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Abstract: Transcutaneous vagus nerve stimulation (tVNS) is an alternative non-invasive method
for the electrical stimulation of the vagus nerve with the goal of treating several neuropsychiatric
disorders. The objective of this study is to assess the effects of tVNS on cerebral cortex activity in
healthy volunteers using resting-state microstates and power spectrum electroencephalography (EEG)
analysis. Eight male subjects aged 25–45 years were recruited in this randomized sham-controlled
double-blind study with cross-over design. Real tVNS was administered at the left external acoustic
meatus, while sham stimulation was performed at the left ear lobe, both of them for 60 min. The EEG
recording lasted 5 min and was performed before and 60 min following the tVNS experimental
session. We observed that real tVNS induced an increase in the metrics of microstate A mean duration
(p = 0.039) and an increase in EEG power spectrum activity in the delta frequency band (p < 0.01).
This study confirms that tVNS is an effective way to stimulate the vagus nerve, and the mechanisms
of action of this activation can be successfully studied using scalp EEG quantitative metrics. Future
studies are warranted to explore the clinical implications of these findings and to focus the research
of the prognostic biomarkers of tVNS therapy for neuropsychiatric diseases.
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1. Introduction

Direct electrical stimulation of the left cervical vagus nerve (VNS) is an invasive method for
effectively treating otherwise medication-resistant epilepsy and depression [1–3], and its application
is under investigation for a broad range of neuropsychiatric disorders [4]. Besides the recognized
clinical efficacy of invasive VNS, there is evidence supporting additional potential benefits, such as the
enhancement of cognition in Alzheimer’s disease, improvement of sleep patterns [5], and proposed
antinociceptive and immunomodulatory effects [6]. However, the invasiveness required for its use has
hindered the widespread diffusion of this technique. Indeed, VNS requires the surgical implantation
of an electrical stimulator connected to an electrode located along the cervical branch of the vagus
nerve. In recent years, to decrease the disadvantages of traditional VNS and its possible side-effects,
an alternative approach for the non-invasive stimulation of the vagus nerve has been introduced [7].
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Such a method involves the transcutaneous stimulation (tVNS) of the external auditory channel
at the inner side of the tragus, in order to activate the auricular branch of the vagus nerve and,
subsequently, the nuclei of the X cranial nerve sited in the brainstem. In detail, the nucleus of the
solitary tract is a pivotal structure as it represents the target of major afferent vagal inputs and because it
presents widespread projections toward a variety of key cerebral areas, including amygdala, thalamus,
hippocampus and neocortex [8]. Still, the mechanism of action and potential effectiveness of tVNS
with respect to diagnostics and the therapy of neurological and psychiatric disorders remains to be
verified, and the functional neurobiology of how VNS, invasive or non-invasive, works is poorly
understood [9–11]. Therefore, there is a need to further explore the potential influence of tVNS on
cortical functional dynamics.

The electroencephalogram (EEG) is a sensitive and reliable tool for substantiating cortical functions
and activities. In particular, each EEG frequency band power (i.e., delta, theta, alpha, beta, gamma)
has a functional role [12]. Moreover, numerous previous works showed that the resting-state EEG
can be represented as a sequence of “microstates”, which consist of discrete cortical topographies
that remain constant for about 40–120 ms [13]. These EEG microstates derive from the synchronous
activities of various cortical networks reflecting different functions [14]. As such, microstate analysis
represents a promising approach to providing a global topographical representation of specific neural
processes without any type of a priori hypothesis [15], as opposed to most of the EEG frequency
analysis techniques, which aim at assessing the brain’s electrical field at a specific location or in specific
frequency bands.

Along this line, the objective of this exploratory study was to investigate the possible effects
of tVNS on cerebral cortex activity in healthy volunteers using resting-state microstates and power
spectrum EEG analysis. We hypothesize that tVNS-induced modification in microstates and power
spectrum may provide new insights into the neurophysiological mechanisms of action of tVNS, which
will eventually contribute to the identification of potential neurophysiological biomarkers of VNS
activity and efficacy.

2. Materials and Methods

2.1. Subjects

Eight male subjects aged 25–45 years (mean age: 30.5 ± 6.02 years) were recruited to the study.
Female participants were excluded due to evidence of menstrual cycle-related effects on cortical
excitability, which could introduce a possible confounding effect [16]. All the subjects were naïve to
tVNS and had no previous knowledge of the neurophysiological non-invasive stimulation protocols of
the vagus nerve. All subjects were right-handed according to the Edinburgh Handedness Inventory
(laterality score ≥ 75%) [17]. Exclusion criteria included the use of central nervous system (CNS)
drugs, a history of substances/drugs abuse (nicotine/alcohol included) and a history of psychiatric or
neurologic diseases. Subjects were instructed to abstain from caffeine and alcohol starting from the day
before the experimental session. Subjects provided informed consent, and the study was approved
by the local ethical committee. The scientific protocol was approved by the Ethical Committee of our
Institution at University Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy. Project
Identification code: “tVNS_ROB_CS”, Version n. 1.0, Accepted on 07/23/2019. Registration code: 29/19
PAR ComEt CBM.

2.2. Experimental Design

This is a randomized sham-controlled double-blind study with a cross-over design. We performed
real tVNS at the left external acoustic meatus, while sham stimulation was conducted over the left ear
lobe. All subjects underwent both real and sham tVNS for 60 min. We pseudo-randomized the order
by which the conditions were administered across healthy subjects. 48 h were reserved as the interval
time between sessions. Participants were blind to the stimulation condition. The EEG features were
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tested before (Pre) and immediately after (Post) the exposure to tVNS or to sham stimulation, which
both lasted 60 min.

2.3. tVNS Procedure

The bipolar stimulation of the auricular branch of the vagus nerve was carried out using an electric
stimulator (Twister-EBM) and two Ag-AgCl electrodes (5 mm in diameter), placed at the left external
acoustic meatus on the inner side of the tragus. The distance between the cathode and anode was 5 mm.
For sham stimulation, electrodes were attached at the left ear lobe. We chose this anatomical area by
following the previously described methodology of our previous work [18], since it is acknowledged
to be outside the innervation of the auricular branch of the vagus nerve [19]. To diminish the risk of
possible cardiac side-effects, we placed the electrodes on the left ear, in view of the fact that peripheral
nerves directed to the heart are supposed to originate from the right vagus nerve [20].

tVNS was carried out as trains lasting 30 s and was composed of 600 pulses (intra-train pulse
frequency = 30 Hz; pulse duration = 0.5 ms) repeated every 5 min for 60 min. We chose these parameters
according to previous studies in animals [21] and humans [18]. The amplitude of stimulation was
personally adjusted to a level reaching above the detection threshold and below pain perception.
Across these amplitude levels, we used whenever possible an intensity of 8 mA as suggested by Polak
et al. [22], who showed that such intensity can activate the vagus brainstem nuclei without perception
of pain.

2.4. Safety Evaluation

Despite the fact that tVNS was performed on the left ear, dangerous cardiovascular side-effects
can still be potentially experienced by subjects. Therefore, during the stimulation, subjects were strictly
monitored for variations in the heart rate (HR) and blood pressure (BP). Such parameters were recorded
every 15 min. Moreover, to verify the tolerability of tVNS, we asked the subjects every 5 min if they
felt unpleasant sensations or discomfort.

2.5. EEG Recordings

The EEG activity was acquired from 32 scalp sites using a BrainAmp 32MRplus (BrainProducts
GmbH, Munich, Germany), with electrodes positioned according to the 10-10 International System.
Additional electrodes were used as ground and as reference. The ground electrode was positioned at
Oz. The linked mastoid served as the reference for all the electrodes. To ensure wakefulness throughout
the recording sessions, subjects were required to keep their eyes open and to fixate upon a target
over the opposite wall. The signals recorded were bandpass filtered at 0.1–1000 Hz and digitized at a
sampling rate of 5 kHz. Skin/electrode impedance was kept below 5 kOhms. Horizontal and vertical
eye movements were detected by recording the electro-oculogram (EOG). The voltage between the
reference electrodes and electrodes located beneath the right eye recorded vertical eye movements and
blinks. The EEG recording lasted 5 min and was performed before and 60 min following the tVNS
experimental session.

2.6. Data Analysis and Statistics

A computer scientist engineer (P.C.) and neuroscientists (L.R., G.A.) with expertise in EEG
analysis and biostatistics performed the data processing and statistical analysis. The data processing
followed two steps: (i) signal preprocessing and feature extraction, and (ii) statistical analysis. Signal
preprocessing was conducted by using MATLAB 2019a version (MathWorks, Natick, MA, USA) and the
EEGLAB signal processing library [23], whereas statistical analysis was conducted using the statistical
software package R [24].
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2.6.1. EEG Data Analysis

For each subject, the raw 5 min EEG signal was visually inspected to remove very noisy channels
or recording segments highly contaminated with movement artefacts. Data were then filtered between
1 and 70 Hz and notch filtered at 50 Hz (Butterworth filter of 2nd order, forward and back filtering).
A semiautomatic procedure, based on Independent Component Analysis (ICA), was applied to remove
ocular and cardiac artefacts [25]. Two types of analysis were then performed on EEG artefact-free
resting state data: (i) Microstate Analysis and (ii) Power Spectral Density (PSD) estimation.

2.6.2. Microstates Analysis

Microstates analysis aims at identifying the dominant topographical configurations (global
templates or microstates) that alternate during the EEG time course to depict the ongoing brain
dynamics [13]. Through quantitative metrics, it is then possible to calculate features characterizing
the specific sequence of microstates, such as the mean duration, coverage and occurrence of each
microstate. The sequence of steps necessary to perform microstate analysis is illustrated in Figure 1.
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Figure 1. (A,B) Step 1: The intervals of stable topographical configurations are identified. (C–E) Step 2:
The global templates of the dominant microstates are calculated for the identified intervals of brain
functional stability. (F) Step 3: The identified global templates are backfitted to each noise-free EEG
dataset to find the specific sequence of microstates on which metrics are calculated.

For each subject and for each condition, intervals of stable topographical configuration were
identified. Specifically, we calculated, for each time instant of the EEG time course, the Global Field
Power (GFP). GFP is defined as the standard deviation of the EEG signal amplitude across all electrodes
at a given time instant and is a reference-independent descriptor of the potential field strength. GFP
peaks can be considered as corresponding to intervals of highest topographic stability, when the
probability of observing a transition to a different (stable) topographical configuration is lower [15].
For this reason, for each subject and for each condition, the scalp potential corresponding to the
maximum values of GFP were fed to a modified version of a k-means clustering algorithm [26].
To identify the optimal number of microstate templates, we applied the clustering k-algorithm, varying
k from 2 to 12. The optimal number of k was identified by applying the Krzanowski–Lai (KL)
criterion [15]. For each condition, the centroids of the k clusters were then considered as a set of
microstate templates. From this procedure 4 microstate templates are obtained for each subject and for
each condition. By applying the same clustering procedure to the individual microstates template in
each group (EEG-Pre-Real, EEG-Post-Real, EEG-Pre-Sham, EEG-Post-Sham), 4 microstate templates
for each condition were obtained.

To identify the global microstate templates, for each group, the sets of individual microstate
templates were averaged to calculate the microstate template for each condition (Figure 2).
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Figure 2. Microstates (A–D) template for each condition.

Then, an iterative procedure was applied [27]: a number of microstate templates equal to k was
randomly chosen as the initial global template set. Iteratively for all microstate template sets, the
templates of each of these sets were spatially correlated with the templates of the initial global template
set and assigned to one template based on the best spatial correlation values. A new initial global
template set was then obtained by averaging all templates assigned to the same global template of
the previous initial set. This sequence of spatial correlation/template assignment/template averaging
was repeated with the new global template set, and a further initial global template set was obtained.
The iteration of spatial correlation/template assignment/template averaging and definition of a new
initial global template set was repeated until the best fit was found and a new iteration did not lead
to any change in the definition of the global template set. With this procedure, four sets of global
microstate templates were obtained (Maps in Figure 3). Lastly, a backfitting of the global templates
was performed, as follows: for each subject and for each condition (EEG-Pre-Real, EEG-Post-Real,
EEG-Pre-Sham, EEG-Post-Sham) the global microstate templates were backfitted to the EEG signals by
calculating the spatial correlation between each global template and the scalp potential distributions at
each GFP peak. With this procedure, each EEG time course was represented as a unique sequence of
global microstates. For each of these sequences, the following metrics were calculated [14,28]:

• mean microstate duration (ms)—the average duration of each global microstate was calculated as
the average time interval during which this microstate remained stable whenever it appeared [14];

• mean microstate occurrence (Hz)—the frequency with which each global microstate occurred,
calculated as the average number of times per second that this microstate became dominant
during the EEG time course; the microstate occurrence provides an indication of the tendency of
the underlying neural generators to be activated and become dominant;

• mean microstate coverage (%)—for each global microstate, this metric was calculated as the
fraction of the total recording time during which this microstate was dominant [14];

• global explained variance (GEV)—percent variance explained by each of the maps per experimental
session (i.e., Real vs. Sham; at GFP peaks only).
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Figure 3. Boxplot and violin plot distributions of mean duration of the four microstate templates
across time (Pre vs. Post) and conditions (Real vs. Sham). Circles denote values that are farther than
1.5 interquantile ranges. Microstate maps (from A to D, upper panel) represent the global microstate
templates obtained from condition-wise microstate template. The A map was significantly longer in
duration after Real tVNS stimulation, as opposed to Sham tVNS stimulation, which failed to reveal any
significant difference. * = p < 0.05, ns = not significant.

2.6.3. Power Spectral Density Analysis

The PSD was estimated for each EEG channel, for each subject, for each stimulation (REAL, for
real stimulation and SHAM, for sham stimulation) and for each time (PRE, for before stimulation and
POST, for after stimulation) by means of the Welch procedure (Hamming windowing of 8 s, resulting
in a frequency resolution of 0.125 Hz, 50% overlap). For each EEG channel and for each condition,
band powers were obtained by the sum of the power spectrum in each frequency band normalized by
the number of frequency bins. The considered frequency bands were alpha (from 8 to 13 Hz), beta
(from 15 to 25 Hz), theta (from 4.5 to 7.5 Hz) and delta (from 1 to 4 Hz).
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2.6.4. Statistical Analysis

Paired Wilcoxon sign-rank tests were carried out to assess significant differences of power
spectrum activity for standard frequency bands (from delta to beta) across EEG channels for different
conditions (Pre-Real vs. Post-Real; Pre-Sham vs. Post-Sham). Post hoc comparisons were corrected
using the false discovery rate (FDR) method [29]. The differences of microstate metrics (microstate
duration, occurrences per second, percentage of covered analysis time) among groups were evaluated
by paired Wilcoxon sign-rank tests to assess the significant differences in each microstates’ metrics
for different conditions (Real Pre vs. Real Post; Sham Pre vs. Sham Post). As the control analysis,
paired Wilcoxon sign-rank tests were carried out to assess significant differences between baseline
conditions (Pre-Real vs. Pre-Sham) and between stimulation conditions (Post-Real vs. Post-Sham) to
also account for possible placebo effects. Paired Wilcoxon sign-rank tests were also employed to assess
the significant differences of safety parameters (HR, systolic BP, diastolic BP) and the amplitude of
electrical stimulation between real and sham tVNS. The significance level was set at p < 0.05. Results
are reported as median and interquartile range [IQR], unless differently stated.

3. Results

3.1. Safety Measures and Tolerability

No major adverse events were registered during the experimental sessions. The cardiovascular
physiological parameters stayed within the safety range throughout the entire experimental procedure
for all eight subjects. More specifically, during the real tVNS the mean HR was 80.7 ± 16.8 bpm, the
mean systolic BP was 122.4 ± 6.8 mmHg, and the mean diastolic BP was 79.5 ± 3.5 mmHg across
all subjects. During the sham tVNS the mean HR was 75.4 ± 12.5 bpm, the mean systolic BP was
119.7 ± 6.4 mmHg, and the mean diastolic BP was 80.9 ± 2.7 mmHg across all subjects. No significant
differences in safety measures were found between real and sham tVNS (p > 0.05 for all parameters).

The amplitude of electrical stimulation was kept constant during the entire experimental procedure
after the initial adjustment for all patients. The mean stimulation amplitude was 6.8 ± 1.2 mA for
real tVNS and 7.5 ± 2.4 mA for sham tVNS. No significant differences in stimulation amplitude were
revealed between real and sham tVNS (p > 0.05). Adverse events were mild, and they were only
reported during the initial phase of adjustment of the electrical stimulation (first 5 min). They included
itching or burning sensations at the site of stimulation and ear pain in both sham and real tVNS,
spontaneously resolving after the adjustment of the electrical stimulation’s amplitude.

3.2. Microstate Analysis

The optimal number of templates for each condition was four, according to the criteria for optimal
number of templates. The global explained variance (GEV) was 73% for the Pre-Real for condition, 74%
for the Post-Real condition, 76% for the Pre-Sham and 74% for the Post-Sham condition. No significant
GEV differences were found among conditions. Studying the four templates across time and stimulation
conditions, no differences were found between the microstates’ templates’ occurrences per second and
the percentage of covered analysis time (p > 0.05 for both Real and Sham conditions). The analysis
of the templates’ mean duration revealed significant differences only for the map A, which varied
significantly after Real tVNS stimulation (69.1 (67.8–75.2) ms for Pre. vs. 74.6 (68.4–77.5) ms for Post.,
p = 0.03, effect size (r) = 0.58), while no differences were found after Sham tVNS stimulation (p > 0.05,
Figure 3). The comparison of Post Real with Post Sham tVNS also revealed significant differences in
mean Microstate A duration (74.6 (68.4–77.5) ms for Real and 64.1 (63.4–67.3) ms for Sham; p = 0.02).

3.3. Power Spectrum

The analysis of the four frequency power spectra (from delta to beta) across time and stimulation
conditions found no differences between power spectrum values for theta, alpha and beta frequencies
(p > 0.05 for both Real and Sham conditions). The analysis of the delta power spectrum revealed
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significant differences after Real tVNS stimulation for several EEG channels (FZ, FcZ, Cz, F4, FC2, FC6,
C4, CP2, CP6, P4, P8, C3, FC1, CP1; p < 0.01 for Real Pre vs. Real Post, Figure 4), while no differences
were found after Sham tVNS stimulation (p > 0.05, Figure 4). The comparison of stimulation conditions
(Real Post vs. Sham Post) also revealed significant differences in delta activity in several channels (FcZ,
FC1, FC2, Cz, C4, CP2; p < 0.05). No significant differences between baseline conditions were found
(Real Pre vs. Sham Pre; p > 0.05).Brain Sci. 2020, 10, x FOR PEER REVIEW 8 of 12 
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Delta power spectrum for Real and Sham condition, pre and post stimulation. Real tVNS induced an
increase in delta activity across several channels (p < 0.01), while sham stimulation had no effect on
delta activity. Diff = difference in Pre vs. Post stimulation.

4. Discussion

In this study, we aimed to characterize microstate metrics and quantitative EEG responses in
relation to tVNS in a population of healthy subjects. Our results showed that tVNS seems to modulate
EEG activity and microstate metrics, while sham stimulation had no effect. In particular, we observed
that real tVNS induced (i) an increase in the metrics of microstate A mean duration and (ii) an increase
in EEG power spectrum activity in the delta frequency band (1–4 Hz).

4.1. Microstate Metrics

The increment of microstate A mean duration suggests an increased stability of microstate A
induced by real tVNS. There is no general agreement on the functional significance of microstate A
and on its relationship with resting state networks [13,30–32]. On this issue, Britz and colleagues
observed a correlation between functional magnetic resonance negative BOLD activations in bilateral
superior and middle temporal gyri and microstate A, areas that are mainly implicated in phonological
processing within the auditory networks [30]. However, recent studies suggested additional sources of
microstate A in the frontal and parietal cortex [28], including the pre-supplementary motor cortex,
medial superior frontal cortex and medial superior parietal cortex [33]. Taken together, these findings
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suggest the involvement of diffuse long-range global networks for microstate A, which may involve a
close and mutual connection between “sensory” (auditory) networks and motor responses. Indeed,
Gschwind and colleagues [34] investigated 53 patients with relapsing-remitting multiple sclerosis using
high-density EEG, observing increases in the duration and appearance of microstate A and B, suggesting
that multiple sclerosis may affects the “sensory” networks, rather than high-functional networks, as
observed in schizophrenia [35]. Similarly, we may speculate that tVNS induces a disturbance across
low-functional sensory-motor primary networks, which in turn may facilitate the spread of pathological
networks (i.e., epileptic networks) through different symptomatic cortical areas [36]. Interestingly,
the effect of tVNS on the primary sensory-motor cortex has already been investigated by Kraus and
colleagues by means of functional magnetic resonance. They found a significant BOLD signal increase
in the precentral gyrus of both sides induced by tVNS, suggesting a general activation of synaptic
activity in the primary motor area induced by tVNS [8]. This is in line with our hypothesis of microstate
A as a functional neurophysiological correlate of primary sensory-motor networks. These findings
may eventually endorse the research into functional neurophysiological biomarkers of tVNS and VNS
activation in specific and focused cortical areas (i.e., pre-central and post-central gyrus).

4.2. Power Spectrum Activity

Delta activity was significantly higher after real tVNS across several, widespread EEG channels,
while showing no modification after sham stimulation. Delta waves (1–4 Hz) are the most prominent
EEG feature of human non-rapid eye movement (NREM) sleep, which have their origin in the cortical
layer. Several studies proposed them as sensors for weighing synaptic efficacy and possible effectors
of sleep-dependent synaptic plasticity [37,38]. Furthermore, wakefulness delta power increase was
correlated with TMS-induced LTP-like plasticity in healthy subjects [37] and in patients with chronic
stroke [39], as well as with local sleep regulation, functionally linked to learning-related cortical
plasticity [40]. Delta waves are almost absent in the physiological condition during wakefulness,
but they tend to be largely expressed when a subcortical brain lesion occurs [41]. On the contrary,
non-lesional delta waves are assumed to originate from a higher number of synchronous oscillating
neurons or from a stronger activity of such neurons. Both of these hypotheses converge in the idea
of focused information processing, which in turn may aim to induce local or network plasticity [37].
Delta waves are also tightly coupled with interictal high-frequency oscillations (HFOs) in patients with
epilepsy [42]. Such slow-waves co-occurring with interictal HFOs might reflect the hyperpolarization
of cortical neurons driven by thalamocortical networks, as suggested by Steriade and colleagues, who
elegantly showed that the genesis of macroscopic delta EEG potentials depends on the proprieties
of thalamocortical networks and brainstem–thalamic cholinergic modulation [43]. These evidences
support the hypothesis of subcortical deep generators for delta oscillations in the human brain, which
may also be influenced by the activity of brainstem nuclei. As such, the augmentation in delta activity
observed after tVNS may be explained by the subcortical activation of brainstem structures linked to
the vagus nerve. In particular, the nucleus of the tractus solitarius projects to the locus coeruleus and
to the raphe nuclei, which provide widespread serotoninergic innervation to the neocortex.

Serotonergic neurotransmission is strongly related to the wake/sleep cycle [44]. The dorsal raphe
serotoninergic activity is seen as an arousal system, being turned more or less off during sleep. Indeed,
antidepressive selective serotonin re-uptake inhibitors (SSRIs), which increase the serotonin released at
serotonergic terminals by inhibiting its reuptake, consistently produce a reduction of REM sleep and a
synchronizing effect, with the reinforcement of slow-waves sleep reported in animals [44]. Moreover,
the presence of GABAergic function in the dorsal raphe neurons has long been recognized [45]. This
is in line with our previous work showing an activation of GABA-A inhibitory circuits following
tVNS in healthy subjects, which was coupled with a decrease in cortical excitability evaluated with
paired-pulse TMS [9,18]. Taken together, these findings suggest that the mechanisms behind tVNS
and VNS are mainly mediated by complex interactions with subcortical inhibitory circuits and cortical
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excitability. Therefore, the increase in delta activity may possible represent an indirect consequence of
such activation of inhibitory subcortical circuits.

4.3. Limitations and Future Directions

Our study has some limitations that should be stated. Data were collected in a quite small sample
and during quite short resting state conditions; we maximized to investigate effects specific to tVNS by
using effect size statistics and post-hoc multiple comparisons. It is also important to consider that, in
order to provide the clinical implications of the present findings, future studies should investigate and
validate the modulation of quantitative EEG parameters in patients with different neuropsychiatric
conditions. Indeed, the inclusion of reliable EEG biomarkers in clinical tVNS studies could provide
important information on the strength of its predictive value for clinical outcomes. As an example, in
patients with epilepsy, invasive VNS was found to increase the P300 magnitude only in those who
presented a significant reduction in seizure frequency [46]. Observing similar dynamic changes in EEG
parameters induced by tVNS (increase in delta power and microstate A duration) may possibly reveal
the same prognostic information for patients with epilepsy. Similarly, determining the EEG effects of
tVNS in patients with depression over long periods of treatment may determine whether individuals
with good responses (i.e., improved depressive symptoms) and those with a lack of response to tVNS
and VNS therapy respond differently.

5. Conclusions

In conclusion, this study confirms that tVNS is a reliable and effective way to stimulate the
vagus nerve, and the mechanisms of action of this activation can be successfully studied using scalp
EEG quantitative metrics. Future studies are warranted to explore the clinical implications of these
findings, and to focus the research of prognostic biomarkers of VNS and tVNS therapy for patients
with drug-resistant epilepsy and other neuropsychiatric disorders.
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