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Abstract: CO2 fracturing has unparalleled advantages in the reservoir reform which can significantly
improve oil and gas recovery in unconventional oil and gas resources. The wellbore flow behavior is
one of the fundamental issues of CO2 fracturing. A model of flow and heat transfer in the wellbore
is developed in this paper, and wellbore temperature and pressure are coupled using an iterative
method. The model is validated by measured data from the field. Wellbore pressure, temperature,
CO2 properties, and phase state along depth are observed and a sensitivity study is conducted to
analyze the controlling factors for CO2 fracturing. Results show that displacement is the key factor
affecting CO2 flow behavior in the wellbore and injection temperature has greater influence on CO2

flow behavior than injection pressure and geothermal gradient; however, excess injection temperature
brings enormous cost in wellbore pressure. CO2 phase state is related to working parameters and it
tends to stay in liquid state under higher displacement, which is matched with field tests. This study
can help optimize the working parameters of CO2 fracturing.

Keywords: Carbon dioxide fracturing; Wellbore flow model; Heat transfer; Phase state; Sensitivity
analyses

1. Introduction

Carbon dioxide (CO2) is an environmentally friendly waterless working fluid for fracturing [1].
CO2 fracturing has been studied since the 1960s under the background of growing oil and gas demand.
So far, CO2 fracturing has been applied in many countries such as America, Canada, Germany,
and China [2–4], showing unexceptionable advantages especially in unconventional oil and gas
resources. Firstly, the mechanical properties of reservoir rock are changed after CO2 immersion [5],
which can reduce the breakdown pressure and facilitate secondary cracking. Secondly, the waterless
CO2 inhibits the swelling of clay mineral and eliminates water sensitivity [6], improving the permeability
of the reservoir to some extent, which gives this technology enormous prospects. Thirdly, the low
additive content in CO2 fracturing fluid leads to the high flowback rate. Last but not least, CO2 can
increase the mobility of oil and replace the adsorbed CH4 [6–8], enhancing oil and gas recovery (EOR).
Furthermore, the mitigation of greenhouse gases such as CO2 has become an increasing global demand
in recent years [9], and CO2 fracturing has the potential of improving the development of carbon
capture [10–13], utilization, and storage (CCUS), which has both environmental and economic benefits.

Compared with traditional hydraulic fracturing, the pressure at the wellhead of CO2 fracturing
increases slowly and fluctuates, as shown in Figure 1, which is related to the compressibility of CO2.
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The temperature–pressure condition and the properties of CO2 are coupled in the wellbore due to
the compressibility of CO2. Therefore, the wellbore flow and heat transfer behaviors are essential
conditions to optimize the operating parameters during CO2 fracturing.
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Figure 1. (a) Fracturing curve of CO2 fracturing; (b) fracturing curve of traditional hydraulic fracturing.

Many studies have been conducted on fluid flow and heat transfer in the wellbore since the
1950s. Ramey [14] proposed a semisteady model which only considered the unsteady heat transfer
in the stratum outside the wellbore and first used the overall heat transfer coefficient to solve the
equation. A number of later semisteady wellbore flow models were mostly improvements to Ramey’s
model. Raymond [15] developed a nonsteady model for temperature distribution during drilling fluid
circulation, which was the basis of later nonsteady wellbore flow models. Eickmeier [16] presented a
finite difference model for the early transient temperature performance in the wellbore during injection
and production, appropriate for short-term operations such as fracturing. Hasan and Kabir [17–19]
presented a solution to continuity, momentum, and energy conservation equations, and developed
wellbore heat transfer models for various situations. Wang et al. [20] quantified the heat generated by
the flow friction of high-yield production wells. As for CO2 flow in the wellbore, the sensitivity of CO2

properties to temperature and pressure results in the complexity of flowing temperature and pressure
calculation. Plenty of research is devoted to the coupling of temperature and pressure during the CO2

injection or circulation process in the wellbore. Cranshaw [21] developed a numerical model of CO2

nonisothermal flow for production or injection wellbores, which matched single- or two-phase flow
of CO2. Gupta [22] first proposed drilling with supercritical CO2 and established a simplified model
of CO2 circulation in the wellbore. Al-Adwani [23] quoted the high-precision Span–Wagner state
equation for thermodynamic properties of CO2 and improved the heat transfer model for supercritical
CO2 wellbore circulation. Many researchers [24–27] adopted the compressible fluid control equations
to describe CO2 flow in the wellbore in recent years, realizing the coupling of CO2 properties with flow
conditions such as temperature and pressure under different working environments to a large extent.
Furthermore, a flow friction coefficient model considering CO2 compressibility was developed which
improves the accuracy of the pressure.

In this study, a wellbore flow model coupling CO2 properties and temperature–pressure condition
for CO2 fracturing is developed. The model is solved by an iterative method. The temperature,
pressure, and CO2 properties profiles are analyzed based on the calculation results and the calculation
is verified by data from CO2 fracturing field test. Finally, the sensitivity analysis on the wellbore flow
field is conducted.
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2. Mathematic Model of Wellbore Flow

During CO2 fracturing, hypothermic liquid CO2 is pumped into the wellbore from the wellhead
and gets heated [26,27] due to thermal absorption from the stratum. The compressibility of CO2 leads
to the coupling of CO2 physical parameters with wellbore temperature–pressure conditions. Therefore,
a theoretical model is proposed to describe the wellbore flow of the CO2 fracturing injection process.

The mathematical models are based on the following assumptions: 1O the unsteady-state heat
transfer exists only in the stratum outside the hole wall; 2O the fluid flow and heat transfer in the
wellbore are in steady state; 3O the effects of longitudinal heat transfer and radiative heat transfer are
ignored. The Hasan Equation shown in Appendix A is mostly used to deal with the unsteady-state
heat transfer.

2.1. Temperature Field Model

The differential element of the wellbore is shown in Figure 2. The origin of coordinates is at the
wellhead and the forward direction is downward along the axis. The steady-state mass conservation
equation and energy conservation equation [28] in the z direction are as follows:

d(ρv)
dz

= 0 (1)

∂
∂z

[
ρv

(
h +

v2

2

)]
=

1
A

dq
dz

+ ρvg cosθ (2)

where h is the specific enthalpy of the fluid, J/kg; v is the fluid velocity, m/s; t is circulation time, s; z is
the depth, m; ρ is density of CO2, kg/m3; A is cross-sectional area, m2; q is the heat transfer per unit
time, W; θ is the deviation angle, rad; g is acceleration of gravity, m/s2.
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Substituting the continuity equation into the energy equation, Equation (2) can be simplified as:

dh
dz

=
1
M

dq
dz

+ g cosθ− v
dv
dz

(3)

where M is mass flow rate, kg/s.
According to the fundamental laws of thermodynamics, the expression of enthalpy change is

dh = cpdT − cp JTdp (4)

where cp is the specific heat capacity of fluid, J/(Kg·K); Jt is Joule–Thomson coefficient, K/MPa; p is the
pressure of fluid, MPa.
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The temperature increment in a finite element can be obtained by combining Equations (3) and (4):

dT
dz

=
1
cp

(
1
M

dq
dz

+ g cosθ− v
dv
dz

)
+ JT

dp
dz

(5)

The heat transfer between CO2 and the stratum outside the wellbore is

dq =

(Te − T f

Re f

)
dz (6)

where Te is the formation temperature, K; Tf is fluid temperature in the wellbore, K; Ref is thermal
resistance of formation to the wellbore fluid. The expression of Ref is shown in Appendix B.

2.2. Pressure Field Model

The pressure drop can be derived from the momentum conservation equation of compressible
fluid. On the basis of assumptions, when the wellbore flow is in steady state, the pressure drop of fluid
is given by:

dp
dz

= ρg cosθ− ρv
dv
dz
− f v2 ρ

2di
(7)

where p is the pressure of fluid, MPa; ρ is the density of fluid, kg/m3; v is flow velocity, m/s; di is the
inner diameter of the pipe, m; f is the friction coefficient of fluid, dimensionless.

Thanks to the low viscosity of CO2 and the large fluid mass flow rate during CO2 fracturing,
it is easy to reach turbulence in the wellbore. Regarding the calculation of the friction coefficient,
the formula proposed by Z.Y. Wang [29] was chosen:

1√
f
= −2.34lg

(
ε

17.2de
−

9.26
Re

lg
((

ε
29.3de

)0.95
+

(18.35
Re

)1.108))
(8)

where ε is the absolute roughness, m; de is equivalent diameter, m; Re is Reynolds number,
dimensionless.

3. Solution Procedure

Compared with traditional hydraulic fracturing fluid, the properties of CO2 are no longer constant
for CO2 fracturing. To avoid the calculated errors accumulating with well depth, the physical property
model with high accuracy is selected and a coupling computation method is adopted.

3.1. Physical Properties of CO2

The properties of CO2 are sensitive to the change of temperature and pressure. Tiny changes
in temperature and pressure may cause significant fluctuations in CO2 properties, and the phase
change of CO2 could also be reflected by fluctuations in CO2 properties, so it is important to calculate
properties of CO2 accurately.

The Span–Wagner equation [30] has high accuracy in calculating thermodynamic properties of
CO2, especially in supercritical areas. Therefore, the Span–Wagner equation is chosen to calculate
thermodynamic properties of CO2 including density, specific heat capacity, Joule–Thomson coefficient,
and specific enthalpy in this paper. For transfer properties of CO2, the Vesovic model [31] is used to
calculate the heat conductivity of CO2, and the Fenghour model [32] is used to calculate the viscosity
of CO2.

3.2. Coupling Computation Methodology

During the injection process of CO2 fracturing, the temperature and pressure in the wellbore and
CO2 properties are coupled with each other. Both temperature and pressure vary with well depth
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along with CO2 flow. Therefore, the calculation of temperature, pressure, and CO2 properties must be
coupled in the process of iteration.

The wellbore is divided into N units along the direction of well depth. To ensure the calculation
unit is much shorter than the well depth, the CO2 properties of each and every calculation unit
can be considered as constant. The injection temperature (T0) and pressure (p0) are regarded as
initial conditions.

For the ith calculation unit, the iterative method is as follows:
(1) The temperature and pressure of (i-1)th calculation unit are used as the starting of the iteration,

marked as Ti
0, pi

0, so the temperature (dT) and pressure (dp) increment can be estimated according to
Equation (5) and Equation (7). Then, temperature and pressure of ith calculation unit, marked as Ti

1,
pi

1, can be obtained.
(2) The new temperature and pressure increment, dT’ and dp’, also can be calculated with the

known of Ti
1, pi

1.
(3) The calculated dT’ and dp’ are compared with the initial dT and dp. If the differences between

the calculated values are within the error tolerance, the calculation ends and the calculation of the next
unit begins; if not, replace Ti

0and pi
0 with new values and return to (1).

4. Results and Discussion

The original parameters used in the model are shown in Table 1, and the wellbore configuration is
shown in Figure 3. All above conditions are from a well which actually conducted CO2 fracturing in the
Sulige gas field Sudong block. The measured data at the bottom hole, such as injecting displacement,
bottom hole pressure, and bottom hole temperature, are exhibited in Figure 4. In order to match the
actual CO2 fracturing, tubing and annulus synchronous injection is applied as the injection mode
during the calculation in this paper, noted as casing injection.

Table 1. Basic parameters for the model.

No. Variables Symbol Value Unit

1 Well depth H 3250 m
2 Borehole diameter dw 0.121 m
3 Formation pore pressure ppo 28.16 MPa
4 Surface temperature Teo 298 K
5 Injection temperature T0 258 K
6 Injection pressure p0 8 MPa
7 Geothermal gradient G 2.8 K/100m
8 Initial breakdown pressure pf 66.02 MPa
9 Initial formation compressible strength σc 135.077 MPa
10 Tensile strength σt σc/12 MPa
11 Initial elastic modulus E 18.7070 GPa
12 Thermal expansion coefficient of rock σm 3 × 10−5 K−1

13 Initial Poisson ratio ν 0.242 -
14 Porosity φ 0.05 -
15 Maximum horizontal in situ stress gradient σH 1.9 g/cm3

16 Minimum horizontal in situ stress gradient σh 1.45 g/cm3

17 Overburden gradient σv 2.3 g/cm3

18 Biot’s parameter α 1.0 -
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4.1. Model Validation and Wellbore Temperature–Pressure Distribution

The measured bottom hole temperature decreases with the injection of CO2 as shown in Figure 4.
In order to verify the reliability of the model, the data point with an injection time of 2 h is chosen.
The displacement of CO2 is 4 m3/min and the injection temperature and pressure are 258 K and
26.21 MPa, respectively. The measured and calculated values of bottom hole temperature and pressure
are displayed in Table 2, while the errors are within 1%, which proves the rationality of wellbore
temperature and pressure calculation.

Table 2. Model validation of wellbore flow model (injection pressure is 26.21MPa).

Q (m3/min) Comparison Items Measured Values Calculated Values Error (%)

4.0
Bottom hole temperature (K) 288.75 287.10 0.57
Bottom hole pressure (MPa) 52.81 53.22 0.78

Previous studies have shown that displacement [27] is the key factor affecting temperature and
pressure of CO2 in the wellbore. The calculations of wellbore temperature and pressure distributions
under difference displacement are shown in Figures 5 and 6.
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The pressure distribution in the wellbore under different displacement can be seen in Figure 5.
It can be seen that the wellbore pressure increases linearly with well depth increasing, while pressure
gradient increases first and then decreases with the increase of CO2 displacement; as demonstrated in
Figure 7, the bottom hole pressure increases first and then decreases with displacement increasing.
This is because wellbore pressure is affected by both the gravity head and the flow friction. With the
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increase of displacement, the magnitude of pressure increment caused by gravity head and flow friction
dominates the change of pressure gradient. According to Figures 5 and 7, when CO2 displacement is
up to 7 m3/min, wellbore pressure grows slowly with well depth due to the excessive flow friction.
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Figure 5 demonstrates the temperature distribution in the wellbore under different displacement.
It can be seen that the temperature increases with the increase of well depth, while the bottom
hole temperature decreases with displacement increasing, as shown in Figure 7. According to
Figures 6 and 7, CO2 turns from liquid state into supercritical state under low displacement; however,
it stays in liquid state until reaching the bottom hole under high displacement. This phenomenon has
been verified in field tests, as shown in Figure 4.

4.2. CO2 Phase State and Physical Properties Distribution

Because of the large difference between the injected fluid and geothermal temperature during
CO2 fracturing, CO2 would absorb heat and might undergo phase change as approaching the bottom
hole. A pressure–enthalpy diagram is adopted to analyze the phase transition process in the wellbore
for CO2 fracturing, as presented in Figure 8. During the flow process from the wellhead to the bottom
hole, CO2 transforms from liquid state into supercritical state under lower displacement, while it
stays in liquid state under higher displacement, which is consistent with the conclusion drawn from
Figures 6 and 7.
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CO2 density and viscosity profiles are illustrated by Figures 9 and 10. It can be seen from the
diagrams that the trends of the density and viscosity of CO2 in the wellbore are matching. The density
and viscosity of CO2 both tend to rise first and then reduce along the flow direction under different
displacement, and the density and viscosity under the displacement of 1.5 m3/min are lower than those
under the displacement of 4.5 m3/min. This is related to the undulation of heat exchange and flow
friction caused by displacement increasing.
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4.3. Sensitivity Analyses on Controlling Factors for CO2 Fracturing

During CO2 fracturing, the displacement, injection temperature, and pressure can be adjusted
directly. The temperature and pressure distribution under different displacement have been analyzed
in Section 4.1, so the influence of injection temperature and pressure on wellbore flow behavior of
CO2 will be discussed in this section. Geothermal gradient is usually within a certain limit in one
block; for the Sudong block where the working well is located, the measured geothermal gradient is
2.7–3.2 K/100 m. Therefore, the effect of geothermal gradient on wellbore temperature and pressure
distribution is also considered in this section.

Figure 11 shows the influence of injection temperature on pressure and temperature distribution
of CO2 fracturing. As can be seen in Figure 11b, there is an overall rise in wellbore temperature
with the increase of injection temperature, while the temperature gradient in the wellbore almost
remains unchanged. In addition, the injection temperature is in negative correlation with wellbore
pressure, which means the pressure gradient in the wellbore reduces as injection temperature rises,
as demonstrated in Figure 11a.
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As a whole, the supercritical well depth (i.e., the well depth for CO2 reaching supercritical phase)
decreases with the increase of injection temperature, and when injection temperature exceeds critical
temperature (304.13 K), CO2 maintains supercritical state in the wellbore. However, excess injection
temperature brings enormous cost in wellbore pressure, hence, it needs to be seriously considered
whether to raise the injection temperature during CO2 fracturing.

The effect of injection pressure on pressure and temperature distribution during CO2 fracturing
is shown in Figure 12. The increase of injection pressure would lead to a rise of the whole wellbore
pressure and the pressure gradient remains unchanged according to Figure 12a. As exhibited in
Figure 12b, the whole wellbore temperature reduces as injection pressure increases, but the change is
very small.

Moreover, it can be drawn from Figures 11 and 12 that the rising temperature has a greater impact
on the wellbore flow behavior of CO2 compared to the rising pressure. This is because the physical
properties, especially density and viscosity, fluctuate sharply with a great temperature rise under the
temperature–pressure condition of CO2 fracturing.
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Figure 13 presents the influence of the geothermal gradient on the pressure and temperature
distribution in the process of CO2 flow in the wellbore. As can be seen in Figure 13, there is little
impact of geothermal gradient on wellbore pressure. Although wellbore temperature increases with
the increase of geothermal gradient, as shown in Figure 13, the increase is not obvious. The reason
for this phenomenon is that higher displacement will weaken the heat exchange between the stratum
and CO2 in the wellbore, and the temperature increment caused by geothermal gradient needs to
be accumulated with well depth, which makes the increase of fluid temperature in the wellbore
insufficient to change the wellbore pressure.

In general, the displacement and injection temperature have greater impact on CO2 flow behavior
and phase state than injection pressure under the temperature–pressure condition of CO2 fracturing.
Nevertheless, excess injection temperature has an adverse effect on wellbore pressure, so displacement
is the key factor affecting CO2 flow behavior in the wellbore during CO2 fracturing. Moreover,
the influence of thermal gradient on wellbore flow is not obvious within one block during CO2 fracturing.
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5. Conclusions

A coupled model is proposed to predict the flow field of CO2 fracturing in this paper. The model is
based on compressible fluid flow equations and solved by coupling temperature and pressure with an
iterative method. According to the calculated results, wellbore pressure, temperature, CO2 properties,
and phase state along depth are gained and a sensitivity study is conducted to analyze the controlling
factors for CO2 fracturing. The conclusions are as follows:

(1) The bottom hole pressure increases first and then decreases, and the bottom hole temperature
decreases with an increase in displacement. The bottom hole temperature tends to keep a lower level
under sustained high displacement, which has been verified in field tests.

(2) Both the pressure and temperature are highly coupled with physical properties of CO2. CO2

turns from liquid state into supercritical state under low displacement, while it tends to maintain
liquid state in the whole wellbore under high displacement.

(3) Under the temperature–pressure condition of CO2 fracturing, the injection temperature has
a greater impact on the wellbore flow behavior of CO2 compared to the injection pressure, whereas
excess injection temperature is adverse to pressure rising in the wellbore. Besides, the influence of
thermal gradient on wellbore flow is not obvious within one block during CO2 fracturing.

(4) Displacement is the key factor affecting CO2 flow behavior in the wellbore during CO2 fracturing.
Because of the good compressibility and high permeability of CO2, it is easy for CO2 to intrude

into the reservoir rock and cause rock damage. And the pressure and temperature distributions in
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the wellbore significantly affect the fracture initiation and propagation in the reservoir. According to
CO2 flow behavior in the wellbore, the fracture initiation and propagation under the real bottom hole
temperature–pressure condition can be analyzed for further research.
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Appendix A. Semianalytical Method for Formation Heat Transfer

The Hasan Equation [33] is the most widely used semianalytical method for the unsteady heat
transfer in the stratum.

The dimensionless temperature is used to represent the unsteady heat transmission of the
formation in the Hasan Equation,

TD =

1.1281
√

tD
(
1− 0.3

√
tD

)
tD ≤ 1.5

(0.4063 + 0.5 ln tD)
(
1 + 0.6

tD

)
tD > 1.5

(A1)

where tD = at
R2

e
is dimensionless time; a is thermal diffusion coefficient of formation, m2/s; t is time, s;

Re is radius of the interface between the formation and wellbore, m.

Appendix B. Thermal Resistance of Wellbore

In order to ensure the sand-carrying and fracturing scale, annulus synchronously injecting is the
most used injection mode for CO2 fracturing.

The expressions of thermal resistance between the stratum and annulus fluid, and between the
annulus and tubing fluid, are as follows, respectively,

Rea =
TD

2πλe
+

(
1

2πλca
ln

dco

dci
+

1
2πλce

ln
db
dco

+ · · ·

)
+

1
haoπdci

(A2)

Rat =
1

htiπdti
+

1
2πλt

ln
dto

dti
+

1
htoπdto

(A3)

where TD is dimensionless temperature, for characterizing the formation temperature distribution
during the circulation; λe is the heat conductivity of formation, W/(m·K); hao is the heat convection
coefficient of the outer wall in the annulus, W/(m2

·K); hti is the heat convection coefficient of the inner
wall of tubing, W/(m2

·K); hto is the heat convection coefficient of the outer wall of tubing, W/(m2
·K); λce

is the heat conductivity of the cement ring, W/(m·K); λca is the heat conductivity of casing, W/(m·K);
λt is the heat conductivity of tubing, W/(m·K); db is the diameter of the barefoot hole, m; dci is the inner
diameter of casing, m; dco is the outer diameter of casing, m; dti is the inner diameter of tubing, m; dto is
outer diameter of tubing, m.

The heat convection coefficient can be obtained by calculating the fluid Nusselt number.
The expressions of Nu at the inner wall of tubing, Equation (A4), outer wall of tubing, Equation (A5),
and outer wall of annulus, Equation (A6), are as follows.

Nu = 0.023Re0.8Prn (A4)
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NuDe = 0.02Re0.8Prn(
D2

D1
)

0.53
(A5)

NuDe = 0.023Re0.8Pr1/3(
D2

D1
)

0.45
(A6)

where Pr is Prandtl number, dimensionless; D1 and D2 are the inner and outer diameters of the annular,
m, respectively. All the expressions of Nu are derived from the Dittus–Boelter formula [34].

With the sufficient displacement of CO2 fracturing, the thermal resistance between the stratum
and annulus fluid is much smaller than that between the annulus and tubing fluid, according to the
calculation, Rat is less than 1% of Rea. Therefore, the temperature difference between the fluid in
the annulus and tubing can be ignored (i.e., the fluid temperature in the wellbore can be regarded
as a whole).
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