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Featured Application: Concentrated solar power (CSP) plant with open volumetric receiver.

Abstract: By using metallurgical slag from an electric arc furnace that is otherwise not recycled but
deposited as an inventory material in thermal energy storage for concentrated solar power plants, it is
possible to make a significant step forward in two transformation processes: energy and raw materials.
As this type of slag has not been considered as an inventory material for this purpose, it is important
to clarify fundamental questions about this low-cost material and its storage design. In this paper,
design studies of slag-based thermal energy storage are carried out. Different slag-specific design
concepts are developed, calculated and evaluated by a method based on established management
tools. Finally, concepts for further investigations are defined. The highest aptitude value and the
lowest risk value are achieved by the vertical storage design with axial flow direction. Therefore, it is
taken as the lead concept and will be considered in complete detail in further research. Also, a closer
look, but not as detailed as the lead concept, is taken at the horizontal storage with axial flow and the
vertical storage with radial flow direction.

Keywords: thermal energy storage (TES); slag; regenerator; concentrated solar power (CSP); quality
function deployment (QFD); failure mode and effect analysis (FMEA)

1. Introduction

Concentrated solar power (CSP) plants, in conjunction with photovoltaic systems, can contribute
to a safe, clean and cost-effective electric power supply in the Earth's equatorial sun-belt [1]. The use
of heat storage allows CSP plants to generate dispatchable electricity, and thus make an important
contribution to the global energy transition [2].

To protect the environment and conserve primary raw materials, a raw material transition is
also required [3–5]. This succeeds only with the efficient use of primary raw materials and the most
complete possible use of secondary raw materials. This is addressed by German and European
politicians through the German Resource Efficiency Programme II [6] and the EU Initiative for a
Resource Efficient Europe [7].

By using metallurgical slag from an electric arc furnace (EAF), that is otherwise not recycled but
deposited as an inventory material in thermal energy storage (TES) for CSP plants, it is possible to
make a significant step forward in two transformation processes: energy and raw materials.
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2. State of the Art of TES in CSP Plants

In CSP plants, molten salt technologies have been extensively deployed in CSP applications for
the storage of thermal energy prior to steam or electricity generation. An example among many is the
Solana power plant with 280 MWe and a storage system able to supply full power for six hours. [2]

The technology of regenerator-type storage is less developed, but has the potential for higher
efficiency and lower costs. In particular, the application of regenerators in CSP power plants with an
open volumetric receiver seems to be a promising approach, as shown in Figure 1.
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Figure 1. Flowsheet of slag reuse as a thermal energy storage (TES) inventory for a concentrated solar
power (CSP) plant with an open volumetric receiver.

The Jülich solar power tower in Germany, seen in Figure 2, is currently the only plant in the world
to be based on this technology. This experimental central receiver plant was inaugurated in 2009 to
facilitate the further development of this technology. The erection and operation of the plant have been
accompanied by a research program, whose objective is to cover the remaining uncertainties around
design and operation and to further promote the development of the technology towards a commercial
deployment. As a part of this work program, heat storage operation and design are also addressed [8].

As mentioned before, the plant uses an open volumetric receiver technology developed at
DLR (German Aerospace Centre). In its primary cycle, air at atmospheric pressure is heated up to
temperatures of about 700 ◦C. This solar heat then powers a steam generator, producing steam at
100 bars and 500 ◦C and driving a 1.5 MWel turbine-generator set. In parallel to the steam generator
and receiver, thermal energy storage is integrated into the power cycle, as seen in Figure 1. It is
implemented as an air-cooled regenerator storage system, an installation that is still unique in this
application. The state of the art is set with the recently completed HOTSPOT project [9].

Generally, with regenerator-type storage, temperatures of up to 1000 ◦C and even more can be
realized by using solid storage material such as commercially available bricks or beds of smaller
particles made of oxide ceramic material [10]. Recent work [11–14] is investigating low-cost alternative
inventory materials such as low-temperature-fired clay bricks and magmatic natural stones.
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Figure 2. Jülich solar power tower (Germany).

An alternative to this is slag from an electric arc furnace (EAF). Since this type of slag has not
been considered as an inventory material for this purpose, it is important to clarify fundamental
questions about the material and TES design. These questions are addressed by the REslag project.
The main objective of the project is to make an effective valorization of the steel slag and reuse it as
a feedstock for four innovative applications, one of which is thermal energy storage systems in CSP
applications [15,16].

The degradation effects of the fluid by direct contact with the slag, which are reported, for example,
by Grosu et al. [17] in another type of slag, are, in contrast to molten salt, not of importance in the air
or can be equalized by correspondingly high air exchange rates. The issue of safety in the context of
molten salt is also to be assessed much more critically than with air. The safety regulations for slag
are also manageable with this system, as it is a closed circuit and the slag used is classified by the
manufacturer as a non-hazardous substance.

In this paper, design studies of slag-based thermal energy storage are carried out. Different design
concepts are developed, calculated and evaluated. Finally, the lead concepts for further investigation
in the project are defined.

3. Design of Slag-Based TES

3.1. CSP Plant Target Specifications

Since the Jülich solar power tower (see Figure 2) is the only facility of its kind, and is only a
demonstration plant, no targets for large systems can be defined. Under these circumstances, literature
research was independently performed. However, as no consistent record of a specialized plant exists,
the collected data can only serve as guide values. Accordingly, the target figures were determined on
the basis of existing knowledge, as shown in Table 1.
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Table 1. Concentrated solar power (CSP) plant specifications.

Description Characterization Comments

Rated net power output of CSP plant 150 MWel

TES capacity 6.5 h
(2.21 GWh)

Considering the solar multiple factor and
charging duration.

Temperature at TES inlet
while charging 700 ◦C

Temperature at TES inlet while
discharging 120 ◦C

Max. temperature drop at TES outlet
while discharging 60 ◦C

Max. pressure loss through the TES
while discharging 100 mbar

Discharging mass flow 780 kg/s At design point (12 p.m., 21 March)
Max. charging mass flow through TES 1080 kg/s At design point (12 p.m., 21 March)
Mean charging mass flow through TES 706 kg/s On design day (21 March)

Charging duration 8 h
Assumption: sinusoidal course of the sun
Considering the solar multiple factor and

sunshine hours
Hours of sunshine on design day

(21 March) 12.2 h Location: Huelva (Spain)

Solar multiple 2 At design point (12 p.m., 21 March)

3.2. Considered TES Designs

Various possible basic TES designs are tested for suitability and compared to determine the most
suitable option for slag-based TES. Figure 3 shows an overview of the options considered. They differ
in their positioning and flow direction, namely, axial, radial and meandering.
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The comparison of the vertical and the horizontal variants reveals that the axial and radial
concepts are rotated only by 90 degrees, while the meander-shaped variant is fundamentally different.
In the vertical variant, it goes radially from the inside to the outside, thus also increasing the flow
cross-sectional area. In the horizontal variant, the size of the cross-sectional area always remains the
same; there is only a change in the direction of flow from one chamber to the next.

While the meander-shaped variant is a fundamental innovation, the axial variant has previously
been considered and represents the state of the art in vertical position. The radial flow is also very
innovative but has been studied in [11,12]. The special feature here is the constantly changing
cross-sectional area along the flow path. In order to get a better understanding of each concept and the
reason why it is considered, the main advantages and disadvantages are listed in Table 2.
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Table 2. Advantages and disadvantages of considered thermal energy storage (TES) designs.

TES Option Advantage Disadvantage

Vertical TES

• Easy to fill
• Insulation can be placed easily
• Space saving
• Most previous knowledge

• Bottom piping can
be complex

Horizontal TES

• Reduction in height
• Distributor is easier to mount
• Rectangle-shaped instead of

cylindrical, easier to support
storage walls

• More complicated to fill
• Needs more ground space

than vertical

Axial flow
• Basic concept
• Most previous knowledge

• Lower degree of uniformity
compared with radial flow

Radial flow
• Reduced distributor space
• Better degree of uniformity

compared with axial flow
• Overflow losses

Meander-shaped flow
• Higher storage degree

of utilization
• Reduced storage height

• Increased filling effort
• Higher inventory costs

(additional installations)

3.3. Pre-Design of Storage

By using simplified models based on the Λ-Π-method [18] at a specific site taking into consideration
the course of the sun, the geometrical properties for each thermal energy storage design from Figure 3
under different parameter variations are calculated. Here, just the results for the vertical TES are
presented as an example.

Dimensioning of TES

The given CSP plant specifications (Table 1) and the slag properties listed in Table 3 are included
in the calculation of the heat storage dimensions. The results are shown as fields in Figure 4.

Table 3. Electric arc furnace (EAF) slag characteristics [19].

Description Characterization Comments

Density 3430 kg/m3

Thermal conductivity 1.43 W/(m K) at 500 ◦C
Specific heat capacity 0.933 kJ/(kg K) at 500 ◦C

Depending on the slag particle diameter used, the maximum pressure loss is 100 mbar with a
storage diameter of approx. 38 to 44 m and a storage height of 8 to 12 m. The large diameters are
structurally more challenging, so the heat storage is divided into three smaller modules connected
in parallel.
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3.4. Comparative Assessment and Definition of a Lead Concept

Quality Function Deployment (QFD) and Failure Mode and Effect Analysis (FMEA)

For the identification of the lead concept, an evaluation method was developed, which is essentially
based on QFD and FMEA, and includes an aptitude analysis and a risk analysis. Both methods, QFD
and FMEA, are established management tools used in product development. While the aim of QFD
is to successfully fulfil the wishes of the customers in their products and services, the use of FMEA
attempts to minimize potential errors and risks. Extensive information on QFD and FMEA can be
found elsewhere [20,21]. The two methods have been simplified for the present usage for deciding
which design of slag-based TES is the best and has the lowest risks. The analysis approach used is
described by Figure 5.

Firstly, criteria of the aptitude analysis were collected and divided into two different groups,
economical and technical demands, with the first group weighted by 0.6 and the second by 0.4. This
is due to the fact that the main focus is on cost reduction by using a very inexpensive inventory
material—provided that the functionality is performed. All points considered in the aptitude analysis
are listed in Table 4. Secondly, these criteria were prioritized among each other by pair-by-pair
comparisons and the listed weighting factor of each criterion was generated accordingly.
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Table 4. Criteria for aptitude analysis.

Group Criterion Description Weighting Factor

Economical demand

Low investment costs

Will be calculated in a simplified way;
includes inventory, containment and

liner (protects insulation) costs.
Simple designs without internals for
flow guidance and distribution have

advantages here.

7.1

Low operating costs

Will be calculated in a simplified and
qualitative way; includes, e.g.,

auxiliary power for ventilation, costs
for inventory change etc.

5.9

High storage degree
of utilization

Is calculated by thermal simulation;
indicates the utilization of the

inventory, that means how much of
the inventory undergoes the full

temperature increase.

0.6

Low space need Base area of container is considered as
well as the needed container number. 1.8

High operational
availability

Is reduced, for example, by out of
order or maintenance times of the TES.

Possible bypass flows due to
settlement effects and hazards to

thermal insulation at hot points due to
high loads are taken into account.

10.0

Long lifetime

Of the TES and its subcomponents.
The higher the inventory level, the

higher the forces on inventory,
insulation and container. The lower
the inventory level, the more gentle
on the materials and the higher the

potential lifetime.

10.0
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Table 4. Cont.

Group Criterion Description Weighting Factor

Technical demand

Low expense of
protection for insulation

The basis is an inner liner which is
used from a storage height of 10 m. 4.1

High storage degree of
uniformity

Ratio of effective emitted energy over
discharge duration to maximal

possible energy withdrawal over
discharge duration.

9.0

Low complexity Of the construction and connection. 7.2

High degree of maturity

Commercial availability of
components. Concepts already
available on the market must be

evaluated as better than those for
which only test setups or even only

drawings exist.

10.0

Good scalability To larger or smaller storage 8.7

Low expense of system
integration Of the TES. 6.7

Low expense of fluid
distribution Good and even fluid distribution. 3.8

Low expense of
insulation Inner and outer insulation of the TES. 3.6

Low expense of filling Filling the TES with slag pebbles. 2.1

Low maintenance effort
Level of access. In particular, good

accessibility at all points is
crucial here.

6.7

Low cleaning effort of
working fluid

Filter mandatory? Cleaning amount
of filter. 4.6

Low safety effort Safety must be ensured but at
what expense? 1.3

Each concept was then evaluated according to the criteria developed previously. For this purpose,
a so-called aptitude factor was introduced. The design results presented in the previous section are
also taken into account here. The multiplication of these two factors and the subsequent addition of
the individual criterion values results in an aptitude value for each concept. The results are shown in
Figure 6.

The highest value is achieved by the vertical TES with axial flow direction (83%), followed by
the horizontal TES with axial flow direction (75%) and the vertical TES with radial flow direction
(72%). Mainly, this is caused by high aptitude values in the areas that have high weighting factors.
In particular, operational availability, lifetime, investment costs and degree of maturity should be
mentioned here. While horizontal setups promise longer lifetimes due to less inventory material
failure, the more or less state-of-the-art vertical axial design achieves better scores with the degree
of maturity, operational availability and investment costs criteria. Radially flowed variants have
significant advantages in terms of operating costs due to low pressure losses along the flow path and
the storage degree of uniformity. In the overall assessment, however, the vertical axial concept is
slightly ahead of the horizontal axial and vertical radial concept.
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As a second step, the risk analysis was implemented. As with the aptitude analysis mentioned
above, this was done in several steps. First, possible risks were identified (see Table 5) and estimated
in relation to the potential damage when the damaging event occurred. This leads to a so-called
damage factor (see Table 5). Secondly, each concept was also evaluated according to the probability of
occurrence of the damaging events. A probability factor was therefore generated. The third step was
carried out as in the aptitude analysis: the factors were multiplied and each risk value was summed.
This results in a risk value for each concept, as shown in Figure 7.
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Table 5. Criteria for risk analysis and damage factors.

Criteria Description Damage Factor *

Thermal design uncertainties Uncertainties in material parameters,
model uncertainties 5

Thermomechanical
design uncertainties

Uncertainties in material parameters,
model uncertainties 3

Fluid mechanical
design uncertainties Model uncertainties 5

Material failure Inventory, insulation 4

Corrosion
Inventory, insulation, container, piping

(everything that is in contact with the high
temperature fluid (HTF))

7

Operating restrictions due to the
complexity of the storage system

Piping, amount of container, storage
installations, isolation equipment 4

Operational safety Outer damages which can influence the
operational safety, e.g., fluid leaking 9

Economic uncertainties False estimation of investment and
operational costs 2

Lack of competition for plant
components

Low amount of providers or no provider for
essential components 3

* High damage factor (7–10): Hazard to human life; effect on whole plant (required changes); large effect on plant
performance, lifetime and availability. Medium damage factor (4–6): derated operation possible; effect on related
components (required changes); medium effect on plant performance, lifetime and availability. Low damage factor
(1–3): effect on TES only (required changes); low effect on plant performance, lifetime and availability.

The lowest value is achieved by the vertical TES with axial flow direction (24%) followed by the
horizontal TES with axial flow direction (28%). As there are no different probabilities of occurrence
for the risks with a high damage factor (operational safety and corrosion), the results are mainly
influenced by criteria with medium damage factors. In particular, thermal and fluid mechanical
design uncertainties as well as material failure should be mentioned here. While horizontal setups
promise less inventory material failure, the more or less state-of-the-art vertical axial design achieves
lower probability factors with the design uncertainties criteria. Radially flowed and meander-shaped
variants have significant disadvantages in terms of design uncertainties. Although the thermal design
uncertainties are small in themselves, the fluid mechanical design uncertainties have to be assigned
a higher probability of occurrence due to possible bypass flows in the case of horizontal axial flow
TES. In the overall assessment, however, the vertical axial concept is slightly ahead of the horizontal
axial concept.

At the end of the QFD analysis, both aptitude values and risk values were plotted in a diagram, as
shown in Figure 8. It is important to note that a high value of risk is not necessarily problematic for a
research project because research can reduce risks.

Three of the six concepts have aptitude values above 70%. The highest value is achieved by the
vertical TES with axial flow direction, which also indicates the lowest value of risk. In summary, this
is an expression of the techno-economic optimum and the highest degree of maturity. It is therefore
defined as the lead concept and will be fully taken into account in the further course of the project.
Also, a closer look, but not as detailed as the lead concept, is taken at the horizontal TES with axial flow
and the vertical TES with radial flow direction. This is done due to the fact that these two concepts also
achieved a high aptitude value and thus have high potential.

In order to demonstrate the competitiveness of slag-based TES and to further reduce technical
uncertainties, detailed research on materials and design as well as pilot plant trials are being conducted
as part of the REslag project.
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4. Summary and Conclusions

The use of metallurgical slags from EAF as inventory material for TES for CSP plants has not
yet been intensively investigated and offers the opportunity to save raw materials and energy at the
same time. Economically, the material offers the advantage of being a very cost-effective alternative to
conventional inventory materials for solid heat storage. Since, however, the thermophysical properties
of the slags under consideration are very similar to those of conventional refractory materials and
ceramics, the TES concepts which are structurally simple and functional and pose the lowest technical
risks will prevail.

In this paper, different slag-specific design concepts are systematically evaluated. For this purpose,
an evaluation procedure based on QFD and FMEA was developed, which makes it possible to
objectively evaluate the suitability and the risk of different concepts and thus to define the most
suitable concepts. In the concepts examined here, which differ in their different installation methods
and flow directions, the vertical TES with axial flow direction performed best, as it has both the best
aptitude value and the lowest risk value. It forms the techno-economic optimum. The partly better
functionalities of the other concepts are not so decisive here. It is therefore defined as a lead concept
and will be further developed in the course of the REslag project. The horizontal TES with axial flow
and the vertical TES with radial flow direction will also be investigated in less detail.
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