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Abstract: In network models of spiking neurons, the joint impact of network structure and synaptic
parameters on activity propagation is still an open problem. Here, we use an information-theoretical
approach to investigate activity propagation in spiking networks with a hierarchical modular topology.
We observe that optimized pairwise information propagation emerges due to the increase of either
(i) the global synaptic strength parameter or (ii) the number of modules in the network, while
the network size remains constant. At the population level, information propagation of activity
among adjacent modules is enhanced as the number of modules increases until a maximum value is
reached and then decreases, showing that there is an optimal interplay between synaptic strength
and modularity for population information flow. This is in contrast to information propagation
evaluated among pairs of neurons, which attains maximum value at the maximum values of these
two parameter ranges. By examining the network behavior under the increase of synaptic strength
and the number of modules, we find that these increases are associated with two different effects:
(i) the increase of autocorrelations among individual neurons and (ii) the increase of cross-correlations
among pairs of neurons. The second effect is associated with better information propagation in the
network. Our results suggest roles that link topological features and synaptic strength levels to the
transmission of information in cortical networks.

Keywords: hierarchical modular networks; cortical network models; neural information processing;
delayed transfer entropy; neural activity fluctuations

1. Introduction

Neurons in the cerebral cortex are interconnected according to selective, i.e., non-random,
patterns of connectivity. Different experimental procedures are advancing the knowledge on these
intricate connectivity patterns (see, e.g., [1-8]). With the help of computational models, the improved
connectivity maps are allowing the realization of the long-standing goal of understanding the interplay
between structure and dynamics in cortical networks [9-11]. Yet, it is an open question whether
the evolutionary process that generated such a complex cortical wiring is the result of a selection
mechanism for optimized region-to-region communication or some higher order function [12-14].

Connectivity may follow different classification schemes beyond physical (structural) connectivity
per se. Functional and effective connectivity, which respectively relate to statistical dependencies
among neural activity in different brain regions and the causal influence of one brain region
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over another, are widely used, but captured by different procedures [15,16]. Independently of
the connectivity scheme used, experimental studies generally agree that cortical networks have
a hierarchical modular architecture [17-22]. Previous works have shown that this type of architecture
allows long-lived self-sustained activity states in spiking network models with characteristics akin to
cortical spontaneous activity patterns [23-25]. However, these studies have not addressed the effect of
the hierarchical modular architecture on information flow in the network.

Other studies based on network models with non-hierarchical modular architectures have
investigated the information processing capability of the network by playing with other features.
Examples are the strength of the global synaptic coupling parameter in random networks with sparse
connectivity [26]; the degree of synchronization among pools of excitatory and inhibitory neurons
connected by feedback loops [27]; and in the context of reservoir computing [28], the community
structure within the reservoir [29] and the presence of topographically structured feed-forward
connections within the reservoir [30].

The question of how topology is connected to information transmission is appealing especially
due to recent anatomical developments [31], where it was shown that pathways of information flow
in the Drosophila connectome can be predicted from the network structure, or more theoretically
oriented ones [29], where the authors showed that an intermediate level of modularity in artificial
recurrent neural networks is optimal for memory performance. Indeed, there is a general agreement
that architecture shapes communication [30].

In this work, we tackle the problem of information transmission in hierarchical modular
networks of spiking neurons. We study networks of different levels of hierarchical organization,
which determines the number of modules and overall strength of synaptic coupling. Using
information-theoretical measures, we show that information transmission in these networks has
different dependencies on the level of hierarchy and the synaptic coupling strength. By analyzing
information transmission between neurons and between modules, we show that the latter is not
straightforwardly predictable from the former, disclosing the complexity behind communication
dynamics in hierarchical modular networks. In particular, we find that there is an intermediate range
of the number of modules (neither too few nor too many) for which information transmission between
modules is maximal. This “optimality” phenomenon is not observed for information transmission
between neurons. Our results underscore the importance of the hierarchical modular architecture of the
cortex and suggest an interplay between network structure and synaptic strength with consequences
for cortical information transmission.

2. Methods

2.1. Neuron Model

We used the leaky integrate-and-fire (LIF) neuron model [32]:

TmZ)] = —Z)]' + R <Ij,loc + Ij,ext) , (1)

where v; is the membrane potential of neuron j, R is the membrane resistance, and 7 is the membrane
time constant in ms. The synaptic currents arriving at neuron j are represented by I;|., which
represents the “local” input, and I ex;, which represents the external input received by neuron j.
This model obeys a fire-and-reset rule so that when the voltage reaches the threshold vy,, a spike is
considered to be emitted, and the voltage is reset to the reset potential v,.. We also consider a refractory
period of duration T, after a spike for which the neuron is unable to respond.

Upon arrival of an excitatory input to neuron j, RIj o is incremented by | (in mV), and upon
arrival of an inhibitory input, it is incremented by —gJ, where g is the relative inhibitory synaptic
strength parameter. Synaptic communication has a delay of 1p, which is the same for all neuron pairs.
The single neuron and network parameters are shown in Table 1.



Brain Sci. 2020, 10, 228 3 0f 20

Table 1. Summary of the parameters used in this paper.

PARAMETERS

Neuron parameters

Name Value Description
Tm 20 ms Membrane time constant
Uth 20 mV Firing threshold
Uy 10 mV Reset potential
TR 0.5ms Refractory period
Rlext 30 mV External input

Network connectivity parameters

Name Value Description
N 217 Size of excitatory population
€ 0.01 Connectivity
Rex 0.9 Excitatory rewiring probability
Rin 1 Inhibitory rewiring probability

Synaptic parameters

Name Value Description
] €[0;1] mV Excitatory synaptic strength
g 5 Relative inhibitory synaptic strength
™ 0.55 ms Synaptic delay

2.2. Network

The hierarchical modular networks used here were constructed as described below [23-25].
The construction algorithm resulted in networks with a hierarchical modular structure akin to those
observed in cortical networks [17,21,33,34]. We started with a random network of N = 217 = 131,072
neurons connected with connectivity e = 0.01. The parameter € is the probability of a synaptic
connection between any pair of neurons in the network. The ratio of excitatory to inhibitory neurons
is 4:1, which is based on experimental evidence that approximately 20% of cortical neurons are
inhibitory [35-38]. This network has only one module and will be called a network of hierarchical
level H = 0. Networks of higher hierarchical levels are generated by the following algorithm:

1.  Randomly divide each module of the network into two modules of equal size;

2. With probability Rey/in, replace each intermodular connection i — j by a new connection between
i and k where k is a randomly chosen neuron from (the same module as i;

3. Recursively apply Steps 1 and 2 to build networks of higher (H = 2, 3...) hierarchical levels.
A network with hierarchical level H has 2/ modules.

The rebating probabilities have values Rex = 0.9 and R;, = 1, so that the intermodular connections
are exclusively excitatory.

Some examples of hierarchical modular networks are shown in Figure 1. They allow a visualization
of the hierarchical structure of the network: as H increases, the number of modules increases, and
modules are encapsulated in groups of modules. Connections between modules that are “topologically”
closer are denser than between more topologically distant ones. Inhibitory connections occur
strictly within modules (are “local”), while excitatory connections can be both local and long-range.
For purposes that will be described below, we introduced an arbitrary ordering scheme for the modules
(see the bottom of Figure 1).
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Figure 1. Examples of hierarchical modular networks of different hierarchical levels. (Upper row)
Schematic representation of the network for H = 0, 2, and 3. In the figures, only networks with
N = 2! and exclusively excitatory neurons were used for the ease of visualization and to highlight
the intermodular connections. (Bottom row) Adjacency matrices for networks with N = 213 neurons
(excitatory and inhibitory in the 4:1 ratio) and the same H levels as in the top row. Each dot represents a
connection from a presynaptic neuron to a postsynaptic neuron. Blue dots represent excitatory neurons,
and red dots represent inhibitory neurons. For each hierarchical level H, the module numbers are
shown below the corresponding adjacency matrix.

2.3. Simulation Protocol

We study hierarchical modular networks with hierarchical level H in the range [0,9], where H = 0
corresponds to a network with an Erdés-Rényi topology (see above). For each H level, the network is
submitted to the same stimulation protocol, aimed at simulating spontaneous activity in the network.
The stimulation protocol consists of applying a constant external input Rlext = 30 mV to all neurons of
the network for the simulation time T = 2 s.

For each H level, the above stimulation protocol was repeated for coupling strengths | in the
range [0,1] with increments of 0.05. The value of g was fixed at five for all simulations. The network
activity in each simulation was characterized by the statistical measures described below.

2.4. Statistics
The spike-train of neuron j is given by the sum of delta functions:

xi(t) = Lot —t)), 2)

where t{ is the time of the i" spike of neuron j. From the spike-train, one can obtain the firing rate of
neuron j over a time interval T as v; = (x;(t)) = n;/T = ([ x;(t)dt) /T.
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The network time-dependent firing rate (activity) of a population of N neurons is defined as:

A 1 N At N
r(t:01) = ng/t (1), )
where the time window is fixed at At = 1 ms. For simplicity, below, we will denote this time-dependent
firing rate by r(t). The average of r(t) over a time interval T will be indicated here by v.

The power spectrum of x;(t) is defined as:

Sxx,j(f) = <xj(f);j(f)>r (4)

where T is the simulation time, %;(f) is the Fourier transform of the ji spike-train given by %i(f) =
fOT dte?™if fx;(t), and X (f) is its complex conjugate.
In general, we considered the averaged spike-train power spectrum over a number K of neurons:

Salf) = 2 L S () ®)

jek
To evaluate the spike-train’s long-term variability, we used the Fano factor (FF),
FF = (An?)/(n), (6)

where 7 is the spike count defined as n = fOT x(t)dt for a given time window T. A large value of FF

indicates an enhancement of slow fluctuations. In our simulations, we extracted FF from Sy, (f) since

both were related by the equation: }in(l) Sxx(f) = v x FF. From Sy (f), we also extracted the mean
—

firing-rate of the network by the relationship: flim Sxx(f) = v (cf. [39,40]).
— 00

For spike-trains, we computed the autocorrelation function:

er(1) = 2 1 (505t +0) — (0) (xy(e 4+ ) @)

jek

which in our work was always an average over K = 10,000 randomly chosen neurons and normalized
by cxx(0). Similarly, the cross-correlation function cyy (7) is computed by taking K = 10,000 randomly
chosen pairs of spike-trains x () and y(t).

Following [40-42], we also extracted the correlation time 7, from Sxx( f) by means of the Parseval
theorem applied to the integral over the squared and normalized correlation function:

a

e[ [Cmr = [apGul) v 7, ®)

6(0) —00 1/4

where ¢(7) denotes the continuous part of the spike-train’s correlation function,

&(t) = ((x(H)x(t+ 1)) = (x(£)) (x(t + 1)) —v6(7). ©)

correlation function ¢(7)

To measure information flow in the network, we made use of the transfer entropy (TE) [43].
This quantity measures how much the predictability of the spike-train x(t) of a given neuron is
improved if we have knowledge about the spike-train y(t) of a different neuron [44] (for simplicity, we
denote the spike-trains at a given time ¢t by x; and ;).

Given that the measure is asymmetric, it also conveys a directional sense, i.e., whether information
is flowing from x to y or vice versa.



Brain Sci. 2020, 10, 228 6 of 20

Here, we used a version of TE called delayed transfer entropy [45], which is given by:

P(Xti1vd Xera Ye)P(yt) >
TE d) = X , X1 q,Ye) lo < . 10
y—>X( ) ZP( t+14ds Xe4d, Yt) log, p(Visr, y) p (e, ) (10)

Equation (10) refers to the situation when a presynaptic neuron y sends signals to a postsynaptic
neuron x. In this case, TEyﬁx(d ) is obtained by taking four spike-trains: y;, x;, the spike-train of the
receiving neuron shifted by a delay d (x;, ;) and the spike-train of the receiving neuron shifted by delay
d+1 (x4 4441). From these spike-trains, we determined the probability p(y;), the joint probabilities
P(Yi1, 1), p(xt,yt), and p(X¢1144, Xp44,Yt), Which were used to calculate TE, x(d). In Equation (10),
the summation is taken over the set of all possible combinations of symbols for the spike-trains.
Since the value of the spike-train in each time step is either O (for silence) or 1 (for a spike), for
the joint probabilities p(xt,y:), we have 22 = 4 combinations, and for p(x;y144, X;14,Yt), we have
2% = 8 combinations. In Figure 2, we summarize the procedure to measure TE,_,x explained above.
In Figure 2a, the spike-trains were made in such a way that, whereas TE,_, is maximum ford =3,
TEyx—y is maximum for d = 2. To illustrate that TE is maximized when the delay is equal to the time
delay of the connection between two neurons and that this measure is asymmetric (TE,—x # TEx—y),
in Figure 2c, we plot TEy—,y and TE,,; for a simple network of two coupled neurons. The system was
artificially set up so that x fires three time steps after y and y fires two time steps after x. The delay for
which TE is maximum can be interpreted not only as the time that information takes to go from y to x,
but also as the time delay of a possible functional connection between the pair of neurons [46]. In fact,
many studies use this approach to determine and retrieve the connectivity map of a network [47].

(a)
()
¥, 1]ofofolof1]ofofo]o]1]o
X, oJolt]ofofo]of1]o]ofo]0
03
(b) PO X))  P(Xt+ds1s XexdsVr)
/ POVe+1, 1) 02
v |LfolotoiofV]oJojotof1|o}”
Ya — 0011 00]0[0{T[0[0]0]0 0,1
N+d+ —— 1 0 0 1 0 0 0
Giars [ 0]0 [ofofofo]1]o |

Figure 2. Method to measure the delayed transfer entropy using the joint probability distributions.
(a) First, we take two spike-trains of a pair of neurons in the network. (b) Then, we apply a delay d in
one of them to determine the joint probability distributions p(x,y;) (indicated by the green arrow),
p(X¢114d, Xt 14, y¢) (indicated by the red arrow), and p(y;11,y:) (indicated by the blue arrow). Next,
we estimate the transfer entropy by inserting these distributions into Equation (10). (c) Example plots
of TEy,x and TEy—y for a simple system of two coupled neurons (shown in the inset) with x — y
connection delay dy—, = 2and y — x connection delay J,—x = 3. The respective TEs are maximized
when the measure delay d is the same as the corresponding connection delay.

For each combination of the parameters {J, H}, we compute the network TE by selecting
K =10,000 randomly chosen combinations of neuron pairs (neuron y and neuron x) without repetition.
For each pair, TE is measured as in Equation (10); since the communication delay is unknown, we
measure TE for delays in the range d € [155;300] bins, with a bin size of 0.1 ms, and use the maximum
TE in this range [48]. The choice of range for bins was made taking into consideration the synaptic
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delay time 7p and the membrane time constant T, (Which characterizes the voltage rise time towards
the spike threshold). In the end, we extract the average TE,

(TE) = % ;l(max{TEj(d)}, (11)
jE

where TE; is the transfer entropy for the j pair of neurons. Considering that we used 100 different
combinations of {J, H} for 10 different initial conditions (yielding 1000 networks) and that we used
10,000 neuron pairs over a range of 145 delays, there were at least 1.45 billion computations to obtain
(TE) in this work. Thus, the computation of (TE) demanded extensive parallel computation.

The above definition of TE is valid for spike-trains of neurons pairs. It will be called here
“microscopic” TE, or simply TE. We introduce here a second definition of TE, based on firing rates
(activities) of pairs of modules, which will be used to measure information flow at the macroscopic
level. We will refer to this “macroscopic” TE as TE(H). To calculate (TEM) for a given hierarchical
level H, we randomly selected 500 pairs of modules and measured the transfer entropy for each pair
(i,) using Equation (10) with d = 0 and x and y being the activities 7;(#) and r;(t) of the two modules,
respectively. The activity of a module is calculated as in Equation (3) with N equal to the number of
neurons in the module. Then, we take the average over the 500 pairs of modules,

K
(TEM)) = % Y- TE™ (12)
=1

)

where j is the index of the module pair, TE/(H is the transfer entropy for the j pair, and K = 500.

For networks with less than 500 combinations of modules, we compute (TE(H)) as above, but taking
the average over the smaller number of module pairs. Since the activity of a module is continuous,
we estimated the joint probabilities in Equation (10) using a Gaussian kernel density estimator with
bandwidth 0.3 [43].

To evaluate statistical dependency among modules, we extracted the mutual information [47]
among pairs of adjacent modules using a procedure similar to the one described above for (TE(H)),
The mutual information between two variables x and y is given by:

MI(x;y) = ; p(x,y)log, M- (13)
v

For a given hierarchical level, we selected the 2! pairs of adjacent modules {(1,2),(2,3),..., (2 —
1,2H ), (2H ,1)}, where the numbering scheme is the one introduced in Figure 1. Then, the mean mutual
information over the set of 21 adjacent modules is given by (MI (H )> = Ziil MI, /21, where M, is
the mutual information between the k' pair of adjacent modules as defined above.

All neuron and network models were implemented using the Brian 2 neurosimulator [49].
Statistical and information theoretical analyses were implemented by self-developed Python packages,
which were made available at GitHub [50]. Network visualization was made with the help
of the Python package NetworkX. Simulations were performed with the use of the NeuroMat
(neuromat.numec.prp.usp.br/) cluster.

3. Results

3.1. Information Transfer is Enhanced When Both Modularity and Synaptic Strength Increase

As described in the Methods, for each hierarchical level H (in the range from zero to nine), we ran
simulations of the network with coupling strength | in the range [0.1, 0.15, ..., 1] (in millivolts) and
g = 5. In Figure 3, we show the raster plots and corresponding firing rates for three H values (H = 0,
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which corresponds to an Erdés—-Rényi graph; H = 7 and H = 9) and two | values (] = 0.2 mV and
J=0.8mV).

H=7 H=9
J=0.2 mV J=0.2 mV

s B LS4 B R EA R “fi-i‘d AL Ii'.‘}j
A REIETE IR (B GO W JI‘I{HL;JI!\IM II
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Figure 3. Raster plot and activity plot of the network for selected values of | and H. For visibility,
raster plots show spike times for a sample of only 2560 neurons, but the activity plots refer to all
neurons in the network. Each column corresponds to a hierarchical level (from left to right: H = 0,
H =7, H = 9), and each row corresponds to a synaptic strength ((upper row) | = 0.2 mV; (bottom
row) | = 0.8 mV). In the case of modular networks (H = 7 and H = 9), spikes of neurons in the same
module are indicated by the same color (black or gray), which alternates from one module to another
to ease visualization. Although modules in the network with H = 9 have a smaller number of neurons
than modules in the network with H = 7, the same number of neurons per module was chosen for the
cases of H = 7 and H = 9 to allow a comparison.

The network with H = 0 can have two types of asynchronous activity. In the case of week
coupling (cf. H = 0 and | = 0.2 mV in Figure 3), neurons fire irregularly, and no synchronous
behavior is observed. In addition, the population firing rate is low (the average value of r(t) for
J =02mVisv = 17.6 £ 5.6 Hz, where the £ sign means standard deviation) and homogeneous.
As the synaptic strength increases (cf. H = 0 and | = 0.8 mV in Figure 3), the activity changes to a more
heterogeneous behavior where single neurons fire in bursts of high activity interspersed with short
periods of low activity, and the network firing rate displays a less homogeneous behavior with some
irregular fluctuations. The mean firing rate also increases (v = 53.1 £12.5 Hz for | = 0.8 mV). Evidence
of the fluctuations that appear when J is increased is the growth of the standard deviation of r(t),
which more than doubles when | changes from 0.2 mV to 0.8 mV.

In the second and third columns of Figure 3, we compare activity dynamics for hierarchical levels
H =7 and H = 9 and synaptic strengths ] = 0.2 mV and | = 0.8 mV. For both hierarchical levels,
heterogeneous spiking behavior and modularity effects appear already for low synaptic strength
(cf. ] = 0.2 mV) and become more pronounced as | increases (cf. ] = 0.8 mV). The population firing
rate also is very sensitive to increases in both | and H. For fixed ], the firing rate increases with H, and
for fixed H, the firing rate increases with J. For quantitative comparison, the average population firing
rate valuesare: (i) (H=7,] =02mV):v =302+77Hz (ii)(H=7,] = 08mV):v = 102.9 + 154 Hz;
(i) (H=9,]=02mV):v =1293£121Hz;and (iv) (H =9, ] = 0.8 mV): v = 187.8 £ 16.6 Hz.
In addition to that, as H increases, modules begin to act more individually as can be seen in the
different spike patterns of each module (observe the horizontal bands in alternating gray and black
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colors for panels with H = 7 and 9). In the following, we will show that both a high hierarchical level
H and a high synaptic strength | also increase information transmission in the network.

In Figure 4a—e, we present extended statistics that shed light on the effects of increasing | and H.
Analysis of the spike-train power spectra in Figure 4a,b shows that an increase of either | or H leads to
a build-up of slow fluctuations in the network. However, the effect is more pronounced for an increase
in | than for an increase in H. For example, for fixed H = 0, a change in | from 0.2 mV to 0.8 mV
produces increases in power at low frequencies of about two orders of magnitude, whereas for fixed
J = 0.2 mV, a change in H from zero to nine produces power increases at low-frequencies of about one
order of magnitude. Overall, the spectral characteristics are similar to the ones of cortical neurons [51].
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Figure 4. Increases of | and H cause amplification of slow fluctuations and enhance information
transfer. (a) Spike-train power spectra computed for | = 0.2 mV and different values of H (indicated by
different colors in the plot). (b) Same plot as in (a), but with ] = 0.8 mV. (c-e) Firing rate v, Fano factor
FF, and correlation time 1. for different values of | (H values indicated by the same colors as in (a,b)).
(f) Average transfer entropy (computed as in Equation (11)) in a two-dimensional diagram where the
abscissa represents synaptic strength | and the ordinate represents hierarchical level H. Values of (TE)
are indicated by the color bar to the right side.

For low values of H, typically H < 7, the mean network firing rate v displays a non-monotonic
behavior as a function of J. It initially decreases towards a minimum and then increases as shown
in Figure 4c (curves in green and red). The minimum marks the transition from the asynchronous
homogeneous behavior to the asynchronous heterogeneous behavior (compare the raster plots in
Figure 3 for H = 0). For H > 7, the minimum disappears, and the curve of v versus | grows
monotonically towards a saturation firing rate (purple and blue curves in Figure 4c).

The Fano factor FF, on the other hand, grows with ] for all hierarchical levels H. What changes
is the growth rate, which is much higher for low H than for high H (again, the transition point is
around H = 7). For low H, FF starts at values well below one (indicating low spike variability) for low
synaptic strengths and rises steeply to values about two orders of magnitude higher as the synaptic
strength increases, indicating a rapid increment in spike variability (see the green and red curves
in Figure 4d). The FF growth is not so pronounced when H > 7, with variations of one order of
magnitude or less (purple and blue curves in Figure 4d). Interestingly, the asymptotic FF value for
large | is lower for H = 9 than for H = 8, suggesting that there is a limiting level of modularity beyond
which spike variability and heterogeneity do not grow.

The behavior of the correlation time 1. as a function of | is similar to the one of the firing rate v.
It decreases to a minimum, then increases with | when H < 7, and grows monotonically with | for
H > 7 (Figure 4e). Overall, the behavior of v, FF, and 7. reflects the amplification of slow fluctuations
and increments of network firing rate and spike variability provoked by topological (introduction of
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modularity) and synaptic strength changes in the network and is comparable with the behavior of
these variables for random networks with fixed in-degrees reported elsewhere [40,42].

In order to characterize information flow in the network, we show in Figure 4f the behavior of (TE)
in the parameter space spanned by | and H (each point corresponds to an average over 10 different
initial conditions). For very low values of synaptic coupling (J < 0.2), the effect of modularity on (TE)
is not very significant until H g 6, as can be seen from the vertical arrangement of shaded stripes in
the diagram. Then, for intermediate coupling strengths (0.2 5 | < 0.5), the effect of modularity on
(TE) becomes significant (stripes are predominantly horizontal), and for strong coupling (] £ 0.5),
the effect is again reduced (stripes are vertically arranged again). The exception is when the number
of modules is very high (H > 8), in which case (TE) is insensitive to coupling strength. Regarding
the behavior of (TE) with respect to changes in | and H, in the region of the diagram where (TE) is
more sensitive to | (the region with H < 5), (TE) decreases towards a minimum as | grows from 0.1 to
0.3 and then increases toward high values as | grows from 0.3 to one. This behavior is similar to the
one for 7. depicted in Figure 4e. The maximum value of (TE) in this region occurs for strong coupling
(J] = 1) and either no modules (H = 0) or only two modules (H = 1). In the region of the diagram
where the effect of modularity is important (H > 5), (TE) tends to grow with H. The maximum value
of (TE) is attained for the largest number of modules considered (H = 9), and this value is comparable
to the maximum of (TE) in the region where (TE) is more sensitive to J.

Results in this section show that both slow fluctuations and information transmission are largely
enhanced when | and H grow. We hypothesize that, as | and H increase, the modules start to act as
single units. For example, in Figure 3, the modules in networks with high | and H exhibit different
individual behavior and can be identified visually. All modules display bursts of intense activity
intercalated with periods of low activity, but each module has its own pattern of burst/quiescence
alternations, which does not coincide with the patterns of the others. This is suggestive that when both
synaptic coupling and the number of modules are high, modules behave as independent functional
units. In the next section, we investigate this suggestion by studying the auto- and cross-correlations
of the neuronal spike-trains.

3.2. Effects of | and H on the Autocorrelation and Cross-Correlation of Single-Neuron Spike-Trains

In this section, we investigate the autocorrelation and cross-correlation of the spike-trains of single
neurons in order to obtain a better understanding of the individual properties of neurons when slow
fluctuations and information transmission are incremented due to increases in the synaptic coupling
strength | and/or the hierarchical level H.

In Figure 5, we show the autocorrelation cyy(7) and the cross-correlation ¢y, (7), as defined in
the Methods, for selected pairs of parameters (J, H) taken from the sets | = {0.2,0.4,0.6,0.8} and
H = {0,2,4,6,8}. When the topology of the network is not modular (bottom row of Figure 5),
the increase in the synaptic coupling | produces an increase in the spike-train autocorrelation, but
has almost no effect on the spike-train cross-correlation. This reflects the effect of | in enhancing
slow fluctuations while keeping the network activity asynchronous, as observed before (cf. the first
column of the raster plots in Figure 3 and the curves for H = 0 (green curves) in Figure 4a—e). In other
words, in a non-modular network, when the synaptic coupling increases, the spikes of an individual
neuron tend to become more correlated over short times, but behave independently of the spikes of
other neurons.

In contrast to this situation, when the number of modules is high (upper rows of
Figure 5), the increment in | affects both the spike-train autocorrelation and cross-correlation.
The cross-correlation over a short-time increases when the synaptic coupling is strong, indicating
a weak, but non-negligible degree of functional coupling between neurons. In addition,
the autocorrelation also increases with |, but now, this increase is less pronounced than when H = 0.

The different behaviors of the spike-train auto- and cross-correlations upon the increment in
J between networks with non-modular and modular topologies hints that a more complex activity
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pattern emerges at the population level when hierarchical modularity is introduced in the network,
which was not present when H = 0. Moreover, the microscopic (TE) measured used in the previous
section was not able to capture this difference: in the diagram of Figure 4f, the regions defined by
(H=0,] >09)and (H = 0.9, ] > 0.9) have approximately the same values of (TE). The above results
suggest that the introduction of a hierarchical modular topology produces some form of population
communication (reflected in the increase of spike-train cross-correlation) that was not present in the
network with non-modular topology Since the (TE) measure was not sensitive to this finding, we will
use the macroscopic TE ((TE >) introduced in the Methods to test whether it can be helpful in this
case. This is the subject of the next section.
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Figure 5. Spike-train autocorrelation ¢y, (7) and cross-correlation cyy () for selected pairs of parameters
(H,]). Left: cxy. Right: cyy. The selected pairs (J,H) correspond to all possible combinations taken
from the sets | = {0.2,0.4,0.6,0.8} and H = {0,2,4,6,8}. For better visualization, cyx and cy, for the
pairs (J,H) are plotted over the plot of (TE) in the J-H diagram. The cyy is extracted from K = 10,000
randomly chosen neurons and the cyy from K = 10,000 randomly chosen pairs of neurons.

Why does the spike-train cross-correlation increase with the hierarchical level? In order to
understand this, below, we derive equations to investigate how the internal (i.e., intramodular) and
external (i.e., intermodular) communication is affected by the hierarchical level H. We focus on the
average number of connections as they are rewired at any new increment in H. In the calculations
below, we will not make any distinction between excitatory/inhibitory connections, thus keeping
everything in general terms.

Let us start with the network where H = 0. For large N, the expected number of connections to a
(H=0)

neuron that come from inside the single module is n;, = Ne, where the superscript indicates the
hierarchical level H = 0.

Now, when H = 1, the rewiring algorithm tells us that one should divide the network and rewire
its connections, which means that the expected number of connections to a neuron from the same
module where it is located is half of the previous value plus the expected number of connections to
the other module that are cut and rewired back to the neuron (we will assume, for simplicity, that the

rewiring probability is R for all connections):

L(H=0)  (H=0)

R L (14)
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Equation (14) gives the average number of connections to a neuron that come from inside the
same module. In a similar way, the average number of connections that come from outside the module
to the neuron is given by:

(H=1) _ (H=0) _ (H=1) _ n _  (H=1)

nout — "in in in

(15)

Note that we can re-write Equation (15) for any hierarchical level H > 0 because the expected
number of connections from outside a module will always be the expected number of connections at
H = 0 minus the expected number of connections from inside the module after rewiring:

(H) Ne — n.(H)

nout = in

(16)
For the hierarchical level H = 2, we follow the same procedure used to derive Equation (14) and
H=2)
n
when H = 1 are also rewired:

obtain the expression for n , but now considering that the connections from outside the module

H=2 nia =Y (= H=1
ni(n* ) = ‘“2 + 1“2 ><R+n(()uf )% R
2 (H=1)
:mT(l—R)—i—NexR. (17)

For hierarchical levels H > 1, we recursively apply the above equations and obtain the expression:

H H k
(H+1) & 1—R 1—R
i, = Kz > +2R1§<2

In summary, Equation (18) gives the expected number of connections to a neuron that come
from its own module at the hierarchical level H > 1, and Equation (16) gives the expected number of

(18)

connections to a neuron that come from outside its module for any H > 0.

It is interesting to note that the rewiring procedure is limited with respect to n;,, so that

limpy_ o Ntin = 215515. This means that while increasing H, the average number of connections

to a neuron that come from inside the same module reaches a fixed value, no matter how small
is the module. This fact is important because it shows that the average density of connections
(ein = (2H X nin)/N) in a module increases dramatically when such a limit is achieved since the
number of neurons within a module decreases as H increases. Concomitantly, 71yt is also limited since
it is directly related to njn.

The set of Equations (14)—(18) can elucidate why cross-correlations increase in a module as H
increases. In Figure 6a, we show how the value of €j, changes as a function of the hierarchical level
H. One can see that connections within a module grow exponentially with H. As €;, exponentially
increases, a higher degree of synchronous activity in the network is expected, and thus, correspondingly
higher values of spike-train cross-correlations are also expected. In fact, it is expected that a random
rewiring of connections, which is equal in nature to random occurrences of events in a Poisson process,
would lead to an exponential growth of spike-train cross-correlations.

To check how slow fluctuations build up with increasing connectivity within a module, we
simulated a network with N = 2!4 neurons and H = 0 (representing a single module) with varying
values of €. The spike-train power spectra of the network for the different values of € are shown in
Figure 6b. One can see that slow fluctuations start to build up as € increases (note the initial values on
the left-hand side of the plots).

Results in this section show how the single-neuron behavior is affected by increases of | and H.
Some phenomena, like the enhancement of information transfer and the buildup of slow-fluctuations,
emerge and display similar properties when either | and H are large. However, other measures like the
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spike-train autocorrelation and cross-correlation behave in different ways when either | or H increase.
In particular, the results suggest that information flow at the population level is more robust in the
presence of a hierarchical and modular network. To understand better how information flow at the
population level is affected when the hierarchical level is increased, in the next section, we study the
effect of increasing | and H on the macroscopic TE introduced in the Methods.

(a) (b)
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Figure 6. Relation of connectivity and slow fluctuations. (a) Values of connectivity inside a module (€j,)
as H increases (cf. Equations (14)—(18)). (b) Spike-train power spectra extracted for a small network
with N = 2% and H = 0 for different values of e.

3.3. Information Flow at the Population Level

In this section, we focus on how information flows at the macroscopic scale of modules in the
network. The algorithm used to build hierarchical modular topologies allows gradually observing
how different measures increase or decrease with the parameter H. We have already shown that H and
| affect differently the spike-train auto- and cross-correlations, and in this section, we are interested
in how information flow measured at the modular level behaves as | and H vary. Is the behavior
different or similar to the one seen for information flow at the single-neuron level?

First, we recall Figure 4f, where it can be observed that increasing H causes an enhancement
in information flow at the microscopic level ((TE)). This can be interpreted as an increase in the
“usefulness” of the knowledge of the spike-train of a give neuron in predicting the future behavior of
the spike-train of a different neuron. Here, considering the hypothesis that communication can take
place not only at the level of the single units of the network (“microscopic” level), but also at the level
of the modules in which the network is organized (“macroscopic” level), we will evaluate information
flow among modules using the measure (TE())) introduced in the Methods section.

In Figure 7a, we can observe that the communication among modules is indeed very different
from the one among neurons shown in Figure 4f. The most compelling difference is the existence of
an intermediate range of H values (around H = 6) at which (TE) is maximal. Furthermore, above
and below this range, there are two contrasting behaviors: for low H (H < 4), (TE) monotonically
decays with | as | increases; for high H (H > 7), this behavior is somewhat mirror-inverted, and (TE)
monotonically increases with J.

The boxplots in the inset of Figure 7a, which display the distributions of (TE(H)) for different
H values and the entire range of | values, show that H = 6 has the highest mean and the lowest
variance of (TE(")). This clearly shows that H = 6 is an optimized point for information transmission
among modules.
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The results in Figure 7a indicate that a form of modular communication takes place in the
hierarchical modular networks. There is an “optimal” level of hierarchical modular organization
(neither the lowest nor the highest level) at which the macroscopic TE is maximal. Moreover, at this
“optimal” H level, the macroscopic TE is relatively insensitive to changes in the synaptic strength
J. Only when H is above or below the optimal value, the communication at the modular level is
significantly influenced by the synaptic strength J.

(@) (TEM) (bits) (b) (MI™ (bits)
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Figure 7. Transfer entropy and mutual information among modules. (a) Transfer entropy evaluated
among modules (TE(!)) in the two-dimensional diagram where the ordinate represents the hierarchical
level H and the abscissa represents the synaptic strength J. Inset: boxplots of ( TE() for fixed values
of H. (b) Mutual information among modules (MI (H)) in the same J-H diagram.

The results of the previous two sections suggest that as H increases, the modules start to
behave as individual functional units. To test this hypothesis, we computed the mutual information
among modules, (MI")). This metric can be interpreted as a measure of statistical dependence
among the considered elements [47]. In Figure 7b (neglecting the behavior for H < 4), one can see
that as H increases, (MI(")) decreases, indicating that the modules act more independently as the
hierarchical modular level increases. Interestingly, Figure 7b also shows that for intermediate H values
(5 < H <7), the synaptic strength | plays a role in the statistical dependence among modules. Within
this intermediate range of H values, (MI (H)) increases with J, indicating that the modules become
less statistically independent as the synaptic strength increases. Since the microscopic parameter | is
associated with the emergence of slow fluctuations in the network activity, this points to a link between
slow activity fluctuations and statistical dependency among modules.

4. Discussion

An important problem in computational neuroscience is the investigation of different dynamics
displayed by networks of spiking neurons [23,52-54] and in particular the ones that enhance
information processing such as dynamics with slow fluctuations [26,42,55]. Region-to-region
communication characteristics and how they interact with the topological features of the network are
also of great interest because they shed light on the relationship between topology and dynamics [56,57].
Here, we addressed this problem by investigating networks with a hierarchical modular topology,
which display generic features of cortical networks [17,20,24], and how the topological structure affects
information flux.

We constructed large networks of spiking neurons with variable levels of (i) hierarchy and
modularity and (ii) synaptic strength. By extracting information-theoretic measures (microscopic and
macroscopic TE and MI), we were able to observe that both information propagation and slow activity
fluctuations could be optimized by combining (i) and (ii). Our goal was to analyze how the interplay
of intrinsic neuronal parameters and topological features influenced activity propagation and how this
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was related to different spatial scales (the “microscopic” scale of single neurons and the “macroscopic”
scale of neuronal modules).

More specifically, we started with a comparison of spiking activity characteristics between
networks with Erdés-Rényi and hierarchical modular topologies. The activities of the networks
with the two topologies were characterized in terms of their variation with the synaptic strength
J. Since the relative inhibitory synaptic strength ¢ was fixed to five, previous works have already
shown that the activity displayed by these networks is of the type known as “asynchronous irregular”
(AI) [26,40,42]. Indeed, we observed Al-like activity in our networks. In networks with Al activity,
neurons fire without correlation, and the increase of | to high values creates a second type of Al activity,
called “heterogeneous” Al [26], which is characterized by the emergence of slow fluctuations [40,42].
The heterogeneous Al regime has bursts of spikes intercalated with periods of silence. We observed this
pattern again in our study, but for high values of the hierarchical level H, the heterogeneous behavior
appeared even at low J. Moreover, when H was high, the different modules displayed heterogeneous
spiking patterns, i.e., they behaved as units independent of each other.

Then, we moved on to a study of information transmission in the hierarchical modular networks
as a function of the topological parameter H and the microscopic synaptic strength parameter J.
To investigate possible different ways of communication in the network, namely at the microscopic
level of neurons and at the macroscopic level of modules, we used two different measures of TE:
(TE) and (TE(H)). The microscopic measure (TE) was based on the neuronal spike-trains, and the
macroscopic measure (TE(H)) was based on the average firing rates (activities) of the modules.
micro and the type of
communication at the macroscopic level Cmacro. Then, when exploring C, i+, and Cmacro, we had
two possibilities: (i) TE in Cmacro is predictable from the measurement of TE in Cjy, iy (and vice

Let us call the type of communication at the microscopic level C

versa); or (ii) communication at these two scales is completely different. If Possibility (i) were true,
we would expect that the two measures, (TE) and (TEH)), would display similar properties when
observed in the J-H diagram. In such a case, communication in the network would be independent of
the two scales, and bridging between Ciyjcro and Cmacro would be directly possible. On the other
hand, if Possibility (ii) were true, knowledge of either (TE) or (TE(H)) could not be used to explain
the other measure because they would be capturing different things.

Our study showed that Possibility (ii) is true, i.e., Cijcro and Cmacro are different. The behavior
of (TE) in the J-H diagram shows that there are two regions where C i is maximal: the line on
top of the diagram where H = 9 (independent of J) and the bottom right-hand corner where H < 1
and | ~ 1. The J-H diagram for (TE(H)) shows an opposite situation: Cmacro is maximal along the

line given by H = 6 and is very low at the regions where C is maximal. The main finding of our

study was that there was an intermediate value of the hierarlr‘zzlfégal level (within the range of H values
considered) for which Cmacro was maximal. This “optimal” type of behavior was not found when we
studied Cijcro-

As an attempt to explain the observed behavior of C;,;.;o and Cmacro, we investigated two other
types of measures. In the case of Cp ;.o We used the spike-train auto- and cross-correlations. In the
case of Cmacro, since our hypothesis was that the observed behavior was due to the emergence of
independent modules, we used the mutual information among modules, (MI(1).

As noted above, in the J-H diagram for (TE), there are two regions where (TE) is maximal: the
upper right-hand corner where both H and ] are highest and the lower right-hand corner where H = 0
and | = 1. The observation of (TE) alone is not enough to reveal the mechanisms underlying these
seemingly similar behaviors. The use of the spike-train auto- and cross-correlations helps in this
disambiguation. The high (TE) for a non-modular network with high | is due to the increase in the
spike-train autocorrelation with the increase of ], while the high (TE) for a network with high | and
many modules is due to the increase in the spike-train cross-correlation with the increase of H.

Interpreting (MI")) as a measure of independence among modules (high (MI")) meaning
higher relative dependence and low (M )) meaning lower relative independence), our results (cf.
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Figure 7b) showed that modules became relatively more independent as H grew (neglecting situations
with H < 4). The situation with the highest level of modular independence was the one with the
highest H (H = 9), and the situation with the lowest level of modular independence was the one with
the lowest H (H = 5). Combining this result with the results shown in the diagram for (TE(")) in
Figure 7a, one sees that the scenario with maximum Cmacro occurred in a situation where modules
were neither too independent of nor too dependent on each other. If all modules were completely
independent, they would act as autonomous units, and (TE (H )> would be near zero; if the modules
were very interdependent, they would act more or less as a single unit, and (TEM)) also would be low
(knowledge of the activity of a single module would be enough to infer the activities of all the other
modules). Therefore, the optimal situation for information transfer among modules as measured by
(TEM)) was the situation in which modules were in an intermediate position between total autonomy
and total interdependence. This corresponded to the case with H = 6.

The optimal value H = 6 did not mean that there was something special about the number six.
Our study only showed that the modular TE was maximized at an intermediate value in the range of
H values used, which in our case was [0, 9] because of the number N of neurons chosen. We predict
that a similar study with twice as many neurons, which would allow H values close to 20, would result
in an optimal H value higher than six.

Previous studies concentrated either on other features that were enhanced by topological
characteristics or on different types of activity regimes. For instance, it has been shown that hierarchical
modular networks are advantageous for long-lived self-sustained activity [24,25] and can present
critical behavior [23] that is related to optimal dynamic range [58]. Complementary to that, it has
been shown that augmentation of the synaptic strength generates different versions of the standard
Al activity, which may favor information processing [26]. In our work, we showed that hierarchical
modularity also affected information transmission. In particular, our results suggested that there may
be a transition point in the level of hierarchical modular organization that endows the network with a
high level of macroscopic communication independently of the synaptic strength.

We observed that slow activity fluctuations increased with both the hierarchical modular level H
and the synaptic strength J. However, the spike-train cross-correlation variation was more sensitive
to J than to H. Recent studies investigated the influence of correlations in neuronal activity over
information transmission [59-61]. Here, the used transfer entropy measure undoubtedly showed
an increase in the information propagation at the single-neuron level at high hierarchical modular
levels, which we showed to be related to the increase of the spike-train cross-correlation through the
rewiring process.

As one of the objectives of our work was to understand the benefits of a hierarchical modular
structure for information transmission, we compared the microscopic TE, based on the spike-trains of
pairs of neurons, with the macroscopic TE, based on the firing rates of pairs of modules. Our results
suggested that networks with a hierarchical modular structure may be optimized for communication at
the macroscopic level, i.e., at the level of modules instead of single neurons. A speculative interpretation
of this is that signals produced at the level of modules (firing rates) are more robust and less prone to
deleterious noise effects than signals produced at the level of single neurons (isolated spikes).

In addition to that, our result that modules started to act more individually as the hierarchical
modular level increased could be interpreted in line with suggestions made elsewhere that the activity
in modular networks provides functional segregation and integration [23,62], which is certainly an
advantage in terms of memory storage.

One final point concerning the difference between communication at micro and macro scales
is worth mentioning. For communication at the level of spike-trains, the information flow always
increases with ], which would imply a high metabolic cost for synaptic communication [63,64]. On the
other hand, for communication at the level of modular firing rates when the network is close to the
optimal hierarchical level, the variance of information flux is at a minimum, independently of the value
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of J. This suggests that the hierarchical modular structure may optimize the macroscopic information
flow at a lower metabolic cost.

Our model included some simplifications that must be mentioned here because we intend to
address them in future studies. First, the model did not have synaptic delays among modules (which
would be progressively higher as the distance increases) and spatial mapping. These would take
into consideration morphological features of neurons, cell-specific coupling affinities, and the spatial
features of the network. Secondly, instead of constant external input, a more realistic type of external
drive to network neurons would be noisy input reminiscent of stochastic synaptic events or other
noise sources. Thirdly, information transmission was only studied in terms of spontaneous activity
and did not consider structured activity patterns as, e.g., the ones that would be generated by sensory
stimuli. We may still learn more about information propagation in hierarchical modular networks by
extending the current model to situations like these.

Overall, we believe that our work captured with a simple model novel important properties
of communication and information processing in networks of spiking neurons. We provided new
understanding of how topology may be connected to network dynamics (i.e., slow fluctuations) and
information propagation. Our results and techniques could be applied to future research focused on
how cortical networks optimize information processing and propagation.
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