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Featured Application: Life prediction for engineering materials.

Abstract: The conventional method for predicting the shape change of a surface crack in a round bar
simply utilizes the Paris-Erdogan law with the least squares method using a certain shape assumption
with excessive constraints. In this paper, a three-parameter model for a round bar subjected to tension
is developed with fewer shape assumption restraints by employing a fatigue crack growth circles
method. The equivalent stress intensity factor ∆Ke based on both stress intensity factors along the
current and new crack front is used to reduce the total number of increments. The results show
that the proposed method has a good convergence speed and accurate prediction of crack shapes.
The present method is validated by comparing the solution with other simulation solutions and
experimental data.
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1. Introduction

The propagation analysis of a surface crack is a critical capability for structural integrity prediction
of cylindrical metallic components (bolts, screws, shafts, etc.) Part-through flaws appear on the free
surface of a smooth round bar and the front of a growing crack can be considered as a so-called ‘almond’
shape by extensive experimental works [1–6].

Attempts to predict fatigue growth of a surface crack in a round bar have been reported. Some
investigators have employed a circular arc to describe the crack front [5,7,8], then the hypothesis that
an actual part-through crack can be replaced by an equivalent elliptical arc edge flaw has been widely
applied. A. Carpinteri [9–13], as one of the most representative researchers on this topic, conducted
extensive studies related to this configuration. However, regardless of whether they used a circular
arc or elliptical arc, most researchers employed a certain shape with a fixed center, which reduced
the fatigue calculations to one-or two-dimensional problems. Few efforts have been made utilizing a
three-parameter model. Although A. Carpinteri [14] mentioned the three-parameter model previously,
the fatigue crack propagation was simply examined by applying the Paris-Erdogan law with the least
square method as in almost all previous studies [15–17]. In addition to experimental backtracking
technique [18,19] and normalized area-compliance method [20], there is no further research regarding
the method of surface crack prediction.

The objective of this paper was to predict the shape change of a fatigue crack in a round bar
subjected to tension by employing fatigue crack growth circles, based on a three-parameter model
using finite element analysis. In this paper, a fewer shape restraints model with part-elliptical cracks
whose center was allowed to move along the vertical axis was built, which could be more precise
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for expressing the actual crack shape front. The nominal aspect ratio of an ellipse, which is more
meaningful, is proposed for the three-parameter model. Meanwhile, the fatigue crack growth circles,
which are on a tangent to both current and new crack fronts, were developed to predict the crack
path. The equivalent stress intensity factor ∆Ke based on both stress intensity factors along the current
and new crack fronts was proposed to reduce the number of modeling computations with only a few
iterations. The validity of the present method will be shown by comparing its results with a simulation
solution and experimental results.

2. Numerical Propagation Process

2.1. Three-Parameter Model

A surface crack in a smooth round bar with diameter D0 subjected to fatigue tension are taken
into consideration. A part-elliptical surface flaw is defined by three parameters: (1) major axis of an
ellipse a, (2) minor axis of an ellipse b, and (3) center of ellipse Oy (Figure 1).
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Figure 1. Definition of the geometrical parameters for a surface crack in a round bar.

2.2. Fatigue Crack Propagation

The propagation of a surface crack in a round bar under cyclic tension is predicted by employing
fatigue crack growth circles [21] (Figure 2). If the crack presents an ellipse shape up to the i-th loading
step, the initial ellipse whose center is located on the surface of the specimen can be defined with given
ai and bi, as represented by the following equation

x2

ai2
+

y2

bi2
= 1. (1)

Points O, A, B, C and D in Figure 2 with coordinates (x ji, y ji) are deployed equidistantly along the
current crack front, where the subscript j refers to the points O, A, B, C and D.

The growth of a new crack front lying on an ellipse with semi-axes ai+1, bi+1, and Oi+1 after one
cyclic loading step to a new configuration can be described by the following equation

x2

(ai+1)
2 +

(
y−Oy,i+1

)2

(bi+1)
2 = 1. (2)

The assumed crack growth circles, which pass points O, A, B, C and D, respectively, are tangent to
both current and new crack fronts. The new crack front points O′, A′, B′, C′ and D′ with coordinates
(x j,(i+1), y j,(i+1)) are the points of tangency between crack growth circles and the new crack front.
Meanwhile the centers of crack growth circles can be determined as (x j,c, y j,c).
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The crack growth increment among these points can be determined by applying the
Paris-Erdogan law

da
dN

= C(∆K)m, (3)

where da/dN is crack growth rate, ∆K is the stress intensity factor range, and C and m are material
constants.

After each computed crack configuration, an increment of crack growth at the interior point O′ is
given. The crack growth length of other points A′, B′, C′, and D′ can be determined

∆l j = (yO,i+1 − yO,i)

(
∆Kej

)m

(∆KeO)
m . (4)

Here, ∆Ke stands for the equivalent stress intensity factor related to the stress intensity factors of
both current and new crack fronts.

The stress intensity factor K is assumed to be a liner function of crack growth increment. An
arbitrary number of crack growth steps can be assumed. Using

da = C(∆K)mdN, (5)

the crack growth length is increased to a + da repeatedly in each step to the last step by adjusting
material constant C. The equivalent stress intensity factor ∆Ke with stepping coefficient µ can be
obtained appropriately through the crack growth plot of da/dN vs. N.

∆Kej = µ
(
Ki j

)m
+ (

1
2

(
Ki, j + K(i+1), j

)
)

m
+ (1− µ)

(
K(i+1), j

)m
0 < µ < 1 (6)

At the beginning of iteration, sometimes a relatively large value of µ can be used to avoid diverging.
The distance from the center of crack growth circles to points O′, A′, B′, C′ and D′ along the new

crack front are calculated using the geometrical relationship

∆d j =

√(
x j,(i+1) − x j,c

)2
+

(
y j,(i+1) − x j,c

)2
. (7)



Appl. Sci. 2019, 9, 1751 4 of 14

An error equation can be derived as

Error =
∑∣∣∣∆d j − ∆l j/2

∣∣∣. (8)

The values of ai+1 and Oi+1, which minimize the error equation, are based on iterative methods
and repeat all of the above steps based on the obtained crack front. The parameters of the ellipse for
each new crack front can be determined until the results converge.

2.3. Numerical Simulation

The typical model of a round bar with diameter D0 and length L that contains a surface crack
in its median cross section has been used in many experimental tests and numerical simulations.
F.P. Yang [19] presented the experimental results of fatigue crack growth for a straight-fronted edge
crack in an elastic bar under axial loading with a diameter of 12 mm, a length of 90 mm, and carbon
steel S45 as the material. Table 1 lists material parameters for steel S45. A. Carpinteri [11,12] calculated
the surface cracks in round bars with 50 mm diameters through finite-element analysis. Since the
propagation of crack shape is defined by the crack configuration for a given loading type [15], in the
present paper, the models are established for different values of these initial parameters to compare
the fatigue crack propagation with the experimental and simulation results from F.P. Yang [19] and
A. Carpinteri [11,12].

Table 1. Material parameters for steel S45.

Monotonic Tensile
Yield Strength σ0

Nominal Ultimate
Tensile Strength σm

True Ultimate
Tensile Strength σf

Young’s
Modulus E

Poisson’s
Ratio v

Crack Growth
Parameter m

635.07 MPa 775.65 MPa 2101.65 MPa 2.06 × 105 MPa 0.33 3

The finite element analysis software AbaqusTM (France) is used to simulate the scenario. Since
the bar geometry and applied loads present two planes of symmetry, 3D finite element analysis was
performed by modeling a quarter of the round bar, as shown in Figure 3. About 350,000–380,000
quadratic hexahedral elements have been employed in each model. The 1/4-node displacement method
and fine meshing with a 0.02 mm mesh size has been used around the crack front to model the stress
field singularity and improve the accuracy of the contour integral calculation.
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For each crack configuration defined by parameters b/D0 and b/a, the stress-intensity factor
K j( j = O, A, B, C, D) along the crack front is obtained through the above described finite-element
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analysis. The fatigue growth for the initial defects with b/D0 = 0.05, 0.08, 0.1 and b/a = 0, 1 is
considered in this paper.

3. Results and Discussion

3.1. Evolution of the Crack Shape

Figure 4 illustrates the fatigue shape evolution by the crack growth circles in a round bar subjected
to tension. The seven crack front profiles displayed are deduced from roughly 30 crack growth circles in
less than 20 iterations. The outermost crack growth circle rolls along the internal profile of the round bar
in an approximate manner. When the point of tangency between crack growth circle with crack front
approaches very closely to the surface of the bar, such as crack front 6 in Figure 4, the outermost crack
growth circle will disappear in the next propagation. The rate of crack propagation can be observed
intuitionally by the size of crack growth circles. As shown in Figure 5, the optimum simulation result
for the center of an ellipse is not fixed on the surface of the bar, but is reciprocating along the y-axis.
Therefore, the actual crack shape can be accurately expressed by the three-parameter model.

In the simulation process, notice that several different ellipses with the same chord length can be
replaced to describe one actual crack front, since only part of an ellipse is used, once the center is not
fixed (Figure 6). A large variation of ellipse actual aspect ratio is obtained with undifferentiated iteration
error, as shown in Figure 7. Hence, the actual aspect ratio of the ellipse semi-axis is meaningless for the
three-parameter model to describe the crack front.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 15 
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Figure 8 illustrates the fatigue shape evolution for five cases. The aspect ratio of initial ellipses
b0/a0 = 0, 1, and relative crack depth bn/D0 = 0.05, 0.08, and 0.1, while the material constants
in the Paris-Erdogan law are assumed to be m = 2, 3, and 4. The trends of crack propagation are
adequately demonstrated.

As mentioned previously, the nominal aspect ratio of an ellipse, which is the ratio of the maximum
crack depth to the chord length c, bn/c can be considered here. It is noteworthy that, as shown in
Figure 9, both initial crack dimensions and Paris law exponent m have an effect on the evolution of
different parameters. The crack propagation trends are consistent with the same initial crack aspect
ratio when using the same material, although the beginning propagation is affected by the crack depth
provisionally. Meanwhile a difference of transition can be noticed between the crack propagation with
different Paris law exponent m values. In Figure 9, it can be found that the nominal aspect ratio change
is very sensitive to the initial crack geometry during early growth, and then the nominal aspect ratios
for all cases are converged and become constant around bn/D0 ≈ 0.4. It shows the flaws tend to follow
preferential propagation paths that flatten gradually when the crack depth become larger.
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Figure 9. Nominal aspect ratio vs. relative crack depth.

The fatigue crack developments bn/D0 with c/D0 under cyclic for different initial parameters
are shown in Figure 10. It can be seen that the crack propagation paths differ with different initial
flaws, but will converge asymptotically. Furthermore, in the process of expansion, the crack growth
rate for center and outermost points are variable, which is deduced from the gradient of two type
lines with initial flaws b0/a0 = 0, 1. This can be seen more precisely in Figure 11. For the case of an
initial crack b0/a0 = 1 shown in Figure 11a, the ratio of crack growth (db/dc) is always less than 1 for
most propagation processes, which means the crack growth rate for the central point is always slower
than the outermost point until the relative crack depth bn/D0 ≈ 0.6. However, the change in growth
ratio will slow down from the beginning to the stage of bn/D0 ≈ 0.6 for all the cases with initial flaws
b0/a0 = 1, and then increase distinctly. For the case of an initial crack with b0/a0 = 0, as shown in
Figure 11b, the crack growth along the vertical central line is always greater than the growth adjacent
to the horizontal surface until the relative crack depth satisfies bn/D0 ≈ 0.4, since the gradient line
exceeds 1. Furthermore, the rate decreases sharply at the beginning propagation, especially for m = 3.
Larger values of Paris law exponent m convey more drastic changes. It can be deduced that in the
early propagation stage, the exponent m in the Paris law have a distinct effect on the evolution of the
crack. The change of crack growth rate for central point is bigger for large value of m. It is considered
to be related to plasticity which suppress the crack propagation on the outermost surface.
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Figure 10. Relative crack depth vs. relative chord length with different initial parameters.
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3.2. Comparison with Other Numerical Solutions and Experimental Results

In Figure 12, the fatigue propagation of the initial crack b0/a0 = 1, b0/D0 = 0.05 and 1 is compared
with numerical solutions by A. Carpinteri [11,12]. The curves in the present results are similar for all
cases. However, some discrepancy between the present result and Carpinteri can be seen, especially
for the initial crack b0/a0 = 1, b0/D0 = 0.05. It should be pointed out that in the above comparison,
the deviation is mainly due to the difference in the crack growth method adopted and the idealized crack
front geometry. A two-parameter elliptical-arc shape with fixed center is assumed only by employing
the Paris-Erdogan law ordinarily by Carpinteri [11,12]. The two-parameter shape assumption method
mentioned above can simplify the fatigue calculations, but it is also clear that better predications should
be obtained if the shape restraint can be reduced, such as those generated by the present method.
Moreover, the crack growth circles, which are tangent to the new crack front as well as to the current
crack front, can accurately represent the real path of the fatigue crack and thus yield more accurate
results. In addition, the better mesh refinement demonstrated in this paper also leads to improved
prediction accuracy.
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Figures 13 and 14 compare the crack propagation result with the experimental data deduced
from F.P. Yang [19]. It is shown that the present results agree well with the experimental data.
The experimental result deviates abnormally around the relative crack depth of bn/D0 = 0.4 in
Figure 14. The maximum discrepancies are approximately 12%. The deviation of the two solutions are
acceptable since as the fracture begins to happen in the experimental method approach, the relative
crack depth bn/D0 = 0.4. It is confirmed that the present method could provide more accurate results.
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4. Conclusions

The fatigue propagation of a surface crack in a round bar subjected to tension loads has been
investigated by using crack growth circles. The present results demonstrate that the experimental
method had good convergence speed and accurate prediction of crack shape patterns. The following
conclusions can be drawn:

• The crack growth circles method is developed for the surface cracks of a round bar, and the circles
are tangent to both current and new crack fronts. In this way, good simulation accuracy can be
achieved with fewer iterations.

• A three-parameter model with fewer shape restraints whose center is allowed to move along
the vertical axis is built, and the shape change of a fatigue crack is predicted more precisely.
The nominal aspect ratio of an ellipse, which is the ratio of the maximum crack depth to the chord
length c, bn/c, is considered, instead of the actual aspect ratio of an ellipse semi-axis.

• A relatively large crack growth increment can be used by adopting the equivalent stress intensity
factor ∆Ke based on the stress intensity factors along the current and new crack fronts.

• The crack propagation process is described accurately based on the ratio of vertical growth toward
the horizontal surface. It can be seen that the crack propagation paths differ with different initial
flaws, but will converge asymptotically. The ratio of crack growth is always less than 1 for the case
of initial crack b0/a0 = 1, and the crack growth along the vertical central line is always greater
than the growth toward the horizontal surface. For the case of an initial crack b0/a0 = 0, a greater
Paris law exponent m value generates more drastic change.

• The present solutions are compared with other numerical solutions and experimental data.
Comparison shows that the present solutions agree well with the experimental data and are better
than other numerical solutions.
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draft preparation, S.C. and Y.Y.; writing—review and editing, S.C. and Y.Y.; visualization, S.C. and Y.Y.; supervision,
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Nomenclature

D0 Diameter of round bar ∆K Stress intensity factor range
a Major axis of an ellipse ∆Ke Equivalent stress intensity factor
b Minor axis of an ellipse µ Stepping coefficient
Oy Center of ellipse ∆l j Crack growth length in Equation (4)
c Chord length of an ellipse ∆d j Distance in Equation (7)
ai, bi Semi-axes of ellipse for i-th loading step b/a Actual aspect ratio
ai+1, bi+1 Semi-axes of ellipse for i + 1-th loading step bn/c Nominal aspect ratio
Oy,i+1 Center of ellipse for i + 1-th loading step bn/D0 Relative crack depth
x ji, y ji Coordinate for points O, A, B, C and D c/D0 Relative chord length
da/dN Crack growth rate db/dc Ratio of growth
C, m Constants of the Paris–Erdogan law

References

1. Athanassiadis, A.; Boissenot, J.M.; Brevet, P.; Francois, D.; Raharinaivo, A. Linear elastic fracture mechanics
computations of cracked cylindrical tensioned bodies. Int. J. Fract. 1981, 17, 553–566. [CrossRef]

2. Nezu, K.; Machida, S.; Nakamura, H. Stress intensity factor of surface cracks and fatigue crack propagation
behavior in a cylindrical bar. In Proceedings of the 25th Japan Congress on Material Research, Metallic
Metals, Kyoto, Japan, 25–28 March 1982; pp. 87–92.

3. Mackay, T.L.; Alperin, B.J. Stress intensity factors for fatigue cracking in high-strength bolts. Eng. Fract. Mech.
1985, 21, 391–397. [CrossRef]

4. Lorentzen, T.; Kjaer, N.E.; Henriksen, T.K. The application of fracture mechanics to surface cracks in shafts.
Eng. Fract. Mech. 1986, 23, 1005–1014. [CrossRef]

5. Forman, R.G.; Shivakumar, V. Growth behavior of surface cracks in the circumferential plane of solid and
hollow cylinders. In Fracture Mechanics: Seventeen Volume; American Society of Testing and Materials:
Conshohocken, PA, USA, 1986; pp. 59–74.

6. Caspers, M.; Mattheck, C.; Munz, D. Propagation of surface cracks in Notched and Unnotched Rods.
In Surface-Crack Growth: Models, Experiments, and Structures; American Society of Testing and Materials:
Conshohocken, PA, USA, 1990; pp. 365–389.

7. Caspers, M.; Mattheck, C. Weighted averaged stress intensity factors of circular-fronted cracks in cylindrical
bars. Fatigue Eng. Mater. Struct. 1987, 9, 329–341. [CrossRef]

8. Ael din, S.S.; Lovegrove, J.M. Stress intensity factors for fatigue cracking of round bars. Int. J. Fatigue 1981, 3,
117–123.

9. Carpinteri, A. Elliptical-arc surface cracks in round bars. Fatigue Eng. Mater. Struct. 1992, 15, 1141–1153.
[CrossRef]

10. Carpinteri, A.; Brighenti, R. Fatigue propagation of surface flaws in round bars: A three-parameter theoretical
model. Fatigue Eng. Mater. Struct. 1996, 19, 1471–1480. [CrossRef]

11. Carpinteri, A.; Brighenti, R.; Vantadori, S. Surface cracks in notched round bars under cyclic tension and
bending. Int. J. Fatigue 2006, 28, 251–260. [CrossRef]

12. Carpinteri, A. Shape change of surface cracks in round bars under cyclic axial loading. Int. J. Fatigue 1993, 15,
21–26. [CrossRef]

13. Carpinteri, A.; Ronchei, C.; Vantadori, S. Stress intensity factors and fatigue growth of surface cracks in
notched shell and round bars: Two decades of research work. Fatigue Fract. Eng. Mater. Struct. 2013, 36,
1–13. [CrossRef]

14. Carpinteri, A.; Vantadori, S. Surface crack in round bars under cyclic tension or bending. Key Eng. Mater.
2008, 378–379, 341–354. [CrossRef]

15. Couroneau, N.; Royer, J. Simplified model for the fatigue growth analysis of surface cracks in round bars
under mode I. Int. J. Fatigue 1998, 20, 711–718. [CrossRef]

16. Carpinteri, A.; Vantadori, S. Sickle-shaped surface crack in a notched round bar under cyclic tension and
bending. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 223–232. [CrossRef]

17. Ayhan, A.O. Simulation of three-dimensional fatigue crack propagation using enriched finite elements.
Comput. Struct. 2011, 89, 801–812. [CrossRef]

http://dx.doi.org/10.1007/BF00681556
http://dx.doi.org/10.1016/0013-7944(85)90027-X
http://dx.doi.org/10.1016/0013-7944(86)90144-X
http://dx.doi.org/10.1111/j.1460-2695.1987.tb00460.x
http://dx.doi.org/10.1111/j.1460-2695.1992.tb00039.x
http://dx.doi.org/10.1111/j.1460-2695.1996.tb00182.x
http://dx.doi.org/10.1016/j.ijfatigue.2005.05.006
http://dx.doi.org/10.1016/0142-1123(93)90072-X
http://dx.doi.org/10.1111/ffe.12092
http://dx.doi.org/10.4028/www.scientific.net/KEM.378-379.341
http://dx.doi.org/10.1016/S0142-1123(98)00037-1
http://dx.doi.org/10.1111/j.1460-2695.2009.01332.x
http://dx.doi.org/10.1016/j.compstruc.2011.01.013


Appl. Sci. 2019, 9, 1751 14 of 14

18. Shin, C.S.; Cai, C.Q. Experimental and finite element analyses on stress intensity factors of an elliptical
surface crack in a circular shaft under tension and bending. Int. J. Fatigue 2004, 129, 239–264. [CrossRef]

19. Yang, F.P.; Kuang, Z.B.; Shlyannikov, V.N. Fatigue crack growth for straight-fronted edge crack in a round
bar. Int. J. Fatigue 2006, 28, 431–437. [CrossRef]

20. Cai, C.Q.; Shin, C.S. A normalized area-compliance method for monitoring surface crack development in a
cylindrical rod. Int. J. Fatigue 2005, 27, 801–809. [CrossRef]

21. Liu, C.; Chu, S. Prediction of shape change of corner crack by fatigue crack growth circles. Int. J. Fatigue
2015, 75, 80–88. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/B:FRAC.0000047784.23236.7d
http://dx.doi.org/10.1016/j.ijfatigue.2005.07.036
http://dx.doi.org/10.1016/j.ijfatigue.2005.01.005
http://dx.doi.org/10.1016/j.ijfatigue.2015.02.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Numerical Propagation Process 
	Three-Parameter Model 
	Fatigue Crack Propagation 
	Numerical Simulation 

	Results and Discussion 
	Evolution of the Crack Shape 
	Comparison with Other Numerical Solutions and Experimental Results 

	Conclusions 
	References

