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Abstract: Apoptosis in acute stroke is associated with a negative prognosis and is correlated with the
severity of the neurological deficit. However, there is no evidence that indicates that, in the subacute
phase of the stroke, the apoptosis process might activate neuroplasticity. Therefore, in this study,
we investigated the effect of an extremely low frequency electromagnetic field (ELF-EMF) on the
molecular mechanism of apoptosis, as used in the rehabilitation of post-stroke patients. Patients
with moderate stroke severity (n = 48), 3–4 weeks after incident, were enrolled in the analysis and
divided into ELF-EMF and non-ELF-EMF group. The rehabilitation program in both groups involves
the following: kinesiotherapy—30 min; psychological therapy—15 min; and neurophysiological
routines—60 min. Additionally, the ELF-EMF group was exposed to an ELF-EMF (40 Hz, 5 mT).
In order to assess the apoptosis gene expression level, we measured the mRNA expression of BAX,
BCL-2, CASP8, TNFα, and TP53. We found that ELF-EMF significantly increased the expression
of BAX, CASP8, TNFα, and TP53, whereas the BCL-2 mRNA expression after ELF-EMF exposition
remained at a comparable level in both groups. Thus, we suggest that increasing the expression of
pro-apoptotic genes in post-stroke patients promotes the activation of signaling pathways involved
in brain plasticity processes. However, further research is needed to clarify this process.

Keywords: extremely low frequency electromagnetic field; apoptosis; neuroplasticity; stroke

1. Introduction

The symptoms of brain damage caused by cerebral ischaemia are the consequence of massive
cell death in the ischaemic area. Ischaemic cascades—successive biochemical changes leading to
degradation of cell structures and membranes, and ultimately to brain cell death—activated after a few
seconds of blockage of the cerebral blood flow [1]. Ischaemia causes cell death as a result of necrosis,
apoptosis, and autophagy, the markers of which have been well documented [2–5].
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There are many factors that can induce apoptosis of cells after ischaemia, such as inflammation,
cytokine activation, cascade of free radicals, and induction of thrombin [6]. Neuronal apoptosis is
regulated by various genes, such as BCL-2 (inhibitor of apoptosis) and BAX (activator of apoptosis) [7].
The BCL-2 protein (B cell lymphoma) is a product of the BCL-2 gene located on chromosome 18 at
the 18q21.3 locus. Under normal conditions, the expression of BCL-2 is regulated by the p53 protein,
and its main function is to protect the cell from apoptosis [8]. The p53 protein is called the ‘genome
guard’, and plays an important role in the regulation of apoptosis as a transcription factor [8]. Increased
expression of BCL-2 causes production of the BCL-2/BAX heterodimer and inhibition of cell apoptosis,
whereas with an increased expression of BAX, the BAX/BAX homodimer is produced and cell apoptosis
is activated. When BCL-2 is elevated and BAX is reduced, the BCL-2/BAX ratio increases and the
cell might survive [9]. Caspases are evolutionary, conserved proteins, which play a key role in the
mechanism of apoptosis and inflammation. The role of initiator caspases with a long pro-domain,
including caspase 8, is in signal detection and activation of the cascade, leading to apoptosis [10].

Post-stroke recovery is associated with the compensatory plasticity of the brain, and is activated
by rehabilitation. There are data showing that, in the subacute phase of stroke, proapoptotic pathways
and mechanisms of neuroplasticity may be interrelated [11,12]. After a stroke, neuroplasticity
begins immediately after the ischemic incident. Neuroplasticity involves synaptic potentiation and
formation of a new synaptic junction. Although they remain in a weakened state, the connection
between the brain centres is activated, and any damage to its function can be reintroduced partly or
comprehensively, because the function of the damaged area has been assumed by other subcortical
or cortical structures [13]. Neuroplasticity is associated with neurogenesis, in which fully functional
nerve cells are produced. Nerve cells are generated essentially in the subgranular zone (SGZ) and the
sub-ventricular zone (SVZ) [14]. Microenvironmental factors, growth factors, neurotrophins, hormones,
and neurotransmitters regulate this process [15].

Post-stroke rehabilitation is a complex process, consisting of various therapeutic treatments.
Correctly conducted rehabilitation is one of the most important forms of therapy after stroke.
Low frequency electromagnetic field (ELF-EMF) therapy is one of the methods used in rehabilitation
after stroke. This type of treatment is characterized by physical parameters describing ELF-EMF;
that is, frequency (<50 Hz), magnetic induction (<10 mT), as well as the shape of the pulse (rectangular,
trapezoidal, triangular, sinusoidal, unipolar, bipolar) [16]. ELF-EMF therapy has been noted for
the minimal level of harm it causes, the extensive range of ways in which it can be used to treat
various diseases, as well as the beneficial clinical results achieved with relatively small financial outlay.
The nature of the ELF-EMF effect on the body allows deep tissue penetration, however, it is not a thermal
method, which makes it possible to use it in the treatment of neurological diseases [17]. ELF-EMF
affects the body at both the molecular and cellular level and causes the change in ionic channels.
However, there is in fact no known mechanism in which calcium channels can be directly activated by
ELF-EMF. This effect can be a consequence of mitochondrial and metabolic disturbances [18]. ELF-EMF
therapy used in physical rehabilitation, including after strokes, increases muscle strength, reduces
muscle spasticity as a consequence of pyramidal tracts damage, has an analgesic effect, as well as
increases blood flow. Thereby, ELF-EMF affects regeneration of nerve tissue through improvements to
its metabolism [19]. Despite the many substantiated beneficial effects of ELF-EMF, this form of therapy
is not a routine method for post-stroke rehabilitation.

Apoptosis in stroke patients is an ambiguous process. On the one hand, increased apoptosis
in the acute phase of a stroke is correlated with larger neurological deficits. On the other hand,
the process of programmatic cell death is one of the physiological mechanisms for eliminating damaged
cells [20]. Our previous research confirms the significant effect of ELF-EMF on the enhancement of
neuroplasticity and biochemical parameters correlated with the improvement of physical and motor
condition according to clinical scales (Mini-Mental State Examination—MMSE, Activities of Daily
Living—ADL, Geriatric Depression Scale—GDS) [21–25]. In this work, we undertook assessment of
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the effect of ELF-EMF on the crucial mechanisms of apoptosis in order to search for the molecular basis
of ELF-EMF activity.

2. Materials and Methods

2.1. Subjects Presentation and Blood Collection

Forty-eight patients with moderate stroke severity, 3–4 weeks after incident, were enrolled for the
analysis. Twenty-six patients were recruited into the ELF-EMF study group and twenty two patients
were recruited into the non-ELF-EMF control group. The NIHSS scores were 4.9 ± 3.1 and 5.4 ± 2.9 for
the study group and control group, respectively; mean age was 48.8 ± 7.7 and 44.8 ± 8.0, respectively.
Exclusion criteria included the following: chronic or significant acute inflammatory factors, dementia,
haemorrhagic stroke, neurological illness other than stroke, and/or decreased consciousness in their
medical pre-stroke history. Patients with metal and/or electronic implants were excluded from the
study group. Neurorehabilitation with neurological and internal examination was conducted for
four weeks at the Neurorehabilitation Ward of Dr K. Jonscher Municipal Medical Center in Lodz,
Poland. This consisted of the following: kinesiotherapy—30 min; psychological therapy—15 min;
and neurophysiological routines—60 min; as well as ELF-EMF treatment.

Blood samples were collected into citrate, phosphate, dextrose, adenine (CDPA1) containing tubes,
before and after ten sessions of therapy, at the same time of day (between 07:00 and 09:00), under fasting
conditions. They were frozen at −80 ◦C immediately upon collection. All blood samples were collected
and stored using the same protocol. The study was conducted in accordance with the principles of the
Helsinki Declaration. The Bioethics Committee of the Faculty of Biology and Environmental Protection
of the University of Lodz, Poland, confirmed this study with Resolution No. 13/KBBN-UŁ/II/2016.

2.2. Setting and Treatment of ELF-EMF

Magnetronic MF10 generator (EiE Elektronika i Elektromedycyna, Otwock, Poland) was used
to generate ELF-EMF with the following parameters: magnetic induction—5 mT, frequency—40 Hz,
wave forms—rectangular, bipolar, time of session—30 min, and exposed area—pelvic girdle (Figure 1).
In this research, a coil applicator with five layers of 187 turns of 1.45 mm twin-parallel wires was used
with the following parameters: length—270 mm and diameter—550 mm. ELF-EMF intensity inside
the solenoid was nonequivalent. The induction coils of the generator were assembled horizontally,
while apportionment of ELF-EMF was vertical. The established value of magnetic induction of 5
mT was located in the applicator geometrical center, whereas, with the proximity of the coil surface,
the change of ELF-EMF intensity increased by around plus 1.4. The computer system controlled
ELF-EMF itself. Post-stroke patients were exposed in 10 standard sessions, five times per week for two
weeks. All subjects were placed in applicator, but only patients in the ELF-EMF group were exposed to
ELF-EMF, and patients in the non-ELF-EMF group were given sham exposures. The sham exposure
was obtained by setting, but not turning on the device.
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Instruments, Inc., Winooski, VT, USA), was used to estimate, purify, and quantify the RNA. 

2.4. Reverse Transcription 

Diluted RNA samples (to 20 ng/µL) were transcribed onto cDNA using a High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems™, Waltham, MA, USA). All procedures were 
conducted in accordance with the producents’ protocol. 

2.5. Real-Time PCR 
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Technologies, Carlsbad, CA, USA) was used to perform the real-time PCRs, which were executed in 
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Figure 1. Device to generate extremely low frequency electromagnetic field (ELF-EMF)—Magnetronic
MF10 (EiE Elektronika i Elektromedycyna, Otwock, Poland).

2.3. Isolation of RNA

Reagent® (Sigma-Aldrich, Saint Louis, MO, USA) was used for lysis of frozen samples, following
which phase separation was effectuated. InviTrap Spin Universal RNA Mini Kit (Stratec Biomedical
Systems, Birkenfeld, Germany) was used for purification of the RNA-containing aqueous phase.
A Synergy HTX Multi-Mode Microplate Reader, equipped with a Take3 Micro-Volume Plate (BioTek
Instruments, Inc., Winooski, VT, USA), was used to estimate, purify, and quantify the RNA.

2.4. Reverse Transcription

Diluted RNA samples (to 20 ng/µL) were transcribed onto cDNA using a High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems™, Waltham, MA, USA). All procedures were conducted
in accordance with the producents’ protocol.

2.5. Real-Time PCR

Levels of expression of the investigated genes (BAX, BCL-2, CASP8, TNFα, and TP53) were obtained
using TaqMan probes: Hs00180269_m1 for human BAX gene; Hs00608023_m1 for human BCL-2 gene;
Hs01018151_m1 for human CASP8 gene; Hs00174128_m1 for human TNFα gene; Hs01034249_m1
for human TP53 gene, and Hs99999905_m1 for human GAPDH gene (endogenous control) (Life
Technologies, Carlsbad, CA, USA). A TaqMan Universal Master Mix II (Life Technologies, Carlsbad,
CA, USA) was used to perform the real-time PCRs, which were executed in a CFX96 real-time PCR
system (BioRad Laboratories, Hercules, CA, USA). All steps were conducted according to the producers’
recommendations. The equation 2-∆Ct (∆Ct = Ctstudied gene - CtGAPDH) was used to calculate the
relative expressions of the analyzed genes.
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2.6. Data Analysis

All assays were conducted twice and calculated as mean values. For all participants, the values of
the expression before treatment were used as the output value (100%). Data from the assays executed
on these same participants after treatment were formulated as a percentage of the output value.
Data obtained in this way were expressed as mean ± SD.

Stats Direct statistical software v.2.7.2 was used for all statistical analyses. Paired Student’s t-tests
(for normal distribution) and Wilcoxon tests (for distribution deviating from normal) were used to
analyze significant differences between the data obtained for subjects before and after treatments.
Changes in parameters after appropriate treatments for comparison of differences between the ELF-EMF
group and the non-ELF-EMF group were calculated. For this analysis, unpaired Student’s t-tests
or Mann–Whitney U tests were used. Additionally, a correlation analysis between the changes in
experimental and clinical parameters was executed using a Spearman’s rank correlation. A level of
p < 0.05 was accepted as statistically significant for all analyses.

3. Results

Our comparative analysis shows the effect of ELF-EMF therapy on the expression level of various
genes involved in apoptosis. As presented in Figure 2, the expression of the BAX gene in the ELF-EMF
group after 10 sessions of rehabilitation was significantly higher as compared with the non-ELF-EMF
group (p < 0.001). The increase of the BAX mRNA gene expression level in the ELF-EMF group was
about 100% (p < 0.001), while in the non-ELF-EMF group, it did not change (p > 0.05) (Figure 2).
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Figure 2. Comparison of the BAX mRNA expression acquired from the study group vs. control. Results
formulated as parameter changes before and after therapy (100% expressed for the level of BAX mRNA
expression in each patient sample before treatment). Statistical significance between ELF-EMF and
non-ELF-EMF groups after 10 sessions amount to p < 0.0001.

We also found that the expression of the BCL-2 gene after a series of 10 physical treatments
remained at a comparable level in both groups (Figure 3). Subsequently, we estimated the impact of
the ELF-EMF on CASP8 gene expressions in the whole blood samples. We showed that, after ELF-EMF
therapy, the expression of CASP8 mRNA in the ELF-EMF group increased by about 50% (p < 0.01),
but in the non-ELF-EMF group, it remained at the same level (p > 0.05) (Figure 4). Similarly, as shown
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in Figure 5, the expression level of TNFαwas increased in the ELF-EMF group by about 50% (p < 0.001),
whereas in the non-ELF-EMF group, it remained at the same level (p > 0.05).Brain Sci. 2020, 10, x FOR PEER REVIEW 6 of 12 
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Additionally, we examined the TP53 mRNA expression level. We demonstrated that, after
rehabilitation, the mRNA expression of TP53 gene in the study group increased by about 100%
(p < 0.001), while in the control group, it remained unchanged (p > 0.05) (Figure 6).
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4. Discussion

An increased apoptotic process in acute phase of stroke is proven, and associated with the severity
of neurological deficit [26,27]. There is still little information about apoptosis in the subacute/chronic
phase of stroke. Within several minutes after ischaemia, neuronal cells in the infract core died [28],
however, in penumbra, neuronal cells died slowly within a couple of hours after the incident [29].
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Deng et al. studied the dynamics of apoptotic processes in mice that had experienced an induced
stroke. They showed that markers of apoptosis had grown 2–5 h after ischemic, peaking after 5 h.
At that time, the stroke volume and neurological deficit expended slowly, implying that apoptosis
activation might inhibit ampliation of the ischeamic core and promote neuronal survival. Moreover,
after this time, apoptosis was normalized [30].

Apoptosis, as programmed cell death, aims to eliminate damaged cells and, therefore, also those
resulting from hypoxia/reperfusion. Magavi et al. investigated the neurogenesis of the adult cerebral
cortex. They observed that induced apoptosis promoted the formation of new neurons [12]. Similarly,
Chen et al. found the activation of neurogenesis in mice with induced apoptosis in corticospinal motor
neurons [11].

Our innovative research concerned ELF-EMF activity in vivo in post-stroke patients. Most of
the available studies were conducted on cell lines or animal models. The results obtained from
research carried out using other research models cannot be precisely related to human rehabilitation.
Thus, we relate current results only to our previous research that showed that ELF-EMF therapy
improved neuroregeneration processes at the molecular level. In our previous papers, we found
that rehabilitation treatments with the use of ELF-EMF intensification processes of neuroplasticity
in post-acute stroke patients [21–23]. We found that, after exposition to ELF-EMF, the brain-derived
neurotrophic factor (BDNF) expression at both the mRNA and protein level was increased, as well as
plasma cytokine levels—hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF),
stem cell factor (SCF), and interleukin 1β (IL-1β)—were elevated [22,25]. Moreover, we observed that
ELF-EMF affected the synthesis of nitric oxide (NO), which participates in plasticity processes [23].

In this study, we demonstrated that ELF-EMF increased BAX mRNA expression in vivo in
post-acute stroke patients (Figure 2). Our results concur with the research shown by Wang et al. [31].
They observed that 3 mT EMF promotes osteoclast apoptosis by up-regulation of RANK, NFATc1, TRAP,
CTSK, BAX, and BAX/BCL-2 expression, thereby enhancing osteoclast formation and maturation [31].
On the other hand, Tenuzzo et al. [32] assessed the effect of exposition of 6 mT EMF on expression of
BAX, p53, HSP70, and BCL-2 in human lymphocytes. They found that, after exposition, the BAX and
p53 gene expression rose, while the hsp70 and BCL-2 gene expression decreased.

We observed that, after ELF-EMF rehabilitation, the mRNA expression of BCL-2 remained at
a comparable level in both groups. Our results concur with a study shown by Ding et al. [33].
They estimated the effect of ELF-EMF on H2O2-induced apoptosis and necrosis in human leukaemia
HL-60 cells. They observed that the level of BCL-2 in H2O2-treated cells was comparable to its level in
cells treated with both H2O2 and ELF-EMF. They also suggested that EFF-EMF itself cannot induce
apoptosis and necrosis [33].

We demonstrated that the CASP8 and TNFαmRNA expression were elevated in the ELF-EMF
group (Figure 4; Figure 5). Xie et al. estimated the impact of EMF therapy on chondrocyte morphology
and apoptosis, and the expression of apoptosis-related proteins in rabbits with anterior cruciate
ligament transection. They found after, exposition on ELF-EMF, the expression level of CASP8
was higher in comparison with the healthy group, but that there was an insignificant difference in
comparison with the untreated group with anterior cruciate ligament transection. The EMF group was
also characterized by better clinical parameters [34].

In our current study, we found that expression of TP53 mRNA increased by about 100% (Figure 6)
in the ELF-EMF group. Vincenzi et al. [35] evaluated the impact of pulsed electromagnetic fields (PEMF)
on p53 activation and the stimulation of A3 adenosine receptors in NF-kB, cytotoxicity, apoptosis,
and cell proliferation. They found that PEMF treatment alone was not enough to affect regulation of
p53 expression. However, the coinstantaneous treatment of tumour cells with PEMF and agonist of
A(3) adenosine receptors (A3AR)—2-chloro-N 6-(3-iodobenzyl)adenosine-5′-N-methyl-uronamide
(Cl-IB-MECA)—caused a further significant elevation of protein levels of p53, compared with
Cl-IB-MECA alone [35]. Similarly, Ma et al. [36] evaluated the impact of ELF-EMF on the proliferation
and differentiation of neural stem cells. They observed that, after exposure to ELF-EMF, cell cycle
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analyses do not significantly change in the studied group compared with the control. Additionally,
they found no significant difference in the expression level of the p53 gene [36].

The potential mechanism of intensification of apoptosis processes by ELF-ELM could be related
to its effect on calcium channels. The effect of ELF-EMF on Ca2+ flux is well documented [37–40].
The increase of Ca2+ ions is an alarm signal that may present differently according to the physiological
details. It has been shown that apoptosis can be dependent on an increase in the level of mitochondrial
calcium, which in turn induces the release of mitochondrial cytochrome c and activation of proteases [41].
In addition to intrinsic and extrinsic pathways of apoptosis, there are also reticular pathways.
The reticulum pathway is caused by disturbance of the ion balance (especially Ca2+ ions), and the
accumulation of improperly folded or modified proteins in the cell. In the caspase-independent
pathway, calpain plays an important role in apoptosis. Calpain is a cysteine protease activated by Ca2+

ions. After stimulation, calcium is released from the endoplasmic reticulum and is bound with many
factors, including with calpain [42].

Morabito et al. [43] evaluated the impact of ELF-EMF on morphology, proliferation, and differentiation
in pheochromocytoma cells (PC12), as well as on the induction of oxidative stress dependent on Ca2+.
Oxidative stress causes overproduction of reactive oxygen species (ROS), which leads to apoptotic
cell death. Cell growth and viability were examined after ELF-EMF exposure (50 Hz, 01,1 mT)
using morphological and colorimetric analysis. Assay immediately after exposure demonstrated an
increased level of ROS and a decreased catalase (CAT) activity, without affecting the Ca2+ level. On
the other hand, seven days’ exposure caused an increased CAT activity, which may suggest the cell
adaptation on ELF-EMF. Furthermore, long-term exposure caused an intracellular Ca2 level. Calcium
activates voltage-gated (L-type) Ca2 channels, which, via cell pathways (extracellular signal-regulated
kinases, c-Jun N-terminal protein kinase/stress-activated protein kinase, and p38), could lead to the
activation of gene expression regulating apoptosis, cell survival, and differentiation [43]. Our previous
research is compatible with Morabito studies. We observed that, two weeks post-stroke, rehabilitation
with ELF-EMF exposition caused an increase in antioxidant enzymes activity: CAT and superoxide
dismutase (SOD) [24], as well as elevation of the expression of antioxidant enzymes genes: CAT,
SOD (SOD1 and SOD2), and glutathione peroxidase (GPx1 and GPx4) [21]. Moreover, we demonstrated
that 10 sessions of ELF-EMF therapy decreased the level of parameters of oxidative stress in patients
after stroke [24].

What is particularly important in our previous works is that we reported that, after ELF-EMF
treatment, the improvement of biochemical markers was accompanied by the enhancement of clinical
parameters. ELF-EMF improves motor condition expressed in the ADL scale, as well as mental
efficiency assessed in the MMSE and GDS scales [21–25]. Our research to date clearly shows that
ELF-EMF significantly boosts the effectiveness of rehabilitation. In our current study, we established
that ELF-EMF additionally increases the expression of pro-apoptotic genes. Enhancement of apoptosis
in post-stroke rehabilitated patients can significantly contribute to improving repair processes and
increasing neuroplasticity owing to the removal of redundant or damaged cells.

On the basis of all of our research, we suggest that increasing the expression of these genes in
actively rehabilitated post-stroke patients promotes the induction and/or intensification of signaling
pathways involved in brain plasticity. However, subsequent study is needed to elucidate the exact
mechanism of this process, which can include a simultaneous action of a variety of repair systems.
Nevertheless, we recommended that the inclusion of ELF-EMF therapy could intensify the efficacy of
the treatment after stroke.
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