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Abstract: The present study proposes a new design method for a proportional-integral-derivative
(PID) control system for first-order plus dead-time (FOPDT) and over-damped second-order plus
dead-time (SOPDT) systems. What is presented is an optimal PID tuning constrained to robust
stability. The optimal tuning is defined for each one of the two operation modes the control system
may operate in: servo (reference tracking) and regulation (disturbance rejection). The optimization
problem is stated for a normalized second-order plant that unifies FOPDT and SOPDT process models.
Different robustness levels are considered and for each one of them, the set of optimal controller
parameters is obtained. In a second step, suitable formulas are found that provide continuous values
for the controller parameters. Finally, the effectiveness of the proposed method is confirmed through
numerical examples.

Keywords: PID control; FOPDT system; SOPDT system; over-damping; sensitivity function;
robust stability

1. Introduction

Proportional-integral-derivative (PID) control has been widely used because the control structure
is simple and the role of tuning parameters is clear. See [1] as example of complex industrial application.
The epoch-making rule of PID control has been investigated as the Ziegler and Nichols (ZN) method [2]
and has been studied for more than half a century [3–6].

In the control system, stability is crucially important, and therefore, robust PID control has
been studied [7,8]. Söylemez et al. have proposed a fast calculation method [9]. In this method,
the stabilizing regions in the PID parameter space are decided for a fixed proportional gain, and the
boundaries for stabilizing the proportional gain are also provided. Works [10–12] have proposed
methods for the computation of all stabilizing PI(D) controllers, where the stability regions of PI(D)
controllers are given. In [10], stabilizing PI controllers that achieve user-specified gain and phase
margins are studied, and [11] gives the computation of stability boundaries of PI controller parameters
that guarantee stability. Matušů and Prokop have proposed a method for the computation of all
possible robustly stabilizing PID controllers for interval plants [10]. On the other hand, tracking
performance also has to be improved. Since stability and tracking performance are in a trade-off
relationship, a trade-off design method is required [13–15]. However, these trade-off design methods
require complex calculations and so are unsuitable for industrial engineers.

A robust PID design method has been proposed [16,17] in which the tracking performance is
optimized subject to the prescribed stability margin. Because of its usefulness, the unified design
method has been extended from the first-order plus dead-time (FOPDT) system to the second-order
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plus dead-time (SOPDT) system [18], and a two-degrees-of-freedom (2DoF) design has also been
proposed [19]. Since these unified design methods are designed based on normalized plant models,
the unified approach does not need a different solution whenever a different control system is designed.

The present method is inspired by the work presented in [18]. In this work, both FOPDT and
SOPDT are considered. In a unified way, both process models’ structures are considered and an
optimal PID controller is adjusted for servo tracking and the disturbance rejection. However, in this
approach, robustness is considered by simply adjusting the controller proportional gain. In the current
work, a similar problem is faced, but the robustness is introduced in its full affectation of the controller
parameters. Obviously, this affects the expression of all three controller parameters but allows for the
improvement of performance. The rest of the paper is structured as follows. In Section 2, the controlled
system model and the design objective are described. Section 3 gives the proposed PID tuning method,
and the effectiveness of the proposed interpolation method is confirmed through numerical examples
in Section 4. Finally, concluding remarks are presented in Section 5.

2. Control System and Design Objective

In this section, the optimization problem and control problem elements are presented. First of all,
the process model and controller equations are considered, followed by the optimization function and
robustness constraint. Prior to performing the optimization and presenting the corresponding results,
the process model and controller equations are presented in normalized form.

2.1. Plant and Controller

A controlled plant is expressed as an over-damped second-order plus dead-time system given by
the following transfer function:

P(s) =
K

(Ts + 1)(aTs + 1)
e−Ls, (1)

where K, L, and T are the gain, the dead-time, and the time constant, respectively. Moreover, a denotes
the ratio of two time constants, and its range is 0 ≤ a ≤ 1. It is worth noting that with the specific
choice a = 0, the FOPDT case is covered.

This plant is controlled by a one-degree-of-freedom (1DoF) PID control law defined as follows:

U(s) = C1(s)E(s)− C2(s)Y(s) (2)

C1(s) = Kp

(
1 +

1
Tis

)
, (3)

C2(s) = Kp

(
Tds

(Td/N)s + 1

)
, (4)

E(s) = R(s)−Y(s),

where U(s), Y(s), and R(s) are the control input, the plant output, and the reference input, respectively.
In the PID control law, Kp, Ti, and Td are the proportional gain, the integral time, and the derivative
time, respectively. The derivative compensation just affects the feedback signal and is filtered by a
first-order transfer function to prevent the noise effect, in which the range of filter constant N is usually
from 5 to 33 [5]. Here, N is set to 10 without loss of generality. The design objective of the present
study is to decide the PID parameters such that a performance function is minimized, subject to the
prescribed robust stability.
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2.2. Performance Function and Constraint

First, the integral of absolute error (IAE) is used in the performance function, which is defined
as follows:

J =
∫ ∞

0
|e(t)|dt =

∫ ∞

0
|r(t)− y(t)|dt. (5)

Next, the constraint condition for assigning robust stability is also introduced. The sensitivity
function of the discussed system, S(s), is defined as follows:

S(s) =
1

1 + P(s)C(s)
, (6)

C(s) = C1(s) + C2(s). (7)

The maximum value of Equation (6), Ms, is decided as follows:

Ms = max
ω

1
|1 + P(jω)C(jω)| . (8)

The relationship between Ms and the gain margin (gm) and that between Ms and the phase margin
(φm) are as follows [3,4]:

gm ≥ Ms

Ms − 1
, (9)

φm ≥ 2 arcsin
1

2Ms
. (10)

Therefore, robust stability is achieved by satisfying the following constraint:

|Md
s −Ms| ∼= 0, (11)

where Md
s denotes the desired (prescribed) robustness. In the present study, the prescribed robustness

is selected in the rage from 1.4 to 2.0 [18,19].

2.3. Normalized Process Model and Controller

In the proposed method, the controller parameters are optimized for the following normalized
controlled plant:

P̂(ŝ) =
1

(ŝ + 1)(aŝ + 1)
e−τ0 ŝ, (12)

Ĉ1(ŝ) = κp

(
1 +

1
τi ŝ

)
, (13)

Ĉ2(ŝ) = κp

(
τd ŝ

(τd/N)ŝ + 1

)
. (14)

Here, κp, τi, and τd are the following normalized PID parameters:

κp = KpK, (15)

τi =
Ti
T

, (16)

τd =
Td
T

, (17)

and τ0(= L/T) is the normalized dead time.
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In the proposed method, in order to optimize the performance with respect to tracking and
disturbance error such that the prescribed robust stability is achieved, the normalized PID parameters
are decided based on the constrained optimization problem so that Equation (5) is optimized subject
to Equation (11).

3. Unified Optimal PID Tuning with Robust Stability

In the present study, the normalized PID parameters are optimized for the servo and regulation
performances, where a is set to be from 0 to 1.0 in increments of 0.1, and τ0 is set to be from 0.2 to 2.0 in
increments of 0.1.

In the present study, the optimal parameters are obtained numerically with the MATLAB function
fmincon (Mathworks, Inc., Natuck, MA, USA), where the interior-point algorithm is used and the
constraint Md

s is set to 1.4, 1.6, 1.8, and 2.0. In the servo optimization process, the reference input r(t)
is set as a unit step function, and the disturbance is not given. On the other hand, in the regulation
optimization process, as a unit step function, the distrubance d(t) is added to the control input, and the
reference input is set to 0.

3.1. Servo Optimization

The optimized normalized PID parameters for the servo tracking optimization in the given finite
plants are plotted as ◦ symbols in Figures 1–3.
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Figure 1. Calculated and approximated optimal κp in the servo mode.
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Figure 2. Calculated and approximated optimal τi in the servo mode.
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Figure 3. Calculated and approximated optimal τd in the servo mode.

To obtain the unified design method, the obtained normalized PID parameters are approximated
by the following equations:
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κp(a, τ0, Md
s ) = a0(a, Md

s ) + a1(a, Md
s )τ

a2(a,Md
s )

0 , (18)

a0(a, Md
s ) =

α0(Md
s ) + α1(Md

s )a + α2(Md
s )a2

α3(Md
s ) + a

,

a1(a, Md
s ) =

α4(Md
s ) + α5(Md

s )a + α6(Md
s )a2

α7(Md
s ) + a

,

a3(a, Md
s ) = α8(Md

s )a5 + α9(Md
s )a4 + α10(Md

s )a3 ,

+ α11(Md
s )a2 + α12a + α13,

τi(a, τ0, Md
s ) = b0(τ0, Md

s )ab1(τ0,Md
s ) + b2(τ0, Md

s ), (19)

b0(τ0, Md
s ) = β0(Md

s ) + β1(Md
s )τ

β2(Md
s )

0 ,

b1(τ0, Md
s ) = β3(Md

s ) + β4(Md
s )τ

β5(Md
s )

0 ,

b2(τ0, Md
s ) = β6(Md

s ) + β7(Md
s )τ

β8(Md
s )

0 ,

τd(a, τ0, Md
s ) = c0(a, Md

s ) + c1(a, Md
s )τ

C2(a,Md
s )

0 , (20)

c0(a, Md
s ) =

γ0(Md
s ) + γ1(Md

s )a + γ2(Md
s )a2

γ3(Md
s ) + a

,

c1(a, Md
s ) =

γ4(Md
s ) + γ5(Md

s )a + γ6(Md
s )a2

γ7(Md
s ) + a

,

c2(a, Md
s ) =

γ8(Md
s ) + γ9(Md

s )a + γ10(Md
s )a2

γ11(Md
s ) + a

,

where the coefficient parameters are shown in Tables 1–3.

Table 1. Coefficient parameters αi(Md
s ) for κp in the servo mode.

Md
s 1.4 1.6 1.8 2.0

α0 0.001519 1.484 0.1135 0.2830
α1 0.2972 1.112 0.5295 0.72443
α2 −0.06124 −0.3106 −0.04377 −0.1049
α3 0.05894 5.716 0.4141 0.9061
α4 0.06374 0.2580 0.2712 0.3628
α5 0.1485 0.2368 0.1780 0.1615
α6 0.3625 0.4666 0.5937 0.6923
α7 0.1036 0.4520 0.3751 0.4683
α8 −1.897 4.867 4.407 5.195
α9 6.302 −14.28 −12.85 −15.25
α10 −8.412 15.44 13.64 16.41
α11 5.821 −7.242 −5.972 −7.434
α12 −2.157 1.079 0.5559 0.8462
α13 −0.7626 −1.026 −0.9744 −1.004



Appl. Sci. 2019, 9, 1934 7 of 19

Table 2. Coefficient parameters βi(Md
s ) for τi in the servo mode.

Md
s 1.4 1.6 1.8 2.0

β0 0.1221 0.4341 0.4868 0.3670
β1 0.7921 0.6098 0.6553 0.8488
β2 −0.4862 −0.7187 −0.7553 −0.6927
β3 −0.6852 −0.7298 −0.7304 −5.795
β4 1.999 2.000 1.999 7.101
β5 0.06147 0.05941 0.05342 0.02174
β6 1.082 1.118 1.208 1.245
β7 0.1174 0.2808 0.3231 0.3738
β8 1.659 1.149 1.125 1.061

Table 3. Coefficient parameters γi(Md
s ) for τd in the servo mode.

Md
s 1.4 1.6 1.8 2.0

γ0 −0.07558 −0.01783 −0.01342 −0.006020
γ1 1.461 1.672 1.542 0.8320
γ2 −0.2621 −0.7720 −0.7770 −0.3588
γ3 1.986 1.993 1.959 0.9935
γ4 0.2557 0.1633 0.1825 0.1117
γ5 0.002213 −0.1014 0.003464 0.1548
γ6 0.02149 0.3830 0.4003 0.3101
γ7 0.7684 0.6222 0.5993 0.3231
γ8 0.8714 0.2037 0.1547 0.04407
γ9 1.999 1.497 1.184 1.072
γ10 0.08513 −0.8993 −0.5988 −0.4221
γ11 0.8892 0.2228 0.1772 0.04822

The uncalculated normalized PID parameters can be interpolated using Equations (18)–(20) and
are plotted as colored surfaces in Figures 1–3.

The values of Ms for Md
s = 1.4, 1.6, 1.8, and 2.0 are plotted in Figure 4, and the obtained maximum,

average, and minimum values for Ms are listed in Table 4. As shown in this table, the errors for the
prescribed maximum sensitivity are within ±3%.
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Figure 4. Ms in the servo mode.
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Table 4. Evaluation of |Ms −Md
s | in the servo mode.

Ms 1.4 1.6 1.8 2.0

max 1.418 1.618 1.826 2.042
ave 1.400 1.600 1.800 2.001
min 1.369 1.589 1.768 1.978

3.2. Regulation Optimization

In a similar way to the servo optimization, the optimized normalized PID parameters for
disturbance rejection optimization are shown in Figures 5–7, where uncalculated normalized PID
parameters are interpolated by Equations (21)–(23).
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Figure 5. Calculated and approximated optimal κp in the regulation mode.
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Figure 6. Calculated and approximated optimal τi in the regulation mode.
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Figure 7. Calculated and approximated optimal τd in the regulation mode.
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s ) + a

,

a1(a, Md
s ) =
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+ b2(τ0, Md
s )τ

2
0 + b3(τ0, Md

s )τ
3
0 , (22)

b0(τ0, Md
s ) = β0(Md

s ) + β1(Md
s )τ0,

+ β2(Md
s )τ

2
0 + β3(Md

s )τ
3
0 ,

b1(τ0, Md
s ) = β4(Md

s ) + β5(Md
s )τ0,

+ β6(Md
s )τ

2
0 + β7(Md

s )τ
3
0 ,

b2(τ0, Md
s ) = β8(Md

s ) + β9(Md
s )τ0,

+ β10(Md
s )τ

2
0 + β11(Md

s )τ
3
0 ,

b3(τ0, Md
s ) = β12(Md

s ) + β13(Md
s )τ0,

+ β14(Md
s )τ

2
0 + β15(Md

s )τ
3
0 ,



Appl. Sci. 2019, 9, 1934 10 of 19

τd(a, τ0, Md
s ) = c0(a, Md

s ) + c1(a, Md
s )τ

C2(a,Md
s )

0 , (23)

c0(a, Md
s ) =

γ0(Md
s ) + γ1(Md

s )a + γ2(Md
s )a2

γ3(Md
s ) + a

,

c1(a, Md
s ) =

γ4(Md
s ) + γ5(Md

s )a + γ6(Md
s )a2

γ7(Md
s ) + a

,

c2(a, Md
s ) =

γ8(Md
s ) + γ9(Md

s )a + γ10(Md
s )a2

γ11(Md
s ) + a

,

where the coefficient parameters are shown in Tables 5–7.

Table 5. Coefficient parameters αi(Md
s ) for κp in the regulation mode.

Md
s 1.4 1.6 1.8 2.0

α0 0.1275 0.01763 0.2852 0.4909
α1 0.3274 0.3660 0.6534 0.8894
α2 −0.06243 −0.007755 −0.1128 −0.1818
α3 0.7013 0.1065 0.9467 1.422
α4 0.1858 0.1245 0.3214 0.3872
α5 0.1481 0.2176 0.1657 0.1664
α6 0.3932 0.4302 0.6290 0.7286
α7 0.4191 0.1845 0.4653 0.5007
α8 4.520 1.649 4.981 5.511
α9 −13.19 −4.542 −14.60 −16.06
α10 14.12 4.225 15.67 17.15
α11 −6.441 −1.104 −7.098 −7.721
α12 0.8919 −0.5000 0.8399 0.9067
α13 −0.9939 −0.8934 −1.008 −1.017

Table 6. Coefficient parameters βi(Md
s ) for τi in the regulation mode.

Md
s 1.4 1.6 1.8 2.0

β0 0.5352 0.4780 0.3580 0.1296
β1 1.842 1.202 1.343 2.258
β2 −1.538 −0.8566 −1.399 −2.914
β3 0.5307 0.2571 0.6334 1.320
β4 0.9230 1.248 1.522 2.219
β5 −2.976 −0.8036 −0.9822 −3.100
β6 5.838 2.361 2.878 4.805
β7 −2.529 −0.9300 −1.452 −1.701
β8 −0.5116 −0.6027 −0.7495 −1.370
β9 1.934 0.1011 0.3725 1.567
β10 −4.584 −1.220 −1.800 −1.546
β11 2.151 0.5330 1.039 0.02506
β12 0.1290 0.1366 0.1736 0.3349
β13 −0.4199 0.05628 −0.05291 −0.2219
β14 1.090 0.1802 0.3860 −0.04209
β15 −0.5327 −0.08658 −0.2399 0.2453
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Table 7. Coefficient parameters γi(Md
s ) for τd in the regulation mode.

Md
s 1.4 1.6 1.8 2.0

γ0 −0.01709 −0.01810 −0.007789 0.02155
γ1 0.9843 0.4629 1.402 0.6965
γ2 −0.1369 −0.004881 −0.5348 −0.1997
γ3 1.448 0.4799 2.351 1.073
γ4 0.1451 0.06998 0.1886 0.05419
γ5 0.2027 0.1237 0.06031 0.1531
γ6 0.02381 0.1178 0.2215 0.1676
γ7 0.4183 0.2145 0.6713 0.2098
γ8 0.3704 0.1160 0.1664 0.07437
γ9 1.271 1.191 1.026 1.235
γ10 −0.01542 −0.3177 −0.3190 −0.4418
γ11 0.3743 0.1438 0.1948 0.07446

The values of Ms for Md
s = 1.4, 1.6, 1.8, and 2.0 are plotted in Figure 8, and the obtained values

of Ms are listed in Table 8. Since the errors for the prescribed maximum sensitivity are within ±3%,
the effectiveness of the proposed method is confirmed.
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Figure 8. Ms in the regulation mode.

Table 8. Evaluation of |Ms −Md
s | in the regulation mode.

Ms 1.4 1.6 1.8 2.0

max 1.406 1.617 1.816 2.029
ave 1.400 1.600 1.800 2.001
min 1.392 1.562 1.780 1.974

From Tables 4–8, the prescribed robust stability is sufficiently achieved, even though the optimal
trade-off PID parameters are easily implemented using the calculated look-up tables.
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4. Numerical Simulation

4.1. Servo–Regulation Trade-off Performance for Various SOPDT Systems

The trade-off control performance between servo and regulation optimization is shown for each
Md

s , and the interpolation validity is confirmed for various values of a.
The controlled plant is given as follows:

P(s) =
1

(s + 1)(as + 1)
e−0.5s, (24)

where the proposed method is designed for a = 0, 0.3, 0.5, 0.8, and 1.0. Furthermore, the control
system is optimized for the servo and regulation modes, and the control performances are compared.
The reference input is set to 1.0, and the control input is disturbed by the step signal with amplitude
0.5 after 20 s. The simulated plant outputs are shown in Figures 9–13, where the solid and dashed lines
are the servo and regulation modes, respectively, and the green, magenta, blue, and black lines are
Md

s = 1.4, 1.6, 1.8, and 2.0, respectively.
Figures 9–13 show that the tracking performance of the servo optimization tuning is superior to

that of the regulation optimization tuning, and the regulating performances of the servo and regulation
optimization tunings are reversed when the control input is disturbed. Furthermore, both the servo and
regulation performances using large Md

s are superior to those using small Md
s . Therefore, the trade-off

tuning of the proposed method is confirmed.
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Figure 9. Servo and regulation performances for a = 0.
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4.2. Tracking–Robustness Trade-Off Performance

The proposed servo- and regulation-optimized controllers are designed based on the
following equation:

P(s) = 1
s+1 e−0.5s. (25)

Equation (25) is not the SOPDT system but the FOPDT system. This is because the proposed method
is available for controlling the FOPDT system as well as the SOPDT. In order to confirm robust stability
for the prescribed Md

s , as plant perturbation occurs, the plant model is changed to Equation (26) after 60 s.

P′(s) =
1.9

(1.4s + 1)(0.2× 1.4s + 1)
e−0.7s. (26)

The control results using four Md
s tunings are shown in Figure 14, and the enlarged views for

the tracking, regulation, and model perturbation trajectories are also shown in Figure 15. This figure
shows that the smaller the Md

s , the greater the robust stability because the plant output diverges
when Md

s = 2.0, and the plant output converges to the reference input using small Md
s . Therefore,

the achievement of the prescribed robust stability is confirmed using the proposed method.
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Figure 14. Model perturbation performance.
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4.3. Comparison with Conventional Methods

The proposed method is compared with conventional methods: the ZN method [2], conventional
SOPDT-based PI and PID control [18], and the conventional SOPDT-based 2DoF PI control [19].

As a controlled plant, consider the following transfer function:

P(s) =
1

(s + 1)(0.62s + 1)
e−1.5s. (27)

The reference input is 1.0, the control input is disturbed by the step signal with amplitude 0.5
after 150 s, and the controlled plant is perturbed to Equation (28) after 300 s.

P′(s) =
1.4

(1.2s + 1)(0.36× 1.2s + 1)
e−1.2s. (28)

In the design of the conventional SOPDT model-based methods [18,19], the robust stability is
designed with Md

s = 1.6, and a = 0.5 is used to decide the PID parameters because a = 0.62 in
Equation (27) is not directly used. In the proposed method, Md

s is also set to 1.6 for comparison with
the conventional methods. In the conventional [18] and the proposed trade-off design methods,
the controller parameters are designed in the servo and regulation modes, respectively. Furthermore,
only in the conventional 2DoF design method [19], 2DoF parameter β is used in the following
control law:

U(s) = Kp

(
βR(s)−Y(s) +

1
Tis

(R(s)−Y(s)).
)

(29)

The calculated controller parameters based on Equation (27) are shown in Table 9.
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Table 9. Proportional-integral-derivative (PID) control system parameters.

Design Method Kp Ti Td β

ZN [2] 1.52 3.44 0.859 –
1DoF PI (servo) [18] 0.469 1.92 – –
1DoF PI (reg) [18] 0.488 2.09 – –

1DoF PID (servo) [18] 0.633 2.18 0.642 –
1DoF PID (reg) [18] 0.610 1.68 0.774 –

2DoF PI [19] 0.431 1.66 – 0.983
Proposed 1DoF PID (servo) 0.670 2.04 0.567 –
Proposed 1DoF PID (reg) 0.665 1.87 0.582 –

The control results are shown in Figure 16, and the enlarged views of the tracking, regulation,
and model perturbation trajectories are also shown in Figure 17. Using the conventional [18,19]
and proposed SOPDT-based design methods, the closed-loop system stabilizes even when the plant
is perturbed after 300 s because the stability margin is designed. On the other hand, using the ZN
method, the closed-loop system is unstable after plant perturbation, although it can be stabilized until
plant perturbation.

The obtained control results are evaluated by the IAE, as shown in Table 10. In both the servo
performance from to 0 s to 150 s and the regulation performance from 150 s to 300 s, the IAE of the ZN
method is the largest among the considered methods because the plant output vibrates and because
the settling time is the longest among the considered design methods.

Table 10 shows that the trade-off between the servo and regulation performances is achieved
using the conventional [18] and proposed trade-off methods because in the servo evaluation period
(0 s to 150 s), the IAE using the servo-optimized controllers, i.e., 1DoF PI (servo), 1DoF PID (servo),
and the proposed 1DoF PID (servo), is smaller than that obtained using the regulation-optimized
controllers, i.e., 1DoF PI (reg), 1DoF PID (reg), and the proposed 1DoF PID (reg). On the other hand,
in the regulation evaluation period (150 s to 300 s), the IAE using the regulation-optimized controllers
is superior to that obtained using the servo-optimized controllers.
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Figure 16. Plant outputs of the proposed and conventional methods.
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Table 10. Integral of absolute error (IAE) performance.

Design Method IAE/103 (Servo) IAE (Regulation)
(0 s–150 s) (150 s–300 s)

ZN [2] 3.45 1028
1DoF PI (servo) [18] 1.64 819
1DoF PI (reg) [18] 1.71 855

1DoF PID (servo) [18] 1.38 688
1DoF PID (reg) [18] 1.40 596

2DoF PI [19] 1.55 771
Proposed 1DoF PID (servo) 1.24 609
Proposed 1DoF PID (reg) 1.30 569
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Figure 17. Enlarged views of Figure 16.

In the servo evaluation period, both of the proposed controllers, i.e., the proposed 1DoF
PID (servo) and the proposed 1DoF PID (reg), are superior to all of the conventional controllers.
On the other hand, in the regulation evaluation period, the proposed regulation-optimized controller,
i.e., 1DoF PID (reg), is superior to all of the conventional methods, and the proposed servo-optimized
controller, i.e., 1DoF PID (servo), is better than the conventional controllers, except for the conventional
regulation-optimized PID controller, i.e., 1DoF PID (reg). The reason the proposed controllers are
superior to the conventional SOPDT-based controllers is that the conventional methods are designed
based on quantized values for a, whereas in the proposed method, the quantized values are
interpolated, and hence the approximation error is improved.

5. Conclusions

The present study has discussed a unified trade-off design method for controlling the SOPDT
system. In the conventional design method [18], the ratio of two time constants was quantized.
For the purpose of interpolating the quantized ratio, the present study has extended the conventional
method, and an interpolated optimal trade-off design method is proposed. The proposed method
is compared with conventional methods through numerical examples, and the effectiveness of the
proposed method is confirmed.
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