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Abstract: Autism spectrum disorder (ASD) refers to complex neurobehavioral and
neurodevelopmental conditions characterized by impaired social interaction and communication,
restricted and repetitive patterns of behavior or interests, and altered sensory processing.
Environmental, immunological, genetic, and epigenetic factors are implicated in the pathophysiology
of autism and provoke the occurrence of neuroanatomical and neurochemical events relatively early
in the development of the central nervous system. Many neurochemical pathways are involved in
determining ASD; however, how these complex networks interact and cause the onset of the core
symptoms of autism remains unclear. Further studies on neurochemical alterations in autism are
necessary to clarify the early neurodevelopmental variations behind the enormous heterogeneity of
autism spectrum disorder, and therefore lead to new approaches for the treatment and prevention
of autism. In this review, we aim to delineate the state-of-the-art main research findings about the
neurochemical alterations in autism etiology, and focuses on gamma aminobutyric acid (GABA) and
glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin,
vitamin D, orexin, endogenous opioids, and acetylcholine. We also aim to suggest a possible related
therapeutic approach that could improve the quality of ASD interventions. Over one hundred
references were collected through electronic database searching in Medline and EMBASE (Ovid),
Scopus (Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI).

Keywords: autism spectrum disorder; neurochemistry; GABA; glutamate; serotonin; dopamine;
acetylcholine; N-acetyl aspartate; oxytocin; melatonin

1. Introduction

Autism spectrum disorder (ASD) refers to complex neurobehavioral and neurodevelopmental
conditions characterized by impaired social interaction and communication, restricted and repetitive
patterns of behavior or interests, and altered sensory processing [1]. The prevalence of autism has
significantly increased during the last two decades from two to five per 10,000 children to 1:59 children
(one in 37 boys and one in 151 girls), and the prevalence in males is four times greater than females [2].
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Increasing evidence underlines the biological basis of autism. In fact, onset symptoms are
observed before three years of age and, in most cases, changes in social behavior or other slight autistic
features are noticed in the first few months of life [3]. This suggests that behind the pathophysiology
of autism there are neuroanatomical and neurochemical events occurring relatively early in the
development of the central nervous system (CNS). Numerous studies have also shown that autism
can often be comorbid with other neurological and psychiatric disorders, such as global development
delay and cognitive deficits, epilepsy or electroencephalographic (EEG) anomalies, sleep disorders,
developmental coordination disorder, neuropathies, Tourette syndrome, anxiety, oppositional defiant
disorder, conduct disorder, attention deficit hyperactivity disorder (ADHD), mood disorders, psychosis,
personality disorder, post-traumatic stress disorder, eating disorders, gender dysphoria, and substance
abuse [4,5]. Moreover, there are several medical conditions comorbid to autism such as immunological
disorders, gastrointestinal diseases, sleep-related breathing disorders, and there are several genetic
syndromes commonly associated with autism (fragile X syndrome, Rett syndrome, Angelman syndrome,
tuberous sclerosis complex, Phelan McDermid syndrome, Timothy syndrome, neurofibromatosis
type 1, etc.) [6–8].

All these factors contribute to a phenotypic heterogeneity that necessarily reflects a complex
multifactorial etiology of ASD. This has led most researchers to consider autism dimensionally rather
than using a categorial approach.

To a large extent, the ASD etiopathogenesis is unknown. It is a multifactorial condition caused
by both genetic and environmental factors. Moreover, it has become clear that autism has an
important genetic component. Siblings of individuals with autism have a prevalence of 2.9% to 3.7%,
which represents a nearly 100-fold increased risk as compared with the general population [9,10].
Twin studies have found concordance rates of 36% to 91% between monozygotic twins, and concordance
rates of 1% between dizygotic twins [11].

The first data about the involvement of neurotransmission in autism were obtained several
decades ago with studies on postmortem brain and measurements of bodily fluids, and, more recently,
through molecular imaging and genetic evidence about neurotransmitters.

Neurotransmitters and neuropeptides play a fundamental role in normal brain development
and contribute to memory, behavior, and motor activity regulation [12]. Indeed, they influence
neuronal cell migration, differentiation, synaptogenesis, apoptosis, and synaptic pruning. Therefore,
a neurotransmitter system dysfunction can lead to impairments in the processes of brain development,
determining autism [13].

This review focuses on evidence that suggests a role for neurotransmission dysregulation in
autism and how these alterations could be useful for pharmacologic intervention in autism or as
precocious biomarkers.

2. Aims and Methods

All of the aforementioned reasons have led researchers to rethink their efforts to understand the
neurochemical alterations underlying ASD. The aim of the current review was to collect an overview of
original articles about the contribution of neurotransmitters and neuropeptides to the pathophysiology
of autism with a focus on gamma aminobutyric acid (GABA) and glutamate, serotonin, dopamine,
N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin, vitamin D, orexin, endogenous
opioids, and acetylcholine.

This review helps to better delineate the state-of-the-art main research findings about the
neurochemical alterations in autism etiology and suggests possible related therapeutic approaches that
could improve the quality of ASD interventions.

To this end, over one hundred articles, published over the years, were reviewed by performing
a search using the following syntax (autism or autism spectrum disorder or Asperger syndrome or
pervasive developmental disorders (Title/Abstract)) and (GABA or glutamate or serotonin or dopamine
or N-acetyl aspartate or oxytocin or arginine-vasopressin or melatonin or vitamin D or orexin or
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opioids or acetylcholine (Title/Abstract)). References were identified through electronic database
searching in Medline (Ovid, 1946 to present) and EMBASE (Ovid), and they were adapted for Scopus
(Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI). The final database search was run
on February 2020.

3. Gamma Aminobutyric Acid

Gamma aminobutyric acid (GABA) is derived from glutamate thanks to the action of glutamate
decarboxylase and it has a complex and homeostatic relationship balancing neuronal excitability.
In immature brains, GABA receptors are different from those of adult brains. GABA represents the
main excitatory neurotransmitter during brain development, and it influences proliferation, migration,
synapse maturation, differentiation, and cell death [14].

Alterations in gabaminergic and glutaminergic systems cause a disrupted excitatory/inhibitory balance
and are also potential mechanisms for autistic behaviors and for various neurodevelopmental disorders.

The excitatory/inhibitory imbalance theory for social behavior impairments has been demonstrated
through the depolarization of cells for a long period of time in mice medial prefrontal cortex.
The elevation of excitatory/inhibitory balance provokes a deep impairment in information processing
and social behavior dysfunction [15].

A magnetic resonance spectroscopy study has shown a reduced glutamate concentration in the
striatum as compared with controls both in adults with idiopathic ASD and in mice models, especially
in mutational model of SHANK3 and neuroligin–neurexin complex [16]. Similarly, reductions in GABA
have been detected in magnetic resonance spectroscopy studies in subjects in an age-dependent manner,
in motor, visual, auditory, somatosensory area, and in the perisylvian region of the left hemisphere,
leading to abnormal information processing [17,18].

The plasma GABA and glutamate levels are altered in children with ASD. In particular, there
is a significant elevation of plasma GABA and the glutamate/glutamine ratio while the levels
of plasma glutamine and glutamate/GABA ratios are significantly lower as compared with the
controls [19]. This imbalance between excitatory and inhibitory mechanisms in the GABA and
glutamate neurophysiology has been linked to other neurodevelopmental disorders such as global
developmental delay and mental retardation, schizophrenia, and epilepsy [20,21].

Atypical sensory perceptions are very common in ASD. Using magnetic resonance imaging (MRI)
spectroscopy, Robertson et al. demonstrated a tight linkage between atypical dynamics of binocular
rivalry in ASD and reduced GABAergic, but conserved glutamatergic levels, in the autistic occipital
visual cortex [22].

MECP2 mutations provoke Rett syndrome and several neuropsychiatric disorders including
autistic symptoms. Mutations in MeCP2 gene lead to a GABAergic dysfunction through reduced
glutamic acid decarboxylase-1 and -2 levels and GABA immunoreactivity, changing the synaptic
physiology and provoking numerous Rett syndrome and autistic-like characteristics, including
repetitive behaviors in mice [23].

Some studies underlined an association between single-nucleotide polymorphisms (SNPs) of
GABA receptors located in the chromosome 15q11–q13 of ASD subjects [24,25]. However, a recent
meta-analysis has demonstrated that different SNPs of GABA receptor subunits B3, A5, and G3 had no
correlations with autism in different ethnic populations [26].

The pharmacological approach with GABA modulators in autism aims to target the imbalance
between excitatory glutamatergic and inhibitory GABAergic pathways. Arbaclofen, acamprosate,
bumetanide, and valproate are the most studied substances. However, the majority of these studies are
open-label trials and imply little statistical significance. A systematic review has, therefore, remarked
that, to date, there is lack of evidence suggesting the use of GABA modulators to treat autism core
symptoms, and further well-designed trials are needed [27].
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4. Glutamate

Glutamate is the main excitatory neurotransmitter in the mammalian cortex. There are three
main classes of receptors for glutamate, known as N-methyl-D-aspartate receptors (NMDARs),
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and metabotropic
glutamate receptors [28]. Both NMDARs and AMPARs have also been implicated in ASD and
much evidence supports this hypothesis [29].

Valproic acid-induced rodent models of autism have shown a selective overexpression of NR2A and
NR2B subunits of NMDA receptors. This overexpression provoked enhanced NMDA receptor-mediated
synaptic currents which led to an amplified postsynaptic plasticity in neocortical pyramidal neurons [30].

Modifications of AMPAR GluA2 subunit have deep effects on neuronal excitability and GluA2
dysregulation has been linked to different neuropsychiatric disorders such as intellectual disability and
Rett syndrome [31]. Moreover, in a mouse model of CDKL5 deficiency disorder showing a phenotype
characterized by autistic-like behaviors, intellectual disability, and seizures, a significant decrease in
AMPAR GluA2 subunit in the hippocampus has been documented [32].

NMDA and NMDAR have also been correlated to autism. Specifically, mutations of GRIN2A
and GRIN2B genes (respectively coding for GluN2A and GluN2B subunits) have been linked to
ASD [33,34].

An alteration of NMDAR has been highlighted in several mouse models of autism such as Shank3
DC/DC mice, neuroligin-3 R451C knock-in mice, Fmr1−/−mice, and Shank2−/−mice [35,36].

Recent theories support the involvement of the cerebellum in ASD. Interestingly, for the first
time, alterations have been demonstrated in the cerebellum granular layer of IB2 (islet brain-2) KO
mouse models. The IB2 gene is implicated in Phelan–McDermid syndrome and provokes autistic
symptoms and a severe motor delay. The IB2 KO mouse models have a NMDA receptor hyperactivity
and hyperplasticity that determines an increase of excitatory/inhibitory balance and an enhanced
long-term potentiation in mossy fiber and granule cells [37].

Nevertheless, an early correction of NMDAR dysfunction showed, in mouse models, a significant
improvement in autistic-like behaviors [38–40].

Evidence shows that mutations in genes (SHANK, NLGN3, NLGN4, and UBE3A) involved in
synapse formation and maintenance and in protein targeting are correlated both to the development of
autistic traits and to glutamatergic dysregulation [41–43].

However, a large glutamatergic and GABAergic gene set analysis in subjects with ADHD and
autism has shown only a significant association between glutamate gene set and hyperactivity and
impulsivity symptom severity. No significant associations were found for autism symptoms in
glutamate and GABA gene set which reinforces the need for further research on the genetics of
excitatory/inhibitory imbalance in ASD [44].

In human beings, pharmacological enhancement or suppression of NMDAR function has
determined an improvement in ASD symptoms [45]. In particular, an NMDAR agonist (D-cycloserine)
significantly reduced social withdrawal and repetitive behavior [46,47]. Similarly, the administration
of an NMDAR antagonist (memantine) improved stereotypies, lethargy, irritability, hyperactivity, and
inattention suggesting a bidirectional NMDAR dysfunction [48,49].

5. Serotonin

Several studies have shown the involvement of the serotonin system in the etiology of autism
during early brain development [50]. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter
belonging to the monoamine family; it is involved in the modulation of several developmental
events, including cell division, cortical proliferation, migration, differentiation, cortical plasticity, and
synaptogenesis [51,52]. Serotonin intervenes in various brain functions such as memory, learning
ability, and has a role as a sleep and mood modulator [53,54]. Studies have revealed that the serotonin
transporter (SERT or 5-HTT) or serotonin levels were higher in autistic children and in animal models
as compared with controls, while there was postmortem evidence for reductions in both 5-HT2A



Brain Sci. 2020, 10, 163 5 of 18

and 5-HT1A binding in ASD brain [55–57]. Positron emission tomography (PET) studies revealed
that healthy children between two and five years of age showed an elevated 5-HT synthesis, with
a subsequent decline at puberty. Children with autism did not show this decline in the ability to
synthesize serotonin over time, and the levels were significantly lower in these children at the age of
two to five as compared with the controls, slightly increasing with age [58,59].

Polymorphisms in the SLC6A4 gene, which encodes for platelet and neuronal transport of 5-HT,
have been associated with autism. These polymorphisms are functionally significant, and the higher 5-HT
levels observed in ASD are substantial in children with SLC6A4 polymorphisms [60,61]. Differentially,
there is animal evidence that embryos developing in Slc6a4+/− dams have reduced resilience to prenatal
stress which increases the offspring’s risk of developing ASD-like characteristics [62].

Several studies have detected platelet hyperserotonemia in ASD subjects with average increases
of 20% to 50% [63–65]. Interestingly, this increase appeared to be specific to autism or ASD because it
was not observed in intellectual disability or in other neuropsychiatric disorders [66,67].

Some selective serotonin reuptake inhibitors (SSRIs) have shown modest efficacy in the treatment
of specific behaviors such as disruptive and repetitive symptoms; however, only fluoxetine has shown
good evidence of decreasing global autism symptomatology [68,69].

All these studies confirm the role of serotonin in the pathophysiology of autism. However,
the mechanism of elevation remains uncertain and the relationship with central serotonergic functioning
needs further investigations.

6. Dopamine

In addition to being correlated to motor control, dopamine plays an important role in social
cognition and behaviors especially through the mesocorticolimbic pathway [70].

Numerous studies have suggested that ASD could be linked to dopaminergic dysfunction and have
hypothesized that dopamine imbalances in specific brain regions could lead to autistic behaviors [71].
In particular, autistic subjects have shown alterations in the mesocorticolimbic dopaminergic signaling
pathway, such as reduced dopamine release in the prefrontal cortex and reduced neural response in
the nucleus accumbens [72,73]. An article suggested that, in autism, social deficits were determined by
a dysfunction of the mesocorticolimbic circuit, while the dysfunction of the nigrostriatal circuit led
to stereotyped behaviors [74]. Concerning the nigrostriatal dopaminergic circuit, studies on mouse
models have shown that drug-induced nigrostriatal pathway dysfunction caused stereotyped behaviors
in mice [75]. Indeed, the administration of D1 dopaminergic receptor antagonists have reduced these
behaviors [76].

A recent study supported the hypothesis that mesocorticolimbic circuit could impact social
behaviors through the bidirectional control of dopaminergic projections from ventral tegmental area to
nucleus accumbens. In particular, the optogenetic stimulation of dopaminergic ventral tegmental area
neurons determined the activation of D1 receptors leading to an increase in the time that animals spent
in social interaction, whereas inhibition had the opposite effect [77].

Genetic studies have shown an association between autism and several gene polymorphisms
involved in dopaminergic pathways, such as dopamine receptors DR3 and DR4, or dopamine
transporter (DAT) [78–80]. A recent study on mouse models highlighted that mutations in DAT
provoked anomalous dopamine efflux and led to autistic-like behavioral phenotypes [81]. Dopaminergic
gene polymorphisms should modulate emotion dysregulation and ADHD symptoms in children with
ASD [82]. Moreover, haploinsufficiency of SHANK3 have reduced neuronal dopaminergic activity in
the ventral tegmental area generating behavioral anomalies including impaired social skills [83].

Only the dopamine receptor blockers (risperidone and aripiprazole) are EMA/FDA-approved for
the treatment of irritability, and they have also been shown to be effective in treating ASD repetitive
behaviors [84,85].

All this evidence should lead to considering the administration of dopamine modulators as a
therapeutic target for further studies in ASD behavioral treatment.



Brain Sci. 2020, 10, 163 6 of 18

7. Acetylcholine

Acetylcholine is the neurotransmitter used by motor neurons at the neuromuscular junction. It is
also the main neurotransmitter of the parasympathetic nervous system and acts as a neurotransmitter
and a neuromodulator in the CNS.

The main evidence of cholinergic system abnormalities in ASD has included a significant reduction
of nicotinic α4β2 subtype of ACh receptors (nAChRs) in the parietal and frontal cortex detected in
post-mortem brain samples [86,87].

Another study has shown a reduction of cerebellar α4 nAChRs which could be linked to the loss
of Purkinje cells and to a compensatory increase in α7 nAChRs [88].

Several studies on ASD animal models have shown the involvement of nAChRs in modulating
social and repetitive behaviors [89].

There is animal evidence that α4β2 nAChRs are linked to autistic-like symptoms and the
administration of ABT-418 (a neuronal nicotinic acetylcholine receptor agonist) determines a statistically
significant improvement in these psychiatric symptoms [90].

Alpha4 nAChR subunit knock-out and beta2 nAChR subunit knock-out mice, respectively, show
increases of anxiety and abnormal sleep pattern [91,92].

Theα7 nicotinic receptor plays a particularly promising role in the pathogenesis of neuropsychiatric
pathologies, including schizophrenia, ASD, ADHD, addictive disorders, because it is involved in
sensory processing, cognition, working memory, attention and it is highly expressed in the regions
involved in these cognitive functions such as hippocampus and frontal cortex [93,94].

Growing evidence supports the idea that the stimulation of α7 nAChR receptor has procognitive
effects both in animal and in vivo models. These effects are mediated by PI3K/Akt signaling cascade
crosstalk with the Wnt/-catenin signalling cascade and both transcriptional and non-transcriptional
effects of catenin, metabolic effects of transient increases in the intraneuronal concentration of Ca2+,
and changes in membrane potential [95].

Mutations involving the CHRNA7 gene in the chromosome region 15q13.3 have been correlated
to autistic-like phenotypes [96]. In CHRNA7 null mutant mice, an increase of IL6 has been observed in
mutant fetal brain due to maternal immune activation, and increased behavioral deficits in the offspring
have also been observed. Moreover, it has been reported that the gestational choline supplementation
improved the fetal brain’s response to maternal immune activation and prevented several induced
behavioral abnormalities in the offspring [97].

Alpha7 and α4β2 subtypes of nAChRs are highly expressed in the CNS and, as we have observed,
they are more involved in the ASD pathogenesis. Therefore, they have been detected as a possible
therapeutic target.

A randomized, double-blind, placebo-controlled trial on galantamine showed a statistical
improvement in irritability, lethargy, and social withdrawal with good tolerability [98].

Evidence on animal models and on men has also demonstrated that donepezil has a good safety
and tolerability profile and determined an improvement in behavioral dysfunctions [99].

3-(2,4-Dimethoxybenzylidene)-anabaseine (DMXB-A) is a selective partial agonist for α7- nAChRs
and has shown its efficacy in a randomized, double-blind crossover trial on neurocognitive
improvements in subjects with schizophrenia [100]. Analogous effects have been highlighted in
two adult patients with ASD [101].

8. N-acetyl Aspartate

N-acetyl aspartate (NAA) is a widely diffuse metabolite in the human CNS. Its high brain concentration
and its main functions remain uncertain. It is expressed in neurons, oligodendrocytes, and myelin and it is
synthesized in the mitochondria derived from aspartic acid [102]. A decreased NAA concentration has been
found in several psychiatric disorders and seemed to be correlated to a mitochondrial dysfunction [103].
The altered metabolic state can be reversed with psychopharmacological treatment capable of restoring a
normal NAA level [104].
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A functional MRI study has shown a significant reduction of NAA concentration in all brain regions
and a specific reduction in the left frontal cortex as compared with the controls [105]. Another study
showed the relationship between the dorsal striatal volume and NAA and glutamate levels in ASD
and in obsessive-compulsive disorder as compared with the controls, underlying possible overlapping
subcortical abnormalities [106]. Further studies are needed to elucidate the exact role of NAA in the
pathogenesis of ASD.

9. Oxytocin and Arginine-Vasopressin

In recent years, researchers have shown an increasing interest in oxytocin (OXT), another molecule
that seems to be involved in the neurochemistry of autism. Arginine-vasopressin (AVP) belongs
to the same superfamily as oxytocin. Their structure is very similar, and their genes are close on
chromosome 20p13, separated only by 12 kb of DNA, and they have an opposite transcriptional
orientation. For these reasons, two neuropeptides influencing one another’s functions have effects
on the same neural structures in the central and autonomic nervous systems and they both modulate
human behavior [107].

Oxytocin is a neuropeptide involved in a number of physiological processes, including parturition
and lactation. It has been shown to modify synaptic plasticity and to modulate social behaviors such
as eye contact, social recognition, aggressivity, sociosexual behaviors with a role in sculpting emotional
and social “self” [108,109].

Altered plasma levels of OXT and AVP have been reported in autistic individuals and they are
often correlated to aberrant functional connectivity [110,111]. An association between the degree of
methylation of the oxytocin receptor (OXTR) gene and autistic symptoms has been reported [112,113].
However, the results are not all consistent.

The genetics of OXT and AVP receptors has been widely explored. In particular, two microsatellites,
RS1 and RS3, within the promoter region of vasopressin receptor 1A (V1AR), and rs28632197 and
rs35369693 SNPs of vasopressin V1b receptor (V1BR), have been found to be significantly linked to
ASD. Two SNPs of the OXT receptor gene (rs53576 and rs225429) are also significantly associated with
ASD. However, the mechanisms whereby these polymorphisms contribute to ASD pathogenesis have
yet to be completely clarified [114,115].

Interestingly, mutations in SHANK3 (a postsynaptic scaffolding protein implicated in synapse
development and ASDs) [116] have effects on the oxytocinergic system and this alteration could be the
cause of some behavioral phenotypes related to synaptic plasticity in autism [117]. Recently, it has been
hypothesized that the failure of the oxytocinergic system during the early stages of neurodevelopment
could affect social behavior by altering synaptic activity and plasticity [118].

Animal model research has documented that the administration of OXT and AVP was able to
rescue autistic traits and increase social skills [119–121]. In humans, there is some evidence that the
administration of oxytocin reduces some dysfunctional behaviors associated with autism, especially
social skills, repetitive behaviors, anxiety, irritability, and self-injurious behaviors [122–124]. However,
a recent meta-analysis that reviewed randomized controlled trials on ASD symptomatology did reveal
that there was no benefit of oxytocin over placebo and provided further proof to support existing
evidence [125].

In the end, there is evidence for crucial interaction between the dopaminergic, AXT-AVP,
and serotoninergic systems in different areas of social brain with great influence on human social
behavior [126].

10. Melatonin

Children with ASD often have sleep disorders, such as difficulty falling and staying asleep, and
parasomnia [127,128]. Melatonin is a major regulator of the sleep-wake rhythm, reduces sleep latency,
it is a powerful antioxidant, it has a role in neurodevelopment and plasticity, and it can be important
in placental homeostasis [129] and immunity [130]. Studies involving autistic individuals show
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lower melatonin or melatonin metabolite plasma levels and lower urinary melatonin sulfate excretion
rates [131]. Moreover, a recent research showed that 6-sulfatoxymelatonin levels were significantly
lower in mothers with an ASD child than in the controls [132]. During pregnancy, melatonin is able
to cross the placenta providing photoperiodic information to the fetus and establishing a normal
sleep cycle which is essential for normal neurodevelopment. Indeed, maternal melatonin, before the
maturation of the fetal pineal gland, protects against brain inflammation and injury [133].

Some studies underline that specific gene abnormalities (MTNR1A, MTNR1B, GPR50, and ASMT)
could contribute to reduced melatonin level or to altered melatonin receptor function or they could be
involved in melatonin synthesis in a small percentage of ASD patients. [134]

The use of melatonin for the treatment of chronic sleep-wake cycle disorders in children
with autism is constantly increasing [135]. Melatonin, associated with educational and behavioral
interventions, appears to be the most effective treatment for improving both sleep problems and
daytime behaviors [136]. Indeed, its effects go beyond sleep, melatonin acts on anxiety, depression,
pain and gastrointestinal dysfunctions, improving the well-being of ASD subjects [137].

11. Vitamin D

Vitamin D is an active steroid with an important role in antioxidant activity, neuronal calcium
regulation, immunomodulation, and in the regulation of neurotransmitters and neurotrophic
factors [138]. In the brain, vitamin D also plays a role in neuronal proliferation and in synaptic
plasticity [139]. Lower levels of vitamin D have been reported in autistic individuals [140,141]. There is
animal evidence that a partial lack of vitamin D exposes the brain to neuroinflammation and that the
exogenous supplementation has a protective effect ameliorating neurotoxicity, inflammation, and DNA
damage [142]. Vitamin D has an important role in neurotransmission. In fact, it regulates glutamate,
GABA, serotonin, dopamine, and it alters immune function relevant in ASD pathogenesis and causes
steroid and placental dysregulation [143].

Moreover, it seems that 25-hydroxyvitamin D deficiency either at mid-gestation or at birth is
associated with an increase in autistic traits in children [144].

Exogenous vitamin D supplementation can have beneficial effects in ASD children and improve
signs and symptoms of ASD [145,146], and the American Academy of Pediatrics recommends
vitamin D supplementation during infancy and childhood [147]. However, a recent randomized
placebo-controlled trial underlined that vitamin D supplementation had limited beneficial effects on
children with ASD without any effect on the primary outcome [148].

12. Orexin System

Recently, the interest of researchers with respect to orexin related to autism has been increasing.
Orexin, also known as hypocretin, is a neuropeptide secreted by neurons located in the lateral
hypothalamus and perifornical areas. Orexergic fibers have great distribution in the brain and they
have many physiological functions, such as excitement, sleep regulation, cognition, stress, appetite and
metabolism [149]. Orexin dysfunction appears to be related to various neurological disorders including
addiction, depression, anxiety, and schizophrenia [150]. Considering the prevalence of sleep disorders
in individuals with ASD [114,151], it is possible to hypothesize that an alteration of the orexinergic
system could be implicated in the pathogenesis of these disorders. Sleep disturbances in ASD patients
depend on the increased orexinergic system activity (probably due to amygdala dysfunction) associated
with a reduced serotoninergic and melatoninergic system activity [152,153]. In a recent study, plasma
levels of Orexin A were higher in ASD patients than in the healthy population [146]. Another study
underlined a strong correlation between plasma levels of oxytocin and orexin A in the ASD groups
investigated. This finding supported the contribution of oxytocinergic mechanisms in ASD [154].
However, there are few studies in this field and the results are still contradictory.
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13. Endogenous Opioids

Endogenous opioids are peptides that act as neuromodulators in the CNS. There are three types
of endogenous opioids, i.e., beta-endorphins, enkephalins and dynorphins. Opioid administration
determines behavioral effects, such as insensitivity to pain, affective lability, stereotypical behavior,
and reduced socialization [155,156]. Blood and liquor studies have shown that beta-endorphin
levels are altered in subjects with ASD, although not all results have been concordant [157,158].
Interestingly, a study has shown elevated plasma levels of beta-endorphin in ASD individuals after
venipuncture, suggesting a different mode of pain expression and a lower ability to regulate their
emotional response [159].

Some studies have examined the effects of opioid antagonists (naloxone and naltrexone) in
individuals with autism and a reduction in self-aggressive behavior, hyperactivity, restlessness, and
withdrawal has been demonstrated [160,161]. However, a recent systematic review clarified that
although opioids can improve hyperactivity and restlessness in ASD children, there was not sufficient
evidence that they had an impact on the core symptoms of autism in the majority of participants.
Nevertheless, a subgroup of children with autism and abnormal endorphin levels have responded to
naltrexone [162].

14. Discussion

ASD is a complex neurobehavioral syndrome and no specific causes have yet been identified.
Anatomical brain abnormalities, genetic anomalies, and neurochemical dysfunctions of various
neurotransmitters and neuropeptides including GABA and glutamate, serotonin, dopamine, N-acetyl
aspartate, oxytocin, arginine-vasopressin, melatonin, vitamin D, orexin, opioids, and acetylcholine
contribute to the onset of autism. Our review suggests the important role played by altered
neurotransmission in the etiopathogenesis of ASD (see Table 1). It is clear that many pathways
are involved in determining autism, but how these biological systems interact with each other remains
obscure. Further neurochemical network studies on early neurodevelopment alterations are required.
Advancing the understanding of the etiology of the ASD mechanisms represents a real challenge,
mainly due to the enormous heterogeneity of ASD.

The evidence gathered by our review supports the existence of several dysregulated
neurotransmitters and neuropeptides in animal models and in patients with autism. Although there
is some evidence suggesting that specific receptor anomalies lead to specific phenotypic variations
it is very hard to highlight the pathogenetic role of every neuronal receptor in determining the
autism phenotype.

In this framework, some clinical features of ASD could, at least partially, find an explanation such as
sensory integration alteration [163], and neuropsychological and psychological dysfunction [164–166].

The heterogeneity of autism makes it very difficult to detect exclusive neurobiological and genetic
traits of ASD and, to date, there are only a very few replicated neurochemical findings.

Additional efforts are required to understand whether these anomalies have a primary etiological
role or whether they are rather secondary epiphenomena of a global cerebral dysfunction. Most studies
about autism etiology more fruitfully examine specific domains of behavior or single impairments
rather than the whole autism phenotype.

Advances in research could lead to new therapeutic strategies that could be useful for improving
and perhaps even preventing autism symptoms.

The growing body of evidence reported by our review on the pharmacological substances targeting
receptor abnormalities often showed conflicting results and we hope that higher quality studies would
be conducted in order to clarify what receptor system could represent an effective pharmacological
target for the treatment of autism symptomatology.

In conclusion, additional evidence on the neurochemical alteration of autism is needed and a
greater knowledge in this field could lead to a completely new approach to the pharmacological
management of autism and to the identification of biomarkers with greater specificity and sensitivity.
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Table 1. Main neurochemical findings.

Molecule Imbalance Genes Animal Models Pharmacological
Approach

GABA
↓motor, visual, auditory,
somatosensory cortex
↑ blood

MECP2
GABRA5,
GABRG3,
GABRB3 *

Viaat-Cre mice+

Arbaclofen,
acamprosate,

bumetanide, and
valproate

Glutamate ↓ striatum
↑ blood

SHANK,
NLGN3,
NLGN4,
UBE3A,
GRIN2A,
GRIN2B,
CDKL5

Nlgn3 KO mice
Shank3 KO mice
Shank2 KO mice
VPA-mice
Cdkl5 KO mice
IB2 KO mice

D-cycloserine
Memantine

Amantadine
mGLuR5-antagonists

Serotonin ↑ brain and blood;
↓ 5-HT2A, 5-HT1A binding SLC6A4 SERT Ala56 mice

Slc6a4 +/−mice
Selective serotonin
reuptake inhibitor

Dopamine

↓ prefrontal cortex
Dysregulation of
mesocorticolimbic and
nigrostriatal circuit

SLC6A3
SHANK3
DRD3
DRD4

Stereotypic deer mice
DAT T356M+/−

Dopamine receptor
blockers

Acetylcholine

↓ α4β2 nAChRs in parietal
and frontal cortex
↓ α4 ↑ α7 nAChRs in
cerebellum

CHRNA7
CHRNA4
CHRNB2

CHRNA7 null mutant
miceb
TBR mouse
PTZ-kindled mice

ABT-418
α7 nAChR
modulators
galantamine

donepezil

Oxytocin and
arginine-vasopressin ↑ OXT plasma

OXTR
AVPR1A,
AVPR1B
Shank3

OXTR KO mice
V1aR knock-out
mice

Oxytocin

Melatonin ↓ plasma
↓ urinary excretion

MTNR1A,
MTNR1B
GPR50
ASMT

MT1 and MT2 receptor
knock-out mice Melatonin
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