated by multiplicative parameter ε which
also decreases in time, between initial and final values εi and ε f as shown in Equation (8). Parameters
ε, σ must be set so as to obtain ordering of the weights, in the sense described earlier, and convergence
to their final values. These parameters are set experimentally.

2.3. Dimensionality Reduction

As presented earlier, the two-sample Hotelling T2 statistic defines sample similarity used by the
Kohonen neural network algorithm. However, for this statistic to be applicable, the dimension of
the data must be less than the size of the samples [14]. Therefore, dimensionality reduction to satisfy
this requirement must precede usage of the statistic. We performed a wavelet transform [30–32],
which is often used for dimensionality reduction in pattern analysis and classification [33]. A wavelet
representation retains of the data wavelet decomposition coefficients only those which correspond
to a predetermined energy of the transformed signal [34–36]. A significant advantage of the wavelet
representation is that a decomposition depends on the data item to describe, not on other data,
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in contrast to other common feature selection methods such as principal component analysis (PCA) or
singular value decomposition (SVD) [37].

2.4. Evaluation of the Sample-Encoding Kohonen Network Results

In order to evaluate the performance and generalization power of the sample-encoding Kohonen
network in this application, we used the leave one out cross validation (LOOCV), a scheme that is
proven to be much more accurate for small size samples than split-sample validation [38]. Classification
performance was evaluated in terms of the accuracy (Acc) over all test data, as well as per class.
Performance is presented in the form of a confusion matrix, where each row represents the instances
in a predicted class and each column represents the instances in an actual class (ground truth).

3. Results

In the following, we apply the sample-encoding Kohonen associative memory to encode knee
kinematic data samples and classify knee osteoarthritis pathologies. In a first experiment, we classify
femero-rotulian (FR) vs. femero-tibial (FT), in a context where a single of the two pathologies occurs in
any patient. In a second experiment, we extend the application to the three-class problem involving
pathology categories FR and FT, as well as category FR-FT which represents patients having both
diseases FR and FT. The dataset contains data from 21 patients of each of the three classes, FR, FT,
and FR-FT.

Dimensionality Reduction

Dimensionality reduction is performed using a wavelet decomposition of the kinematic data in
each plane separately, namely the flexion/extension angle, with respect to the sagittal plane (Figure 4a),
the abduction/adduction angle, with respect to the frontal plane (Figure 4b), and the internal/external
angle, with respect to the transverse plane (Figure 4c). The dimension of the data before feature
extraction is 100, corresponding to the percentage of gait cycle (1% to 100%), for each of the three knee
rotation angles (Figure 4, Line 1).Version April 13, 2019 submitted to Appl. Sci. 7 of 13
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Figure 4. Wavelet decomposition using Daubechies db1 of the (a) the flexion/extension angle, with respect to
the sagittal plane, (b) the abduction/adduction angle, with respect to the frontal plane, (c) and internal/external
angle, with respect to the transverse plane. Each line corresponds to a decomposition level and each column to a
kinematic plane.
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Kononen network. Following extensive testing, we were able to retain a subset of 4 coefficients the Daubechies175

DB1 wavelet representation at level 3, which initially contained 13 coefficients (Fig. 4, Line 4).176
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The Kohonen map is trained using a wavelet representation of kinematic data extracted in each plane178
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now represented by (feature) vectors of dimension 4.182
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90.47C2:FT 3 18

Recall that applicability of the Hotelling statistic requires that the dimension of the data vector space be less188

than the number of data vectors in the sample for which this statistic is written. In our case, a patient data sample189

Figure 4. Wavelet decomposition using Daubechies db1 of the (a) the flexion/extension angle,
with respect to the sagittal plane, (b) the abduction/adduction angle, with respect to the frontal
plane, (c) and internal/external angle, with respect to the transverse plane. Each line corresponds to
a decomposition level and each column to a kinematic plane.
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Using the wavelet decomposition for dimensionality reduction, the dimension has been reduced
to a fewer number of most relevant coefficients. We experimented with different wavelet families,
namely Daubechies, Coiflet, and Symlet, and different levels of decomposition. The level of a wavelet
representation, as well as the relevant planes of data, are chosen experimentally so as to maximize the
recognition rate of the sample-encoding Kononen network. Following extensive testing, we were able
to retain a subset of four coefficients of the Daubechies DB1 wavelet representation at level 3, which
initially contained 13 coefficients (Figure 4, Line 4).

Sample-Encoding Kohonen Network

The Kohonen map is trained using a wavelet representation of kinematic data extracted in each
plane separately (sagittal, frontal, and transverse planes). The wavelet family and the relevant planes
have been evaluated by leave-one-out cross validation. This led to a data representation using the
abduction/adduction and internal/external planes, and a level 6 Daubechies Db1 decomposition to
four coefficients, i.e., the kinematic data is now represented by (feature) vectors of dimension 4.

The network parameters in the experiments are εi = 0.1, ε f = 0.01, σi = 3, σf = 1. Figure 5
shows, for two pathologies classification (FR and FT), how the recognition rate varies with the number
of network nodes, and with the number of the network training algorithm iterations. The best
classification rate is 90.47%, obtained with an 8 × 8 network map (64 nodes) after 50 iterations.
The corresponding confusion matrix, illustrated in Table 2, shows a balanced classification rate per
class (20/21 in FR class and 18/21 in FT).

Table 2. The confusion matrix corresponding to the proposed Kohonen two class classification method.
τ(%) corresponds to the classification accuracy.

Real
Predicted C1:FR C2:FT τ(%)

C1:FR 20 1 90.47C2:FT 3 18

Recall that applicability of the Hotelling statistic requires that the dimension of the data vector
space be less than the number of data vectors in the sample for which this statistic is written. In our
case, a patient data sample contains between 0 to 15 vectors. Therefore, we must retain no more
than nine coefficients of representation when we reduce dimensionality. The best performing set of
coefficients in our dimensionality reduction experiments was of size 4. We could have safely retained
up to nine coefficients. However, using more coefficients than we did does not necessarily translate
to better classification. For instance, a nine-coefficient representation of the data gives a lower 88%
classification accuracy.
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Figure 5. Variation of the recognition rate vs. the number of nodes and the number of iterations in
the sample-encoding Kohonen network. The size of a circle is proportional to the classification rate
it represents.
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In Table 3, we present the results for the confusion matrix of the three-class classification problem.
As illustrated in the table and as expected, the three-class classification problem is much more difficult
than the main treated problematic. For this secondary experiment, the best achieved classification rate
is 71.43 %.

Table 3. The confusion matrix corresponding to the proposed Kohonen three class classification method.
τ(%) corresponds to the classification accuracy.

Real
Predicted C1:FR C2:FT C3:FR-FT τ(%)

C1:FR 18 1 2
71.43C2:FT 3 14 4

C3:FR-FT 4 4 13

Component Planes

The sample-encoding Kohonen network training algorithm encodes nodes in such a way that
neighboring nodes have neighboring weight values. In Figure 6, we visualize the weight planes,
also called component planes, of each element of the input feature vector. A map node is represented
by a hexagonal area. The label in each node designates the knee pathology class assigned to the
node after network training (1 for FR and 2 for FT). Each sub-figure corresponds to one of the four
components of the feature vector. The first and second components correspond to the wavelet
representation of the abduction/adduction angles (respectively, Figure 6a,b). The third and fourth
components correspond to the wavelet representation of the internal/external rotation angles
(respectively, Figure 6c,d).
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Execution Time

We measured the sample-encoding Kohonen network training and recognition times using
a 2.3 GHz Intel core i7 processor with a RAM (random access memory) size of 16 Gigabytes.
The network training took 25 min in a 8× 8 map and 100 iterations. The classification time is negligible
(0.01 s/sample).

Comparisons

Classification by the sample-encoding Kohonen network has been compared to reference
classifiers used for this type of application, namely: K-nearest neighbors (KNN), support
vector machine (SVM), linear discriminant analysis (LDA), Hotelling statistical hypothesis testing,
and traditional Kohonen network.

Figure 7 shows the classification results of two experiments with different datasets, i.e., two classes
and three classes classification.
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4. Discussion

The purpose of this study was to investigate a generalization of the Kohonen neural network that
encodes samples of multidimensional data vectors rather than single such vectors, and apply it to
knee kinematic data for osteoarthritis pathology classification. Knee kinematic data, which describe
the temporal variation of each of the three fundamental angles of knee three-dimensional rotation
(flexion/extension angle, with respect to the sagittal plane, abduction/adduction angle, with respect to
the frontal plane, and internal/external angle, with respect to the transverse plane) during a walking
cycle, are recorded in the form of a small sample of repeated measurements.

To confront the curse of dimensionality [11], the original high-dimensional kinematic data was
mapped to a significantly lower dimensional space by Daubechies Db1 wavelet decomposition at level
6 to yield representation vectors of dimension 4. The training input of the sample-encoding Kohonen
network consisted of this 4-dimensional representation applied to the abduction/adduction and
internal/external original kinematic data. The selection of these two reference planes (discarding the
third) has been determined by recognition rate maximization. This result is consistent with findings in
previous studies on biomechanical data of knee pathologies. In these studies, several biomechanical
parameters measured in the sagittal plane, related to the varus or valgus thrust during the loading
phase, have been identified as the most useful parameters and serve diagnostic as biomarkers [8,39].
In addition, the range of motion of the abduction/adduction angle during loading phase has been
identified as a component of burden of disease biomarkers to discriminate between moderate OA
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grades and severe OA [8]. In addition, a study which compared a set of biomechanical parameters
of patients categorized as sufferers of moderate to severe OA grades [39,40], reported that both
the peak knee adduction moment and the knee adduction angular impulse increased with knee
radiographic grade.

Network training and the ensuing classification function of the network both use the Hotelling T2

statistic to evaluate the underlying similarity of pattern samples, affording robust class membership
assignments to observed data. Applied to knee osteoarthritis pathology discrimination, the scheme
improves on the state-of-the-art results by other methods. The classification rate reached 90.47% for
the classification of FR and FT classes and 71.4% for the classification of FR, FT and FR-FT classes.

As Duda and Hart and others [11] have argued, the small size of this application dataset instructs
us to use leave-one-out cross validation in the experimental evaluation of classification accuracy. There
are two basic reasons for the choice of leave-one-out validation over k-fold cross validation with k 6= n,
where n is the number of elements in the dataset (leave-one-out validation is n-fold cross validation).
One obvious reason is that, while every data element serves testing once, training is done with as
much data as possible, therefore using as much information about the underlying data classes as
available to give a classifier more representative of the classes than it would otherwise be. This is so
because when n is small and k 6= n, the smaller training set, due to the larger test set, is more likely
to cause class information to be left out of classifier design. Another somewhat secondary reason to
prefer leave-one-out validation is that proper random choice of folds for k 6= n may take a great deal of
computation and produce unbalanced test set sizes, causing some data elements to dominate testing
and bias classification results. However, this is not a serious issue in practice because one may use
pseudo-random routines, such as ones found in Matlab, that produce balanced test folds.

It may now be instructive to take a focused look at our data via an example of k-fold division and
evaluation. Each item in the dataset is a sample of about a dozen (the number varies between 10 and
15) 4-dimensional vectors each containing four coefficients of a Daubechies wavelet representation of
the original 300-dimensional knee rotation measurement vectors. There are 21 samples from each of
two disease classes, and each sample obtained from a distinct patient. This is a small dataset. Let us
use k = 5 folds, a sensible size which would give about 4–5 elements in each 5-fold. Following our
discussion, the recognition rates should be lower than with leave-one-out validation if the folds are
non redundant, i.e., if, in general, the samples left out from training to be in testing are “different” from
the training fold data.

Figure 8 shows the results of the 21 5-fold cross validation experiments. Each 5-fold division
was produced independently of the others. The horizontal axis lists the experiments from 1 to 21.
The vertical axis unit is percentage correct classification, the star indicating the average performance in
that experiment. The width of the vertical interval, centered about this mean, is twice the standard
deviation of the cross validation recognition rate in the experiment. The overall average rate, computed
over all the experiments, is 79%, with a standard deviation of 4.6 units of correct classification. These
numbers are consistent with the expectations outlined in the discussion of k-fold validation above.
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Figure 8. 5-fold cross validation experimentation. Horizontal axis: the experiments from 1 to 21. Vertical axis:
the unit is percentage correct classification, the star indicating the average performance in that experiment. The
width of the vertical interval about the mean is twice the standard deviation of the cross validation recognition rate
in the experiment. The overall average rate, computed over all the experiments, is 79%, with a standard deviation
of 4.6 units of correct classification.

Figure 8. Five-fold cross validation experimentation. Horizontal axis: the experiments from 1 to 21.
Vertical axis: the unit is percentage correct classification, the star indicating the average performance in
that experiment. The width of the vertical interval about the mean is twice the standard deviation of
the cross validation recognition rate in the experiment. The overall average rate, computed over all the
experiments, is 79%, with a standard deviation of 4.6 units of correct classification.

We also ran a PCA plot of the original data to gain some insight into the dataset layout (Matlab pca
and scatter routines). The first five coefficients of PCA account for 92% of the variance. Figure 9 shows
the scatter plot for PCA coefficient pairs (1,2), (1,3), (1,4), and (1,5). These plots are sufficient to indicate
that the data of the two classes (FR and FT) are neither redundant nor do they cluster away from each
other, i.e., the classification problem in this application is not trivial. In addition, the spread of the
data of each class that the plots show is consistent with the variations in the classification results of
the 21 5-fold cross validation experiments shown in Figure 8, confirming that, in general, the test data
used in an experiment contains information not present in the training data.
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confirming that, in general, the test data used in an experiment contains information not present in the training278

data.279
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Figure 9. Scatter plots for PCA coefficient pairs (1,2), (1,3), (1,4), and (1,5) indicate that the data of the two
classes (FR and FT) are neither redundant nor do they cluster away from each other.

The spatial ordering of the maps is evident in Figure 6. In this display, neighboring node values are assigned280

neighboring colors. In each sub-figure neighboring node values describe the same pathology class.281

We note that FR class labeled 2 is characterized by high values of the weight of the abduction/adduction282

angle (yellow color in figures 6 (a) and (b) ) and low values of the internal/external rotation angle (blue color in283

figures 6 (c) and (d) ). In contrast, that FT class labeled 1 is characterized by low values of the weight of the284

abduction/adduction angle (yellow color) and high value of the internal/external rotation angle (blue color). This285

is an interesting result because it correlates the kinematic data signals and their time-frequency transforms via286

wavelets to better understand the pathological knee behavior.287

The classification time is marginal (0.01 s/sample). This can be important in computer-aided medical288

analysis. The training time is much longer, expectedly so, given that several parameters are to be determined289

experimentally. However, this is not an issue because training is done only once.290

Applied to knee OA pathology classification (Formoro-tibial, Fomoro-rotulian, and co-incidence291

Fomoro-tibial /Fomoro-rotulian) the proposed sample-encoding Kohonen neural network outperforms K-nearest292

neighbor, the Support vector machine, linear discriminant analysis (LDA), and the traditional Kohonen neural293

network, all of which are reference classifiers usually instantiated for this type of application (7).294

To conclude, the sample-encoding Kohonen neural network is efficient and can be used to represent and295

classify knee kinematic data, as well as other biomedical data with similar characteristics.296
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Figure 9. Scatter plots for PCA coefficient pairs (1,2), (1,3), (1,4), and (1,5) indicate that the data of the
two classes (FR and FT) are neither redundant nor do they cluster away from each other.

The spatial ordering of the maps is evident in Figure 6. In this display, neighboring node values
are assigned neighboring colors. In each sub-figure, neighboring node values describe the same
pathology class.
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We note that FR class labeled 2 is characterized by high values of the weight of the
abduction/adduction angle (yellow color in Figure 6a,b) and low values of the internal/external
rotation angle (blue color in Figure 6c,d). In contrast, that FT class labeled 1 is characterized by
low values of the weight of the abduction/adduction angle (yellow color) and high value of the
internal/external rotation angle (blue color). This is an interesting result because it correlates the
kinematic data signals and their time-frequency transforms via wavelets to better understand the
pathological knee behavior.

The classification time is marginal (0.01 s/sample). This can be important in computer-aided
medical analysis. The training time is much longer, expectedly so, given that several parameters are to
be determined experimentally. However, this is not an issue because training is done only once.

Applied to knee OA pathology classification (Formoro-tibial, Fomoro-rotulian, and co-incidence
Fomoro-tibial/Fomoro-rotulian), the proposed sample-encoding Kohonen neural network outperforms
K-nearest neighbor, the Support vector machine, linear discriminant analysis (LDA), and the traditional
Kohonen neural network, all of which are reference classifiers usually instantiated for this type of
application (Figure 7).

To conclude, the sample-encoding Kohonen neural network is efficient and can be used to
represent and classify knee kinematic data, as well as other biomedical data with similar characteristics.
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