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Abstract: The stability of rhythmic interlimb coordination is governed by the coupling between limb
movements. While it is amply documented how coordinative performance depends on movement
frequency, theoretical considerations and recent empirical findings suggest that interlimb coupling
(and hence coordinative stability) is actually mediated more by movement amplitude. Here, we
present the results of a reanalysis of the data of Post, Peper, and Beek (2000), which were collected in
an experiment aimed at teasing apart the effects of frequency and amplitude on coordinative stability
of both steady-state and perturbed in-phase and antiphase interlimb coordination. The dataset in
question was selected because we found indications that the according results were prone to artifacts,
which may have obscured the potential effects of amplitude on the post-perturbation stability of
interlimb coordination. We therefore redid the same analysis based on movement signals that were
normalized each half-cycle for variations in oscillation center and movement frequency. With this
refined analysis we found that (1) stability of both steady-state and perturbed coordination indeed
seemed to depend more on amplitude than on movement frequency per se, and that (2) whereas
steady-state antiphase coordination became less stable with increasing frequency for prescribed
amplitudes, in-phase coordination became more stable at higher frequencies. Such effects may
have been obscured in previous studies due to (1) unnoticed changes in performed amplitudes,
and/or (2) artifacts related to inappropriate data normalization. The results of the present reanalysis
therefore give cause for reconsidering the relation between the frequency, amplitude, and stability of
interlimb coordination.

Keywords: rhythmic movement; synchronization; entrainment; bimanual interaction; dynamical
systems; coordination dynamics; relative phase; perturbations

1. Introduction

When one moves multiple limbs simultaneously, the limb movements are not independent but
influence each other. As a result, some rhythmical interlimb tasks are relatively easy to perform, such
as cycling both hands at the same frequency in either symmetrical (in-phase) or anti-symmetrical
(antiphase) fashion, whereas other rhythmic interlimb tasks are quite difficult to perform without
training, such as cycling both hands with a quarter cycle difference between them or at two different
frequencies [1]. From the perspective of dynamical systems theory, or coordination dynamics in short,
such phenomena are understood in terms of pattern stability, with some patterns being intrinsically
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stable and others being intrinsically unstable. Rhythmical interlimb behavior is thereby characterized
by attraction to a limited number of stable coordination patterns [1,2]. Stable interlimb coordination
occurs by virtue of the coupling between the components involved: When there is no interaction
between limb movements there can be no attraction towards synchronized/coordinated patterns
(e.g., [2,3]). Empirically, this is evidenced by the existence of certain stable and hence preferred
modes of interlimb coordination in animals and humans [1,4]. A seminal finding in this regard is
the well-known observation that the stability of a coordination pattern may be lost when movement
frequency is increased [5,6]. Such destabilizations may lead to a spontaneous switch in coordination.
For rhythmic interlimb coordination this entails an unintended switch from the less stable antiphase
pattern (movements of the two limbs are exactly alternating: Relative phase ≈ 180◦) to the more
stable in-phase pattern (movements of the two limbs are exactly coinciding: Relative phase ≈ 0◦).
This phenomenon was formalized in the influential Haken–Kelso–Bunz (HKB) model [2], which consists
of a potential function (or gradient dynamics) for relative phase and a system of coupled oscillators
underlying the gradient dynamics of relative phase. An entire research program for studying interlimb
(e.g., [1,7–9]), sensorimotor (e.g., [1,10–13]), and between-person (e.g., [1,3,14,15]) coordination has
been built on the HKB model, which has become a cornerstone of coordination dynamics.

In the coupled-oscillator model in question [2], the strength of the interaction between the
two involved oscillators and, hence, the dynamics of the coordination patterns (e.g., stability) are
either completely or partly mediated by frequency-induced changes in amplitude rather than by the
frequency as such [2,16]. However, while ample research has been conducted in this context that
focused on the effects of manipulations of movement frequency, the role of movement amplitude has
remained underexposed. This is unfortunate because it is generally known that higher frequencies
are accompanied by smaller characteristic amplitudes and vice versa that larger amplitudes are
accompanied by lower frequencies [17,18]. Theoretically, therefore, the typically reported effects
of movement frequency on coordinative stability (e.g., [1,9,15]) could thus also be engendered by
frequency-induced changes in the amplitudes of the limb movements. For the vast majority of previous
studies this cannot be verified because the performed amplitudes were neither reported nor considered
in interpreting the results, which may have introduced potentially unjustified and confounded
conclusions regarding coordinative stability as a function of movement frequency. Previous studies
have indeed found indications that moving with larger amplitudes relates to enhanced interlimb [19–26]
and perceptuo-motor coupling [27–29]. With the current study, we opt for a re-appraisal of the role of
amplitude on coordinative stability (as was done for the first time two decades ago by, e.g., [16,19,20])
by presenting results of a refined, artifact-free analysis of the experimental data of Post, Peper, and
Beek [21].

1.1. Incentives for a Refined Analysis of Post, Peper, and Beek (2000)

We selected the data of Post et al. [21] for the following reasons. First of all, the study was designed
specifically to tease apart the effects of amplitude and frequency on coordinative stability in order to
test the predictions of the HKB coupled-oscillator dynamics [2]. In the experiments in question, six
participants performed in-phase and antiphase movements around the elbow joints at seven different
movement frequencies (0.75 Hz to 2.25 Hz) at three prescribed amplitude conditions (0.1, 0.2, and 0.3
rad) and a ‘free’ amplitude condition. Furthermore, and of great relevance for the present purposes,
the experimental design involved a controlled mechanical arrest of one of the moving limbs. Arresting
the limb for a quarter of a cycle, as was done in the experiment (see the Methods section for details),
resulted in a perturbation of the interlimb coordination pattern and a subsequent return to the original
coordination pattern. From this return or relaxation trajectory, direct estimates of pattern stability can
be derived empirically, in addition to the more commonly used ‘indirect’ steady-state measures of
pattern stability, such as the standard deviation of relative phase [30]. Results in the original paper by
Post et al. [21] showed that both in- and antiphase coordination patterns were more variable for smaller
prescribed amplitudes (i.e., lower steady-state coordinative stability), but this was not corroborated by
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slower responses to relative-phase perturbations (i.e., which would have signaled a lower stability for
smaller amplitudes).

Counter to these outcomes, however, the results of more recent perturbation studies with the same
apparatus and similar but slightly different experimental designs and outcome measures, showed that
the interlimb coupling strength scaled quite substantially with movement amplitude [22,23]. It was
deemed possible, therefore, that in the original study of Post et al. [21], the perturbation outcomes were
prone to artifacts arising from the data analysis, which could have invalidated the empirical evaluation
of the effect of amplitude on coordinative stability. In particular, the exemplary post-perturbation
relative-phase data reported by Post et al. (see Figure 1a,b in [21]) fueled this concern and prompted
us to reanalyze those data using tightened normalization procedures, as will be delineated next.

1.2. Normalization Issues

Post et al. [21] determined the phase angle (θ) of the individual limb movements (indicating the
instantaneous phase in their respective cycles) to estimate the continuous relative phase ϕ between
the limb movements (i.e., by calculating the phase difference: ϕ = θ1 − θ2). From this continuous
estimate of relative phase steady-state variability and relaxation characteristics were extracted as
indices of coordinative stability and coupling. It is important to consider, however, that, depending
on the specific research question of interest and the characteristics of the movement signals at hand,
the calculation of θ may require several normalization steps to avoid artifacts in the evolution of θ
and thus ϕ. Since a correct phase determination requires near-to-harmonic oscillations [31,32], several
methodological studies have highlighted the importance of appropriate normalization of the time
series prior to calculating θ to prevent computational artifacts due to (1) (variations in) oscillation
frequency, and (2) offset of the oscillation center [33,34] (see [35] for an overview). Other sources of
artifacts that have received less attention are gradual and/or sudden changes in amplitude and/or the
center of oscillation over cycles [22,36]. By analyzing generated signals with known properties, De
Poel [36] demonstrated how such changes may introduce substantial artifacts in θ (see Appendix A)
and thus ϕ, which may result in invalid (or even antithetical) interpretations. In fact, such artifacts may
readily occur when rather capricious and/or non-stationary/non-steady-state ‘cyclical’ movements are
made, as in experiments involving pattern transitions and transient mechanical perturbations, as in
the study of Post et al. [21]. In particular, applying a transient mechanical perturbation of the arm
movement perturbs all aspects of the movement, including the amplitude and center of oscillation.
This is exemplified in Figure 1a: Directly after the perturbation and around 1 s, the right (perturbed)
arm’s movement (red line) shifts away from the average positioning of zero (in this case implying
that the limb moved somewhat closer towards the body) before regaining position approximately 4
cycles later.

In this regard, Post et al. [21] reported observing undulations in ϕ directly after perturbations, as
exemplified in Figure 1e. While inspecting the analogous original figures in [21] (see also [37,38]) we
realized that the frequency of the undulations in ϕ closely matched the actual movement frequency of
the limbs, which suggested that potential artifacts had occurred. As we now know based on signals
with known properties [36] (see Appendix A), these undulations were indeed likely due to within-trial
changes in the position of the center of oscillation (which were readily observed, see the exemplary
data in Figure 1a). The varying oscillation center implies that the corresponding phase portrait is
biased away from the origin (Figure 1c), hence introducing artifacts in the form of undulations in θ (in
the example especially for the right arm, see Figure 1d) and thus ϕ (Figure 1e).
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Figure 1. (a–e). A typical example of data directly after perturbation release: (a) Angular position data 
of both arms (blue = left arm, red = right arm) and the corresponding phase portraits as (b) determined 
in the original paper, and (c) after half-cycle normalization was applied; straight lines exemplify the 
calculated phase angle at t = 1.2 s; (d) depicts the corresponding phase angles 𝜃return for the original 
data (upper panel) and after half-cycle normalization (lower panel); and (e) shows the resultant 
relative-phase signal 𝜑return  as determined by Post et al. [21] (grey line) and after half-cycle 
normalization (black line). Green line = fitted decay function. The trial condition was in-phase, the 
frequency = 2.25 Hz, and the prescribed amplitude = 0.2 rad. See main text for further explanation. 
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that the reduced undulations in the post-perturbation 𝜑 -signal would lead to more valid (i.e., 
artifact-free) and reliable (i.e., better fitting) estimations of the perturbation-related stability 
parameter. We suspected that a reanalysis of the data of Post et al. [21] in this manner would yield 
more prominent effects of amplitude on pattern stability (as derived from perturbation analysis) than 

Figure 1. (a–e). A typical example of data directly after perturbation release: (a) Angular position
data of both arms (blue = left arm, red = right arm) and the corresponding phase portraits as (b)
determined in the original paper, and (c) after half-cycle normalization was applied; straight lines
exemplify the calculated phase angle at t = 1.2 s; (d) depicts the corresponding phase angles θreturn

for the original data (upper panel) and after half-cycle normalization (lower panel); and (e) shows the
resultant relative-phase signal ϕreturn as determined by Post et al. [21] (grey line) and after half-cycle
normalization (black line). Green line = fitted decay function. The trial condition was in-phase, the
frequency = 2.25 Hz, and the prescribed amplitude = 0.2 rad. See main text for further explanation.

Potential solutions to prevent such artifacts include detrending the oscillation center, for instance by
high-pass filtering (see, e.g., [39,40]), or normalizing the oscillation center each half-cycle (e.g., [22,36,41],
see also Appendix A). Since the latter method is to be preferred because it also corrects for all previously
mentioned causes of artifacts, we applied this method to the data of Post et al. [21]. (Note that in studies
subsequent to Post et al. [21,37] with a similar perturbation procedure, such normalization per half cycle
was already implemented [22,23]). Based on the above, we expected that the reduced undulations in the
post-perturbation ϕ-signal would lead to more valid (i.e., artifact-free) and reliable (i.e., better fitting)
estimations of the perturbation-related stability parameter. We suspected that a reanalysis of the data of
Post et al. [21] in this manner would yield more prominent effects of amplitude on pattern stability (as
derived from perturbation analysis) than those previously reported. To anticipate, the reanalysis indeed
showed that interlimb pattern stability depended more on amplitude than on movement frequency per
se. It further revealed that steady-state antiphase coordination with prescribed movement amplitudes
became less stable with increasing movement frequencies, whereas in-phase coordination became
more stable. Although there were only six participants in the study of Post et al. [21], implying that
the present findings should be interpreted with caution, they provide strong initial incentives for
rekindling empirical research on the role of amplitude in coordinative stability.
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2. Materials and Methods

We reanalyzed the data reported in Post et al. in the manner described in that article [21], except
for the normalization prior to phase determination. For specific details we refer to [21]. Here we briefly
reiterate and highlight the most important aspects.

2.1. Participants

Pre-existing data of 6 healthy female right-handed volunteers (20–27 years) were used. At the
time of the experiment, these 6 participants were selected from a larger pool solely based on their
ability to perform in-phase and antiphase movements in the experimental amplitude and frequency
ranges as determined from a preceding test session (see [21]). Participants engaged in the experiment
after having provided informed consent and the experiment was conducted in accordance with the
Declaration of Helsinki.

2.2. Apparatus

Participants were seated in a modified chair with mobile armrests that allowed for rotation around
the elbow joint in the horizontal plane. The angular displacement of the armrests was captured with a
hybrid potentiometer (22HHPS-10 Sakae) at a sampling rate of 300 Hz. A digital actuator controller
(developed by Fokker Aerospace) controlled a pair of torque motors mounted below the axis of the
armrests. These motors could block one of the armrests based on current positions and velocities and
in this way controlled perturbations of the coordination patterns could be applied. Amplitudes were
prescribed using LED indicators for maximal excursions of each arm, and movement frequencies were
prescribed by means of a digital metronome (one beep per full movement cycle).

2.3. Procedure

In the experiment, three factors were manipulated: Coordination pattern (in-phase and antiphase),
movement frequency (one unpaced and seven paced conditions, ranging from 0.75 to 2.25 in steps of
0.25 Hz), and movement amplitude (one ‘free’ amplitude condition and three prescribed amplitude
conditions of 0.1, 0.2, and 0.3 rad; note that for clarity, in this paper the angular displacement of the
arms is expressed in radians, while (relative) phase angles are expressed in degrees. Amplitude was
defined as half the peak-to-peak range. Each participant performed all combinations 6 times and in 5
of these trials the right arm was perturbed, while one trial was a catch trial without perturbation. The
in-phase and antiphase trials were presented in blocks (in randomized order), and within these blocks
the prescribed amplitude was also presented in blocks (also in randomized order). The free amplitude
trials were presented in a separate block. The order of presentation was fully randomized within each
amplitude block. As the main focus of the reanalysis was on effects of amplitude and frequency, we
did not consider the trials with a freely chosen frequency.

The mechanical perturbation consisted of a full arrest of the right arm close to the moment of
elbow extension (where velocity is near zero). The arrest lasted for a quarter of a movement cycle (as
calculated from the preceding three cycles), after which the arm was released again. In other words, the
interlimb pattern (of around either 0◦ or 180◦ relative phase) was perturbed by 90◦. The perturbation
was applied at random between the 12th and 17th cycle of the trial.

2.4. Data Reduction

Angular-displacement time series were differentiated, and subsequently both angular displacement
and velocity were low-pass filtered using a bidirectional 2nd order Butterworth filter (cut-off frequency
25 Hz). Peak angular excursions were determined with a custom-made peak-picking algorithm.
These peak indices were used as indicators of the beginning and end of each half cycle. Rather than
normalizing the time series by an average over the whole trial (as done in Post et al. [21]), we now
normalized for each half cycle separately [36] (see also [22]). Specifically, within each half-cycle bin, the
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angular displacement of each arm was normalized for the angular frequency [31] of the respective half
cycle [34]. Most importantly for the present purposes, the position signal was additionally centered
per half cycle by subtracting the center value (i.e., midway between minimum and maximum) of the
respective half-cycle bin. In this way, we attained a ‘closer-to-circle-shaped’ phase portrait (i.e., the
velocity plotted against the position signal, Figure 1b,c), which was suitably centered at the origin
for the entire trial time series. Phase angles (θL and θR, for the left and right arm, respectively; see
Figure 1d) could subsequently be determined by taking the angle of the polar coordinates in phase space.
The continuous relative phase (see Figure 1e) was determined as ϕ = θR −θL. Figure 1d,e demonstrate
how this ‘half-cycle centering’ refined the relative-phase signals. For further analysis, the ϕ-signal
was segmented into a pre-perturbation steady-state segment (8 cycles prior to perturbation onset), a
perturbation transient segment (3 s following perturbation release: ϕreturn), and a post-perturbation
steady-state segment (8 cycles following the return segment).

2.5. Analysis

Steady-state performance was evaluated in terms of performed movement frequency and
amplitude (both determined using the peak indices), and the variability of the relative phase (standard
deviation according to statistical methods for directional data [42]) over pre-perturbation (SDϕpre) and
post-perturbation segments (SDϕpost). In the remainder of this paper, the values of SDϕpre are used to
indicate steady-state coordinative stability (SDϕ).

Coordinative stability was further quantified by the strength of the return process of ϕ after the
90◦ perturbation. This could be determined by fitting the return signal (starting from a value of 45◦

from the mean value of ϕpre) to an exponential decay function (including a damped oscillation element,
see [21]):

ϕ(t) = p + qe−λt cos
(
ωϕt + θ

)
, (1)

in which the decay parameter λ indicates the speed of the return process, also known as the relaxation
rate. As can be appreciated from Equation (1), higher values of λ indicate faster relaxation to the
according coordination pattern, and thus higher stability. The estimate of the decay parameter λ can
therefore be used as an index of stability. An example of the outcome of the fit procedure is provided
in Figure 1. For more specific details about this process, we refer to [21].

A trial was excluded from further analysis if one or more of the following criteria were met (see
also [21]): (a) The original coordination pattern was not re-established after the perturbation; (b) the
entire return signal remained > 45◦ from the pre-perturbation steady-state pattern; (c) pre-perturbation
and/or post-perturbation performance was not stable (SDϕpre and/or SDϕpost > 45◦); (d) the decay fit
showed no decay (i.e., λ < 0); and (e) the fit was unreliable as indicated by lack of robustness over four
different initial values of the fit model (standard error(λ) > median(λ)). Accordingly, 157 out of 1908
trials (i.e., 8%) were excluded from further analysis (note that this was 21% in [21]).

2.6. Statistical Analysis

The stability indices SDϕ and λ were analyzed statistically using Repeated-Measures (RM)
ANOVAs with the within-subjects factors pattern, frequency, and (where applicable) amplitude.
Estimates of effect sizes were provided by means of the ‘partial eta squared’ (η2

p). Obtained main and
interaction effects were scrutinized further based on the analysis of the pertinent simple effects and
(if applicable) subsequent post-hoc pair-wise comparisons based on t-tests with Holm–Bonferroni
correction for multiple comparisons. Further details on the post-hoc treatment for each test are
provided in the Results section.

3. Results

Figure 2 summarizes the frequency-amplitude relations. As already reported in Post et al. [21],
participants on average closely adhered to the prescribed amplitudes, while for the free amplitude
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condition the performed amplitudes generally dropped with increasing frequencies. Regarding the
latter, a 2 pattern × 7 frequency RM ANOVA on the performed ‘free’ amplitudes yielded a significant
main effect of frequency, F(6,30)=18.96, p < 0.001, η2

p = 0.79, and a significant pattern × frequency
interaction, F(6,30) = 3.44, p = 0.01, η2

p = 0.41. Post-hoc analysis of this interaction effect revealed that
the simple effect of frequency was significant for both in-phase and antiphase. Subsequent pair-wise
comparisons for in-phase indicated significantly larger performed amplitudes for 0.75 Hz compared
to all other frequencies but 1 Hz (all ps < 0.01), for 1 Hz compared to the highest three frequencies
(1.75–2.25 Hz; all ps < 0.01), and for 1.25 Hz compared to 2.25 Hz (p < 0.05). For antiphase the
performed amplitude differed statistically for 0.75 Hz compared to all other frequencies (all ps < 0.001),
and between pairs 1-2 Hz (p = 0.005), 1–2.25 Hz (p < 0.001), and 1.25–2.25 Hz (p = 0.03). For both
in-phase and antiphase the performed amplitudes did not differ statistically between the highest four
frequencies (1.5–2.25 Hz; all ps > 0.05). Notably, for 0.75 and 1 Hz the performed amplitude in the free
amplitude condition was larger than that of the largest prescribed amplitude of 0.3 rad (all ps < 0.01).
For outcomes of individual participants, see the Supplementary Material.
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Figure 2. Performed movement amplitudes averaged over participants, as a function of frequency and
amplitude conditions, for (a) in-phase and (b) antiphase coordination; free = unprescribed amplitude
condition. Error bars depict between-subjects standard errors.

The statistical analysis of SDϕ for the prescribed amplitude conditions involved a 2 pattern × 7
frequency × 3 amplitude RM ANOVA. Antiphase coordination (mean SDϕ = 9.7◦) was significantly
more variable than in-phase coordination (mean SDϕ = 6.9◦) as indicated by a significant main
effect for pattern, F(1,5) = 172.08, p < 0.001, η2

p = 0.97. For amplitude, a significant main effect was
observed, F(1,10) = 8.64, p = 0.007, η2

p = 0.63. With smaller amplitude, SDϕ generally increased (see
also Figure 3a,b), indicating lower coordinative stability. Post-hoc analysis indicated that SDϕ at 0.1
rad (mean SDϕ = 9.3◦) differed significantly from the other two conditions (0.2 rad: 8.0◦, 0.3 rad: 7.7◦).
Note that Post et al. [21] also found this effect.

Regarding the effects of frequency an unanticipated result was observed. A significant main
effect for frequency was found, F(6,30) = 8.73, p < 0.001, η2

p = 0.64, indicating that, collapsed over
in-phase and antiphase patterns, SDϕ increased. Remarkably, however, this commonly observed
finding was accompanied by a significant pattern × frequency interaction, F(6,30) = 24.22, p < 0.001, η2

p
= 0.83, with simple effects for pattern showing the expected significant increase in SDϕwith increasing
movement frequency for antiphase coordination (mean SDϕ: 8.6◦, 8.5◦, 8.0◦, 8.8◦, 10.0◦, 11.3◦, and
11.9◦, for 0.75–2.25 Hz respectively; see also Figure 3b), but a significant decrease in SDϕ for in-phase
coordination (mean SDϕ: 8.7◦, 7.8◦, 6.9◦, 6.5◦, 6.4◦, 6.5◦, and 6.2◦, for 0.75–2.25 Hz respectively; see
also Figure 3a). According to the post-hoc pair-wise comparisons of these simple frequency effects,
in-phase performance at the lowest two frequencies (i.e., 0.75 and 1 Hz) was statistically more variable
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than at all subsequent frequencies (p-values < 0.01), while antiphase performance at the highest three
frequencies (i.e., 1.75, 2, and 2.25 Hz) was statistically more variable than at the lower frequencies (all
p-values < 0.01), except for the one directly preceding it (e.g., the 1.5–1.75 Hz comparison was not
significant). Individual participant outcomes are provided in the Supplementary Material.
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For the prescribed amplitude conditions, a 2 pattern × 7 frequency × 3 amplitude RM ANOVA on
λ also revealed a significant main effect of amplitude, F(1,10) = 7.01, p = 0.01, η2

p = 0.58, which indicated
that stability increased with amplitude: Overall mean values of λwere 2.05 (0.1 rad), 2.24 (0.2 rad), and
2.43 (0.3 rad). Note that Post et al. [21] did not find this significant effect of amplitude. Furthermore, a
significant main effect of frequency was obtained, F(6,30) = 4.45, p = 0.002, η2

p = 0.47, accompanied by a
significant pattern × frequency × amplitude interaction, F(12,60) = 2.86, p = 0.004, η2

p = 0.36. Based
on post-hoc analysis of simple effects of frequency for each pattern × amplitude combination and
subsequent pair-wise comparisons, the three-way interaction appeared to be primarily due though to
the rather sharp increase of λ in the fastest condition (2.25 Hz) but only for the largest two amplitudes
in antiphase coordination (see Figure 4b). Notably, there was no significant main effect of pattern, as
was the case in [21].

For the free amplitude conditions, the 2 pattern × 7 frequency RM ANOVA on SDϕ revealed a
significant main effect of pattern: Antiphase coordination (mean SDϕ = 9.2◦) was more variable than
in-phase coordination (mean SDϕ = 6.3◦), F(1,5) = 78.48, p < 0.001, η2

p = 0.94. Furthermore, a significant
main effect of frequency, F(6,30) = 4.49, p = 0.002, η2

p = 0.48, accompanied by a significant pattern ×
frequency interaction, F(6,30) = 2.66, p < 0.03, η2

p = 0.35, and subsequent analysis of the simple main
effects for in-phase and antiphase separately, revealed that for in-phase the frequency effect did not
reach significance (p = 0.08; SDϕ remained rather similar for all frequencies, see Figure 3a, closed
circles), while for antiphase SDϕ increased significantly (p < 0.001) with frequency (Figure 3b, closed
circles), in which post-hoc pair-wise comparisons only indicated that performance at 2.25 Hz differed
significantly from that at 0.75 and 1 Hz (p-values < 0.05).

For the condition with unprescribed (‘free’) amplitude, a 2 pattern × 7 frequency RM ANOVA
on the values of λ yielded no significant effects. For λ-outcomes of individual participants, see the
Supplementary Material.



Brain Sci. 2020, 10, 724 9 of 16Brain Sci. 2020, 10, x FOR PEER REVIEW 9 of 16 

 
(a) (b) 

Figure 4. Post-perturbation coordinative stability (𝜆, with higher values indicating superior stability) 
for in-phase and antiphase coordination as a function of frequency conditions, for (a) prescribed 
amplitude and (b) free amplitude conditions. Error bars depict between-subjects standard errors. 

For the free amplitude conditions, the 2 pattern × 7 frequency RM ANOVA on 𝑆𝐷𝜑 revealed a 
significant main effect of pattern: Antiphase coordination (mean 𝑆𝐷𝜑 = 9.2°) was more variable than 
in-phase coordination (mean 𝑆𝐷𝜑  = 6.3°), F(1,5) = 78.48, p < 0.001, 𝜂  = 0.94. Furthermore, a 
significant main effect of frequency, F(6,30) = 4.49, p = 0.002, 𝜂  = 0.48, accompanied by a significant 
pattern × frequency interaction, F(6,30) = 2.66, p < 0.03, 𝜂  = 0.35, and subsequent analysis of the 
simple main effects for in-phase and antiphase separately, revealed that for in-phase the frequency 
effect did not reach significance (p = 0.08; 𝑆𝐷𝜑 remained rather similar for all frequencies, see Figure 
3a, closed circles), while for antiphase 𝑆𝐷𝜑 increased significantly (p < 0.001) with frequency (Figure 
3b, closed circles), in which post-hoc pair-wise comparisons only indicated that performance at 2.25 
Hz differed significantly from that at 0.75 and 1 Hz (p-values < 0.05). 

For the condition with unprescribed (‘free’) amplitude, a 2 pattern × 7 frequency RM ANOVA 
on the values of 𝜆 yielded no significant effects. 

4. Discussion 

We reanalyzed the interlimb coordination data of Post et al. [21] with the expectation that the 
refined analysis (based on improved normalization procedures, see Appendix A) would yield clearer 
effects of amplitude on the stability of steady-state coordination and particularly perturbed 
coordination than originally reported. This was indeed the case. As can be appreciated from Figure 
1, the half-cycle normalization procedure reduced artifacts in the form of undulations in the relative 
phase due to gradual and—especially relevant to the present case—sudden changes in the center of 
oscillation of the limb movements. As anticipated, this refined analysis smoothened the post-
perturbation fit procedure and led to reduced data exclusion (only 8% as opposed to 21% in the 
original study [21]) and yielded estimates of the relaxation parameter 𝜆 that were more sensitive to 
the amplitude manipulations: Now congruent significant main effects of amplitude for 𝜆 and 𝑆𝐷𝜑 
were obtained, both in the expected direction given coupled-oscillator dynamics [2] and previous 
studies [22–24,43], whereas in [21] this was only the case for 𝑆𝐷𝜑. Clearly, coordinative stability was 
lower for smaller movement amplitudes, which complements previous findings that failed to observe 
amplitude effects in characteristics of transient, non-stationary bimanual performance [16,19,21], or 
multifrequency tapping [20]. While the mediating role of movement amplitude in for instance pattern 
transitions [6] remains questionable [19], the present steady-state and perturbation data clearly show 
amplitude dependency: Moving with larger amplitudes is associated with stronger coupling [22,23] 
and hence more stable coordination [21–24,43].  

Figure 4. Post-perturbation coordinative stability (λ, with higher values indicating superior stability)
for in-phase and antiphase coordination as a function of frequency conditions, for (a) prescribed
amplitude and (b) free amplitude conditions. Error bars depict between-subjects standard errors.

4. Discussion

We reanalyzed the interlimb coordination data of Post et al. [21] with the expectation that the
refined analysis (based on improved normalization procedures, see Appendix A) would yield clearer
effects of amplitude on the stability of steady-state coordination and particularly perturbed coordination
than originally reported. This was indeed the case. As can be appreciated from Figure 1, the half-cycle
normalization procedure reduced artifacts in the form of undulations in the relative phase due to
gradual and—especially relevant to the present case—sudden changes in the center of oscillation of the
limb movements. As anticipated, this refined analysis smoothened the post-perturbation fit procedure
and led to reduced data exclusion (only 8% as opposed to 21% in the original study [21]) and yielded
estimates of the relaxation parameter λ that were more sensitive to the amplitude manipulations: Now
congruent significant main effects of amplitude for λ and SDϕ were obtained, both in the expected
direction given coupled-oscillator dynamics [2] and previous studies [22–24,43], whereas in [21] this
was only the case for SDϕ. Clearly, coordinative stability was lower for smaller movement amplitudes,
which complements previous findings that failed to observe amplitude effects in characteristics of
transient, non-stationary bimanual performance [16,19,21], or multifrequency tapping [20]. While the
mediating role of movement amplitude in for instance pattern transitions [6] remains questionable [19],
the present steady-state and perturbation data clearly show amplitude dependency: Moving with larger
amplitudes is associated with stronger coupling [22,23] and hence more stable coordination [21–24,43].

Before we proceed, it is important to recall that these findings were based on the data of six
participants only. Although interpretations are thus to be made with caution, they do provide strong
initial incentives for rekindling empirical research on the role of amplitude in coordinative stability. For
instance, the present experiment may be rerun with a larger sample of participants and some further
refinements. Regarding the latter, recall for instance that to manipulate the amplitude, endpoint targets
were provided (see Section 2.2), which also implies (1) a constrained location of oscillation in space,
and (2) more or less aiming behavior, involving anchoring of movement-reversal locations [11]. In the
next experiment, amplitude manipulations without endpoint targets (as in [22,23]) are to be preferred.

In terms of practical implications, such findings can potentially be capitalized upon when seeking
to improve interlimb or between-person coordination, as increasing the movement amplitude(s) is quite
easy to achieve in for instance training sessions. An example may be found in the rehabilitation of arm
function after stroke, in the context of which bilateral arm training is seen by some as a viable alternative
to constrained induced movement therapy, a form of unilateral training [44–46]. By increasing the



Brain Sci. 2020, 10, 724 10 of 16

amplitude with which patients perform rhythmical bimanual exercises, it might be possible to increase
the interlimb coupling strength [47] and thereby the stability of performance, which may accelerate
upper-arm function recovery. In this context it would be particularly interesting to investigate under
which amplitude conditions the most affected arm benefits most from the less affected arm, if at all.

The ubiquitous finding that steady-state antiphase coordination is less stable (as indicated by
higher SDϕ) than in-phase coordination was corroborated, with SDϕ values being qualitatively
and quantitatively comparable to those in Post et al. [21]. However, the stability of antiphase and
in-phase coordination patterns did not differ significantly in terms of the stability parameter λ (similar
to [21,22,37,40]). It might be that within the present empirical design λ was not sufficiently sensitive
to capture such differences (see also [22,48]) or that the stability of interlimb coordination after
perturbation did not differ much between both patterns. With regard to the latter, it is important to
realize that participants may particularly tend towards recapturing the coordination pattern around the
left and right arms’ common movement-reversal point (‘anchor points’ [49]). Since in the experiment of
Post et al. [21] the movements in both patterns were paced by a metronome, this might have invoked
a locking of the common movement reversal to a ‘local’ beep (a form of common auditory-motor
coordination governing interlimb coordination), thereby yielding similar relaxation processes for the
in-phase and antiphase interlimb coordination (see also [21]).

Given the observed lack of difference in stability (as depicted byλ) between in-phase and antiphase,
it is also important to stipulate that the current task implies a mechanical coupling between the limbs.
Specifically, while performing horizontal lower arm oscillations in an antiphase pattern (i.e., the arms
move in the same direction in space), especially with larger (forceful) movements reaction forces imply
the trunk to oscillate in the direction opposite of the arms [50]. Given the more stringent inertial
properties of the trunk compared to the lower arms, these ‘extra’ trunk oscillations may work in a
mechanically stabilizing way [50]. Note that such mechanical coupling does not—or at least to a much
lesser extent—apply in case of more distal movements (e.g., rods, wrists, fingers). Certainly in view of
potential applications (see above), it would therefore be useful to examine possible stabilizing benefits
of mechanical coupling related to inertial properties of limbs and other components.

When comparing our steady-state prescribed amplitude stability findings depicted in Figure 3a to
those in the analogous Figure 3 of Post et al. [21], the obtained SDϕ values were generally comparable,
except for the higher frequencies (>1.25 Hz) for in-phase coordination, where the refined analysis
yielded much lower values (indicating higher stability). Hence, whereas for antiphase coordination the
commonly observed increase in SDϕ with frequency was corroborated (see closed circles in Figure 3a),
the reanalysis revealed that SDϕ of the in-phase pattern significantly decreased with increasing
frequency (see open circles in Figure 3a). This is a remarkable finding, as the vast majority of previous
studies reported a (non-)significant increase of the variability of in-phase coordination with increasing
movement frequency (as could also be expected from coupled-oscillator models [2]). Interestingly,
a recent on-water crew rowing study also revealed the enhanced stability of steady-state in-phase
between-rower coordination at a higher movement frequency [51], a task in which the amplitudes
(i.e., oar excursions) are constrained as well. It is crucial here to realize that the stabilizing effect of
frequency on in-phase coordinative stability was only present for the prescribed amplitude conditions
(Figure 3a) and not for the ‘free’ amplitude condition (Figure 3b). As with increasing movement
frequency self-chosen amplitudes typically drop (see Introduction), pattern stability is indeed likely
to decrease. This was evident in the present data: For both in-phase and antiphase patterns ‘free’
movement amplitudes dropped with increasing movement frequency (see open circles in Figure 2),
accompanied by rather similar and diminishing steady-state coordinative stability for in-phase and
antiphase coordination, respectively (see Figure 3b). With prescribed amplitudes the coordinative
stability of antiphase coordination indeed diminished with increasing frequency, suggesting a genuine
stability dropping effect of higher movement frequency [2,6] as the reduced coordinative stability
with increasing frequencies could not be mediated by a gradual change in amplitude. Unexpectedly,
though, for prescribed amplitudes in in-phase coordination, a completely different pattern of results
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was observed: While at higher movement frequency the amplitude could not drop, the steady-state
in-phase coordination further stabilized rather than maintained or diminished stability (Figure 3a),
which contradicts both ‘frequency-mediated’ and ‘amplitude-mediated’ explanations [2,7,16–21].

At first glance, the in-phase stabilization with frequency may seem paradoxical, but may tentatively
be explained (at least partly) in terms of the frequency-amplitude trade-off itself: Higher frequencies
naturally would invoke smaller movement amplitudes, but when amplitude remains the same,
the stabilizing effect of the relatively larger amplitude (for a certain frequency) induces stronger
interlimb coupling and hence stabilizes coordination. A second tentative account, and one with greater
implications, may be that the coupling strength (and hence pattern stability) may depend more strongly
on something else than the mere frequency and amplitude of the oscillating components. In terms of
coupled-oscillator modeling [2,7], this could for instance imply that frequency-related adaptations of
(1) non-linear damping of the oscillatory behavior (e.g., [52]) and/or (2) coupling parameters come
into play. In this respect it is interesting to mention that mathematically it has been shown that
for in-phase coordination process 1 is a main mediator and for antiphase it is actually both 1 and 2
(e.g., [53]), which would indeed be in line with the currently obtained difference between in-phase and
antiphase in terms of their frequency-related dynamics. Importantly, this explanation would entail
that coupling parameters actually change as a function of time and behavior [3], whereas in the vast
majority of pertinent studies the coupling parameters are assumed to be constant. The possibility
of having time-varying coupling parameters constitutes a challenge for both further theoretical and
empirical analysis.

The results of our reanalysis demonstrate that half-cycle normalization can be of critical importance
in both transient and steady-state analyses of oscillatory signals. The extent to which this is the case
depends on the degree to which movement oscillation centers and amplitudes change within and
between trials. This was clearly an issue in the present dataset, but may be less of a problem in other
(published) experimental data in which movements were performed more consistently around a steady
center, such as in studies involving pendulum swinging in the gravitational plane (e.g., [9]). At the same
time, in these studies the role of amplitude has typically not (sufficiently) been considered, let alone
checked for (see also Introduction). The results of our reanalysis illustrate that it is crucial to always
closely inspect the trial data a priori, in this case to check for performed amplitudes and for potential
changes in the oscillation center so as to carefully evaluate the need for half-cycle normalization (or
another form of oscillation center normalization [36]) prior to phase-angle determination.

5. Conclusions

Our refined analysis of the data of Post et al. [21] revealed that smaller prescribed amplitudes
yielded lower coordinative stability. In addition, the observed frequency effects were not a mere
consequence of the frequency manipulation as such but could be largely ascribed to the performed
amplitude. These findings breathe new life into the claim that the stability of interlimb coordination
depends more on (frequency-induced alterations of) movement amplitude than on movement frequency
per se [22,23,43]. Furthermore, for prescribed small amplitudes in-phase coordination in fact stabilized
(rather than mitigated) with higher movement frequencies. Although at this stage the results of the
reanalysis of the data of Post et al. [21] and corresponding interpretations should be treated with
caution (in view of the small number of participants), they do provide strong grounds for rekindling
empirical research on the role of amplitude in the stability of rhythmical interlimb coordination. In
this context, previous data other than those of Post et al. [21] may also be usefully subjected to refined
analyses, since there are more previous studies in which certain effects may have been obscured and/or
confounded due to (1) unnoticed changes in movement amplitude, and/or (2) artifacts related to
inappropriate data normalization.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/10/724/s1,
Table S1: Outcome values for the individual participants.

http://www.mdpi.com/2076-3425/10/10/724/s1
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Appendix A

The determination of phase angles may suffer from artifacts due to both systematic and
unsystematic variations in any aspect of an otherwise perfectly harmonic oscillatory signal (Asinω(t)
+ d: A = amplitude, ω = frequency, d = oscillation center). Here this is briefly highlighted based on
generated data with known sinusoidal properties (see also [36]). A more comprehensive outline will
be provided in a forthcoming tutorial paper [54].

Obviously, a perfect sinusoidal signal would yield a phase angle progressing at a constant rate.
Graphically this would lead to perfectly straight increasing lines (see black lines in the lower panels of
Figures A1 and A2). Now, a signal can be perfectly sinusoidal while the center of oscillation varies.
This is for instance shown in Figure A1 (upper panel), where a perfect sinusoid was simply added to a
linear trend in oscillation center d. If one would solely center the signal based on an average value over
the entire signal [33,35], one would achieve artificially introduced fluctuations in the according phase
angles (Figure A1, red line). Here it is obvious that a simple solution would be to subtract the linear
trend from the signal first, so that it would oscillate nicely around the same origin for each successive
cycle. Indeed, this removes the artifacts (Figure A1, black line).

Another example is provided in Figure A2. Here, a signal was generated in which each half
cycle is perfectly sinusoidal while d and A change every half cycle. The artifacts in the corresponding
phase angles are readily observable in Figure A2 (red line). Also in this case, the oscillation needs
to be positioned nicely around the same origin for each successive cycle for proper phase-angle
determination. To correct for such a non-linear trend, a solution here would be to center the signal and
subsequently determine the phase angle for each half cycle separately. Figure A2 (black line) shows
the effect of the latter procedure.Brain Sci. 2020, 10, x FOR PEER REVIEW 13 of 16 

 
Figure A1. Upper panel: Generated oscillatory signal 𝑥 = 𝐴𝑠𝑖𝑛𝜔(𝑡) + 𝑑, in which a perfect sinusoid 
was added to a linear trend in oscillation center d. Lower panel: The corresponding instantaneous 
phase without (red line) and with prior detrending (black line). 

Another example is provided in Figure A2. Here, a signal was generated in which each half cycle 
is perfectly sinusoidal while d and A change every half cycle. The artifacts in the corresponding phase 
angles are readily observable in Figure A2 (red line). Also in this case, the oscillation needs to be 
positioned nicely around the same origin for each successive cycle for proper phase-angle 
determination. To correct for such a non-linear trend, a solution here would be to center the signal 
and subsequently determine the phase angle for each half cycle separately. Figure A2 (black line) 
shows the effect of the latter procedure. 

Figure A1. Cont.



Brain Sci. 2020, 10, 724 13 of 16

Brain Sci. 2020, 10, x FOR PEER REVIEW 13 of 16 

 
Figure A1. Upper panel: Generated oscillatory signal 𝑥 = 𝐴𝑠𝑖𝑛𝜔(𝑡) + 𝑑, in which a perfect sinusoid 
was added to a linear trend in oscillation center d. Lower panel: The corresponding instantaneous 
phase without (red line) and with prior detrending (black line). 

Another example is provided in Figure A2. Here, a signal was generated in which each half cycle 
is perfectly sinusoidal while d and A change every half cycle. The artifacts in the corresponding phase 
angles are readily observable in Figure A2 (red line). Also in this case, the oscillation needs to be 
positioned nicely around the same origin for each successive cycle for proper phase-angle 
determination. To correct for such a non-linear trend, a solution here would be to center the signal 
and subsequently determine the phase angle for each half cycle separately. Figure A2 (black line) 
shows the effect of the latter procedure. 

Figure A1. Upper panel: Generated oscillatory signal x = Asinω(t) + d, in which a perfect sinusoid
was added to a linear trend in oscillation center d. Lower panel: The corresponding instantaneous
phase without (red line) and with prior detrending (black line).

Brain Sci. 2020, 10, x FOR PEER REVIEW 14 of 16 

 

Figure A2. Upper panel: Generated oscillatory signal 𝑥 = 𝐴𝑠𝑖𝑛𝜔(𝑡) + 𝑑, in which each half cycle is 
perfectly sinusoidal while d and A change every half cycle. Lower panel: The corresponding 
instantaneous phase without (red line) and with prior half-cycle normalization (black line). 

References 

1. Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; MIT Press: Cambridge, MA, USA, 
1995. 

2. Haken, H.; Kelso, J.A.S.; Bunz, H. A theoretical model of phase transitions in human hand movements. Bio. 
Cyb. 1985, 51, 347–356. 

3. De Poel, H.J. Anisotropy and antagonism in the coupling of two oscillators: Concepts and applications for 
between-person coordination. Front. Psych. 2016, 7, 1947. 

4. Hoyt, D.F.; Taylor, C.R. Gait and the energetics of locomotion in horses. Nature 1981, 292, 239–240. 
5. Kelso, J.A.S.; Holt, K.G.; Rubin, P.; Kugler, P.N. Patterns of human interlimb coordination emerge from the 

properties of non-linear, limit cycle oscillatory processes: Theory and data. J. Mot. Behav. 1981, 13, 226–261. 
6. Kelso, J.A.S. Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol. Regul. 

Integr. Comp. Physiol. 1984, 246, R1000–R1004. 
7. Beek, P.J.; Peper, C.E.; Stegeman, D.F. Dynamical models of movement coordination. Hum. Mov. Sci. 1995, 

14, 573–608. 
8. Turvey, M.T. Coordination. Am. Psychol. 1990, 45, 938–953. 
9. Schmidt, R.C.; Shaw, B.K.; Turvey, M.T. Coupling dynamics in interlimb coordination. J. Exp. Psychol. Hum. 

Perc. Perf. 1993, 19, 397–415. 
10. Wimmers, R.H.; Beek, P.J.; Van Wieringen, P.C. Phase transitions in rhythmic tracking movements: A case 

of unilateral coupling. Hum. Mov. Sci. 1992, 11, 217–226. 
11. Roerdink, M.; Peper, C.E.; Beek, P.J. Effects of correct and transformed visual feedback on rhythmic visuo-

motor tracking: Tracking performance and visual search behavior. Hum. Mov. Sci. 2005, 24, 379–402. 

Figure A2. Upper panel: Generated oscillatory signal x = Asinω(t) + d, in which each half cycle
is perfectly sinusoidal while d and A change every half cycle. Lower panel: The corresponding
instantaneous phase without (red line) and with prior half-cycle normalization (black line).



Brain Sci. 2020, 10, 724 14 of 16

References

1. Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; MIT Press: Cambridge, MA, USA,
1995.

2. Haken, H.; Kelso, J.A.S.; Bunz, H. A theoretical model of phase transitions in human hand movements. Bio.
Cyb. 1985, 51, 347–356. [CrossRef] [PubMed]

3. De Poel, H.J. Anisotropy and antagonism in the coupling of two oscillators: Concepts and applications for
between-person coordination. Front. Psych. 2016, 7, 1947. [CrossRef] [PubMed]

4. Hoyt, D.F.; Taylor, C.R. Gait and the energetics of locomotion in horses. Nature 1981, 292, 239–240. [CrossRef]
5. Kelso, J.A.S.; Holt, K.G.; Rubin, P.; Kugler, P.N. Patterns of human interlimb coordination emerge from the

properties of non-linear, limit cycle oscillatory processes: Theory and data. J. Mot. Behav. 1981, 13, 226–261.
[CrossRef] [PubMed]

6. Kelso, J.A.S. Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol. Regul.
Integr. Comp. Physiol. 1984, 246, R1000–R1004. [CrossRef] [PubMed]

7. Beek, P.J.; Peper, C.E.; Stegeman, D.F. Dynamical models of movement coordination. Hum. Mov. Sci. 1995,
14, 573–608. [CrossRef]

8. Turvey, M.T. Coordination. Am. Psychol. 1990, 45, 938–953. [CrossRef]
9. Schmidt, R.C.; Shaw, B.K.; Turvey, M.T. Coupling dynamics in interlimb coordination. J. Exp. Psychol. Hum.

Perc. Perf. 1993, 19, 397–415. [CrossRef]
10. Wimmers, R.H.; Beek, P.J.; Van Wieringen, P.C. Phase transitions in rhythmic tracking movements: A case of

unilateral coupling. Hum. Mov. Sci. 1992, 11, 217–226. [CrossRef]
11. Roerdink, M.; Peper, C.E.; Beek, P.J. Effects of correct and transformed visual feedback on rhythmic

visuo-motor tracking: Tracking performance and visual search behavior. Hum. Mov. Sci. 2005, 24, 379–402.
[CrossRef]

12. Ridderikhoff, A.; Peper, C.E.; Beek, P.J. Error correction in bimanual coordination benefits from bilateral
muscle activity: Evidence from kinesthetic tracking. Exp. Brain Res. 2007, 181, 31–48. [CrossRef] [PubMed]

13. Schmidt, R.C.; Richardson, M.J.; Arsenault, C.; Galantucci, B. Visual tracking and entrainment to an
environmental rhythm. J. Exp. Psychol. Hum. Perc. Perf. 2007, 33, 860. [CrossRef] [PubMed]

14. Oullier, O.; De Guzman, G.C.; Jantzen, K.J.; Lagarde, J.; Kelso, J.A.S. Social coordination dynamics: Measuring
human bonding. Soc. Neurosci. 2008, 3, 178–192. [CrossRef] [PubMed]

15. Schmidt, R.C.; Richardson, M.J. Dynamics of interpersonal coordination. In Coordination: Neural, Behavioural,
and Social Dynamics; Fuchs, A., Jirsa, V.K., Eds.; Springer: Heidelberg, Germany, 2008; pp. 281–308.

16. Peper, C.E.; Beek, P.J. Modeling rhythmic interlimb coordination: The roles of movement amplitude and
time delays. Hum. Mov. Sci. 1999, 18, 263–280. [CrossRef]

17. Beek, P.J.; Rikkert, W.E.; Van Wieringen, P.C. Limit cycle properties of rhythmic forearm movements. J. Exp.
Psychol. Hum. Perc. Perf. 1996, 22, 1077. [CrossRef]

18. Kay, B.A.; Kelso, J.A.S.; Saltzman, E.L.; Schöner, G. Space–time behavior of single and bimanual rhythmical
movements: Data and limit cycle model. J. Exp. Psychol. Hum. Perc. Perf. 1987, 13, 178. [CrossRef]

19. Peper, C.E.; Beek, P.J. Are frequency-induced transitions in rhythmic coordination mediated by a drop in
amplitude? Bio. Cyb. 1998, 79, 291–300. [CrossRef]

20. Peper, C.E.; Beek, P.J. Distinguishing between the effects of frequency and amplitude on interlimb coupling
in tapping a 2: 3 polyrhythm. Exp. Brain Res. 1998, 118, 78–92. [CrossRef]

21. Post, A.A.; Peper, C.E.; Beek, P.J. Relative phase dynamics in perturbed interlimb coordination: The effects of
frequency and amplitude. Bio. Cyb. 2000, 83, 529–542. [CrossRef]

22. De Poel, H.J.; Peper, C.E.; Beek, P.J. Laterally focused attention modulates asymmetric coupling in rhythmic
interlimb coordination. Psychol. Res. 2008, 72, 123–137. [CrossRef]

23. Peper, C.E.; De Boer, B.J.; De Poel, H.J.; Beek, P.J. Interlimb coupling strength scales with movement amplitude.
Neurosci. Lett. 2008, 437, 10–14. [CrossRef] [PubMed]

24. Ryu, Y.U.; Buchanan, J.J. Amplitude scaling in a bimanual circle-drawing task: Pattern switching and
end-effector variability. J. Mot. Behav. 2004, 36, 265–279. [CrossRef] [PubMed]

25. Buchanan, J.J.; Ryu, Y.U. Scaling movement amplitude: Adaptation of timing and amplitude control in a
bimanual task. J. Mot. Behav. 2012, 44, 135–147. [CrossRef]

http://dx.doi.org/10.1007/BF00336922
http://www.ncbi.nlm.nih.gov/pubmed/3978150
http://dx.doi.org/10.3389/fpsyg.2016.01947
http://www.ncbi.nlm.nih.gov/pubmed/28066280
http://dx.doi.org/10.1038/292239a0
http://dx.doi.org/10.1080/00222895.1981.10735251
http://www.ncbi.nlm.nih.gov/pubmed/23962314
http://dx.doi.org/10.1152/ajpregu.1984.246.6.R1000
http://www.ncbi.nlm.nih.gov/pubmed/6742155
http://dx.doi.org/10.1016/0167-9457(95)00028-5
http://dx.doi.org/10.1037/0003-066X.45.8.938
http://dx.doi.org/10.1037/0096-1523.19.2.397
http://dx.doi.org/10.1016/0167-9457(92)90062-G
http://dx.doi.org/10.1016/j.humov.2005.06.007
http://dx.doi.org/10.1007/s00221-007-0902-7
http://www.ncbi.nlm.nih.gov/pubmed/17342477
http://dx.doi.org/10.1037/0096-1523.33.4.860
http://www.ncbi.nlm.nih.gov/pubmed/17683233
http://dx.doi.org/10.1080/17470910701563392
http://www.ncbi.nlm.nih.gov/pubmed/18552971
http://dx.doi.org/10.1016/S0167-9457(99)00011-1
http://dx.doi.org/10.1037/0096-1523.22.5.1077
http://dx.doi.org/10.1037/0096-1523.13.2.178
http://dx.doi.org/10.1007/s004220050479
http://dx.doi.org/10.1007/s002210050257
http://dx.doi.org/10.1007/s004220000185
http://dx.doi.org/10.1007/s00426-006-0096-9
http://dx.doi.org/10.1016/j.neulet.2008.03.066
http://www.ncbi.nlm.nih.gov/pubmed/18423866
http://dx.doi.org/10.3200/JMBR.36.3.265-279
http://www.ncbi.nlm.nih.gov/pubmed/15262623
http://dx.doi.org/10.1080/00222895.2012.656158


Brain Sci. 2020, 10, 724 15 of 16

26. Spijkers, W.; Heuer, H. Structural constraints on the performance of symmetrical bimanual movements with
different amplitudes. Q. J. Exp. Psych. 1995, 48, 716–740. [CrossRef]

27. De Boer, B.J.; Peper, C.E.; Ridderikhoff, A.; Beek, P.J. Phase entrainment strength scales with movement
amplitude disparity. Motor Control 2013, 17, 399–411. [CrossRef]

28. Varlet, M.; Coey, C.A.; Schmidt, R.C.; Richardson, M.J. Influence of stimulus amplitude on unintended
visuomotor entrainment. Hum. Mov. Sci. 2012, 31, 541–552. [CrossRef]

29. Kudo, K.; Park, H.; Kay, B.A.; Turvey, M.T. Environmental coupling modulates the attractors of rhythmic
coordination. J. Exp. Psychol. Hum. Perc. Perf. 2006, 32, 599. [CrossRef]

30. Kay, B.; Saltzman, E.; Kelso, J.A.S. Steady-state and perturbed rhythmical movements: A dynamical analysis.
J. Exp. Psychol. Hum. Perc. Perf. 1991, 17, 183–197. [CrossRef]

31. Beek, P.J.; Beek, W.J. Tools for constructing dynamical models of rhythmic movement. Hum. Mov. Sci. 1988,
7, 301–342. [CrossRef]

32. Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences; Cambridge
University Press: Cambridge, UK, 2003.

33. Rein, R. Measuring interpersonal coordination. In Interpersonal Coordination and Performance in Social Systems;
Passos, P., Davids, K., Chow, J.Y., Eds.; Routledge: New York, NY, USA, 2016; pp. 277–293.

34. Varlet, M.; Richardson, M.J. Computation of continuous relative phase and modulation of frequency of
human movement. J. Biomech. 2011, 44, 1200–1204. [CrossRef]

35. Lamb, P.F.; Stöckl, M. On the use of continuous relative phase: Review of current approaches and outline for
a new standard. Clin. Biomech. 2014, 29, 484–493. [CrossRef] [PubMed]

36. De Poel, H.J. Detrending prior to (Hilbert) phase determination. In Proceedings of the International
Conference on Perception and Action (ICPA), Groningen, The Netherlands, 3–6 July 2019.

37. Post, A.A.; Peper, C.E.; Daffertshofer, A.; Beek, P.J. Relative phase dynamics in perturbed interlimb
coordination: Stability and stochasticity. Bio. Cyb. 2000, 83, 443–459. [CrossRef] [PubMed]

38. Schöner, G.; Haken, H.; Kelso, J.A.S. A stochastic theory of phase transitions in human hand movement. Bio.
Cyb. 1986, 53, 247–257. [CrossRef] [PubMed]

39. Blikslager, F.; De Poel, H.J. Sync or separate? No compelling evidence for unintentional interpersonal
coordination between Usain Bolt and Tyson Gay on the 100-meter world record race. J. Exp. Psychol. Hum.
Perc. Perf. 2017, 43, 1466–1471. [CrossRef] [PubMed]

40. De Poel, H.J.; Peper, C.E.; Beek, P.J. Handedness-related asymmetry in coupling strength in bimanual
coordination: Furthering theory and evidence. Acta Psychol. 2007, 124, 209–237. [CrossRef]

41. De Poel, H.J.; Noorbergen, O. Assessing Competitive Between-Athlete Coordination. In Complex Systems in
Sport, International Congress Linking Theory and Practice; Torrents, C., Passos, P., Cos, F., Eds.; Frontiers Media:
Lausanne, Switzerland, 1935; pp. 37–38.

42. Mardia, K.V. Statistics of Directional Data; Academic Press: London, UK, 1972.
43. De Poel, H.J.; Peper, C.E.; Beek, P.J. Disentangling the effects of attentional and amplitude asymmetries on

relative phase dynamics. J. Exp. Psychol. Hum. Perc. Perf. 2009, 35, 762. [CrossRef]
44. Lee, M.J.; Lee, J.H.; Koo, H.M.; Lee, S.M. Effectiveness of bilateral arm training for improving extremity

function and activities of daily living performance in hemiplegic patients. J. Stroke Cerebrovasc. 2017, 26,
1020–1025. [CrossRef]

45. Van Delden, A.E.Q.; Peper, C.E.; Beek, P.J.; Kwakkel, G. Unilateral versus bilateral upper limb exercise
therapy after stroke: A systematic review. J. Rehab. Med. 2012, 44, 106–117. [CrossRef]

46. Waller, S.M.; Whitall, J. Bilateral arm training: Why and who benefits? NeuroRehabilitation 2008, 23, 29–41.
[CrossRef]

47. Van Delden, A.E.Q.; Beek, P.J.; Roerdink, M.; Kwakkel, G.; Peper, C.E. Unilateral and bilateral upper-limb
training interventions after stroke have similar effects on bimanual coupling strength. Neurorehab. Neural Re.
2015, 29, 255–267. [CrossRef]

48. De Poel, H.J.; Roerdink, M.; Peper, C.E.; Beek, P.J. The effect of movement amplitude on bimanual coordination:
Comparison of three stability measures. Int. J. Sport Psychol. 2010, 41 (Suppl. S4), 59–60.

49. Beek, P.J. Juggling Dynamics. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam,
The Netherlands, 1989.

http://dx.doi.org/10.1080/14640749508401412
http://dx.doi.org/10.1123/mcj.17.4.399
http://dx.doi.org/10.1016/j.humov.2011.08.002
http://dx.doi.org/10.1037/0096-1523.32.3.599
http://dx.doi.org/10.1037/0096-1523.17.1.183
http://dx.doi.org/10.1016/0167-9457(88)90015-2
http://dx.doi.org/10.1016/j.jbiomech.2011.02.001
http://dx.doi.org/10.1016/j.clinbiomech.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24726779
http://dx.doi.org/10.1007/s004220000177
http://www.ncbi.nlm.nih.gov/pubmed/11073208
http://dx.doi.org/10.1007/BF00336995
http://www.ncbi.nlm.nih.gov/pubmed/3955100
http://dx.doi.org/10.1037/xhp0000315
http://www.ncbi.nlm.nih.gov/pubmed/28639825
http://dx.doi.org/10.1016/j.actpsy.2006.03.003
http://dx.doi.org/10.1037/a0013549
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.008
http://dx.doi.org/10.2340/16501977-0928
http://dx.doi.org/10.3233/NRE-2008-23104
http://dx.doi.org/10.1177/1545968314543498


Brain Sci. 2020, 10, 724 16 of 16

50. Baldissera, F.; Rota, V.; Esposti, R. Postural adjustments in arm and leg muscles associated with isodirectional
and antidirectional coupling of upper limb movements in the horizontal plane. Exp. Brain Res. 2008, 190,
289–305. [CrossRef] [PubMed]

51. Cuijpers, L.S.; Passos, P.J.M.; Murgia, A.; Hoogerheide, A.; Lemmink, K.A.P.M.; De Poel, H.J. Rocking the
boat: Does perfect rowing crew synchronization reduce detrimental boat movements? Scand. J. Med. Sci.
Sports 2017, 27, 1697–1704. [CrossRef]
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