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Abstract: Studies comparing organized (O) and unresolved/disorganized (UD) attachment have
consistently shown structural and functional brain abnormalities, although whether and how attach-
ment patterns may affect resting state functional connectivity (RSFC) is still little characterized. Here,
we investigated RSFC of temporal and limbic regions of interest for UD attachment. Participants’
attachment was classified via the Adult Attachment Interview, and all participants underwent clinical
assessment. Functional magnetic resonance imaging data were collected from 11 UD individuals and
seven matched O participants during rest. A seed-to-voxel analysis was performed, including the
anterior and the posterior cingulate cortex, the bilateral insula, amygdala and hippocampus as seed
regions. No group differences in the clinical scales emerged. Compared to O, the UD group showed
lower RSFC between the left amygdala and the left cerebellum (lobules VIII), and lower functional
coupling between the right hippocampus and the posterior portion of the right middle temporal
gyrus. Moreover, UD participants showed higher RSFC between the right amygdala and the anterior
cingulate cortex. Our findings suggest RSFC alterations in regions associated with encoding of salient
events, emotion processing, memories retrieval and self-referential processing in UD participants,
highlighting the potential role of attachment experiences in shaping brain abnormalities also in
non-clinical UD individuals.

Keywords: fMRI; organized attachment; unresolved attachment; adult attachment; resting-state
functional connectivity

1. Introduction

In his attachment theory, Bowlby [1] assumed the existence of mental representations
of interpersonal relationships with attachment figures and their responsiveness in social
contexts. Such representations have been labeled “Internal Working Models” IWMs) and
are thought to be stable throughout the lifespan [2-4]. IWMs are shaped by early interper-
sonal experiences with caregivers and are fundamental for social patterns of interactions
and general mental health, given their implication in emotion regulation processes [5,6].
Early experiences of neglect and maltreatment have been linked to the development of the
unresolved-disorganized (UD) attachment pattern, which is characterized by an incoherent
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state of mind about childhood attachment memories [7]. UD IWMs contain contradictory
expectations to caregivers’ behavior and are related to traumatic memories of early fearful
or neglectful experiences [8-10]. UD pattern may be considered as a momentary break-
down of an organized strategy to cope with stressful situations: for example, a child may
simultaneously show proximity-seeking and avoidant behaviors toward caregivers, which
are represented as a source of care and fear at the same time [9,11,12]. Mikulincer and
Shaver [13] proposed a three-phase model of attachment system in adults in which the first
component involves the monitoring and appraisal of threatening events, the second deals
with attachment figure availability and responsiveness, and the third examines the utility
of seeking proximity to an attachment figure as a way of coping with threats to safety and
well-being. This latter component is thought to be responsible for individual differences in
attachment patterns and in corresponding adaptive strategies of emotion regulation: indi-
viduals with a UD attachment display emotional dysregulation and dramatic behavioral
reactions in response to stressful stimuli [14]. UD pattern appears to be overrepresented in
psychiatric patients (43%) and predicts a vulnerability to dissociative disorders [15] and
borderline personality disorder [16,17]; nevertheless, individuals with a UD pattern are
also found among non-clinical samples (18%) and, although at a lower extent, they display
emotional difficulties as well as impulse dyscontrol [7].

In the last few years, neuroimaging studies have highlighted several links between
UD attachment and brain irregularities in terms of structural and functional features, with
many researches highlighting crucial differences in temporal regions, including the amyg-
dala and hippocampus. In a 30-year longitudinal study, Lyons-Ruth et al. [18] investigated
the amygdala volume of 18 low-income participants whose attachment pattern was as-
sessed by employing the Strange Situation Procedure at 18 months of age and who were
followed longitudinally to age 29. Authors found increased volume in the left amygdala
in participants characterized by maternal and infant components of UD attachment in-
teractions at 18 months of age, and such structural abnormality was also associated with
somatic disturbances, brief hallucinatory events, automatisms, visual phenomena, and
dissociative episodes. When compared to controls, participants reporting higher exposure
to maltreatment and lower levels of maternal care during childhood showed a bilateral
enlargement of amygdala volumes; in addition, the severity of maltreatment at 10-11 years
of age predicted right amygdala volume in adulthood in longitudinal participants [19].
Buchheim et al. [20] explored the brain activation of participants with an Organized and
UD attachment pattern in response to the Adult Attachment Projective, a measure for
assessing adult attachment based on narrative responses to a set of eight figures depicting
events devoted to activating the attachment system. In this study, participants with a UD
attachment with respect to organized ones showed higher activation of medial temporal
regions, including the amygdala and the hippocampus, suggesting that the activation of
such regions may indicate higher stress in UD individuals resulting from the retrieval of
traumatic or negative autobiographical memories during the Adult Attachment Projective.
A similar design has been implemented in order to explore the brain activation of the at-
tachment system in healthy participants compared to patients with borderline personality
disorder, a clinical population that is often characterized by emotion dysregulation and
UD IWMs associated with trauma and abusive experiences in infancy and childhood [21].
Once again, increased amygdala activation was observed in response to the Adult Attach-
ment Projective in participants with UD attachment pattern, regardless of the presence
of a borderline personality disorder diagnosis. Nevertheless, unresolved controls, but
not borderline patients, displayed further activation in the dorsolateral prefrontal cortex
and in the rostral part of the cingulate cortex, suggesting a more functional attempt to
cope with negative representations elicited by the Adult Attachment Projective involving
emotion regulation, cognitive control and conflict monitoring, with respect to patients who,
in turn, appeared overwhelmed and unable to regulate their attachment-related negative
states. Blunted amygdala responses have been observed by Kim et al. [22], whoexamined
neural activity in mothers classified as having unresolved trauma in the Adult Attachment
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Interview compared to mothers with no trauma, while observing happy and sad face
images of their children. Mothers with no trauma showed higher amygdala activation in re-
sponse to sad faces of their infants, whereas the opposite pattern was found in traumatized
mothers, indicating a possible disengagement mechanism of mothers with unresolved
trauma from their infant distress and consequential poor maternal caregiving. Recently,
van Hoof et al. [23] hypothesized that atypical amygdala connectivity in UD individuals
may representa vulnerability factor for the development of psychopathology; authors ex-
amined resting state functional connectivity in 74 adolescents with and without psychiatric
disorder that underwent the Adult Attachment Interview in order to assess their current
state of mind in relation to attachment memories and found greater functional connectivity
between the left amygdala and left lateral occipital cortex, precuneus and superior parietal
lobule as well as lower connectivitybetween the left amygdala and medial frontal cortex
in UD participants. The authors did not find significant differences in amygdala volume
between UD and non-UD adolescents but reported smaller left hippocampal volume and
higher functional connectivity between the left hippocampus and the right middle tempo-
ral gyrus and the lateral occipital cortex in UD participants [24]. Regarding hippocampal
morphology, opposite results have been shown about larger left hippocampal volume in
neonates that have been later classified as having a disorganized attachment at 1 year and
half of age [25], disorganized children at 10 years of age [26], and adults characterized
by maternal withdrawal in infancy and borderline personality disorder features such as
self-injury and suicidality [27].

Furthermore, neural activity within the amygdala, medial prefrontal cortex—as a core
component of the anterior cingulated cortex—and the hippocampus has been associated
with the regulation of several emotional processes, particularly in emotional learning and
memory modulation [28]; for example, it has been shown that the inhibition of the dorso-
lateral prefrontal cortex—which is directly connected to the amygdala—via transcranial
magnetic stimulation decreased physiological responding to learned fear, suggesting a piv-
otal role for this area in a neural network involved in the reconsolidation of fear memories
in humans [29]. Similarly, the ventromedial prefrontal cortex appears to have a causal role
in fear learning, with patients with a lesion in this region failing in producing physiological
adaptive responses during threat acquisition [30]. These findings bring into consideration
the therapeutic potential role of non-invasive brain stimulation as an alternative treatment
for patients characterized by persistent maladaptive emotional memories, such as those
related to attachment [31].

Taken together, evidence suggests that UD individuals may display differences in
structural and functional features of the brain when compared with organized subjects at
different stages of life, although whether UD adults may have unique patterns of altered
resting state functional connectivity is still little characterized. Therefore, the aim of the
current study was to examine whether UD attachment is related to specific resting state
patterns when compared to individuals with an organized attachment pattern. Participants’
state of mind in relation to their attachment memories was assessed employing the Adult
Attachment Interview, which is considered the gold standard measure for attachment
patterns in adulthood. We hypothesized that UD individuals would display an altered
pattern of resting state functional connectivity with respect to organized participants in
specific regions of the brain, including the anterior and the posterior cingulate cortex, the
bilateral insula, amygdala and hippocampus. Such regions have shown altered connec-
tivity patterns in UD adolescents [23,24] and are thought to be involved in processes that
were found to be impaired in UD individuals such as salient events processing, emotion
regulation, memories retrieval and self-referential processing.

2. Materials and Methods
2.1. Participants

Eighteen individuals (8 female), whose age ranged between 19 and 56 (mean 30.722;
SD 10.151) took part in the study. The sample size was similar to other previous studies on
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non-clinical participants with a UD attachment pattern [12,20,21]. This sample was largely
drawn from a larger set of participants involved in a previous study [32]. All participants
underwent clinical assessment, including the Adult Attachment Interview (AAI [33]), the
Personality Inventory for DSM-5 (PID-5 [34]), and the Symptom Checklist-90-Revised (SCL-
90-R [35]); an extended description of the measures as well as additional information about
participants selection is provided in Supplementary Material. Using the AAI, 7 individuals
(4 female) were classified as UD and 11 (4 female) as organized (O). Groups were matched
for age (UD group mean = 35.143, SD = 13.741; O group mean = 27.909, SD = 6.284; Mann-
Whitney’s U = 28.000; p = 0.375). The authors assert that all procedures contributing to
this work comply with the ethical standards of the relevant national and institutional
committees on human experimentation. The protocol was approved by the local Ethics
Committee of IRCCS Fondazione Santa Lucia in Rome and conformed to the Helsinki
Declaration of 1975, as revised in 2008. Informed consent was obtained from all participants
included in the study.

2.2. Image Acquisition and Analysis

For each participant, we acquired two resting-state functional magnetic resonance imaging
(fMRI) scans using an echo planar imaging (EPI) sequence (axial orientation, 72 x 72 matrix,
172 volumes, 38 slices, in-plane resolution = 2.5 x 2.5 mm, slice thickness = 3.6 mm, TR =2,
TE =30 ms, flip angle = 77 deg). During resting-state fMRI scans, participants were asked
to lay at rest with eyes closed and not to fall asleep; head movements were minimized with
mild restraint and cushioning. MRI scans were collected using a Philips Achieva scanner
operating at 3T.

Resting-state data were processed using the CONN toolbox for functional connectivity
analysis (v. 19¢) (http://www.nitrc.org/projects/conn [36] last accessed 12 July 2021),
running on the Statistical Parametric Mapping 12 (SPM12) software (http://www.fil.ion.ucl.
ac.uk/spm/ last accessed 12 July 2021). After removal of the initial 4 scans, the functional
images were resampled to a voxel size of 2 x 2 x 2 mm?, realigned and unwarped; time
series were interpolated to correct for slice-timing distortions. ART-based scrubbing [37]
for detection of functional outliers was also applied. Structural images were segmented in
gray matter, white matter (WM), and cerebrospinal fluid (CSF) for successive use during
removal of temporal confounding factors and were normalized to MNI space. Functional
data were smoothed using an 8 mm? full-width half-maximum (FWHM) Gaussian kernel.

Temporal confounding factors (i.e., time-courses of WM and CSF BOLD signals,
a linear trend, and the six motion parameters derived from the previous realignment
procedure) were removed from the BOLD time series of functional data, regressing them
out at each voxel. A band-pass filter (0.008 0.09 Hz) was then applied to resulting residual
time series.

A seed-to-voxel analysis was performed, including the following theoretically moti-
vated regions as seeds: the anterior and the posterior cingulate cortex, the bilateral insula,
amygdala (Figure S1 in Supplementary Materials) and hippocampus. Seeds were selected
from the FSL Harvard-Oxford Atlas [38] as implemented in CONN. For each region, and
participant seed-based connectivity maps, representing the level of functional connec-
tivity between the seed and every voxel or location in the brain, were computed as the
Fisher-transformed bivariate correlation coefficients between the seed BOLD timeseries
and each individual voxel BOLD timeseries. Then, the two groups (UD vs. O) were directly
compared using two sample ttests. Resulting statistical parametric maps were thresheld
using cluster-level FDR-corrected p value < 0.05 after forming clusters of adjacent voxels
surviving a threshold of p < 0.001 uncorrected [39].

3. Results

Group clinical information and non-parametrical group comparisons are reported in
Table 1. No significant differences between groups emerged in any clinical scale, suggesting
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that the two groups are comparable in terms of general psychopathological assessment
and do not divert from the general population performance [34,35].

Table 1. Pre-existing group differences (means and standard deviations) in the clinical scales of the study.

. Unresolved/
Organized Di ized
Attachment lsorganize
Attachment Mann-Whitney’s U p Value Cohen’s d
(N=11,4F)
Mean (SD) (N=7,4F)
Mean (SD)

PID-5—Negative Affect 1.024 (0.43) 1.118 (0.65) 35.000 0.751 0.171
PID-5—Detachment 0.504 (0.33) 0.564 (0.78) 46.000 0.497 0.100
PID-5—Antagonism 0.393 (0.31) 0.383 (0.30) 39.000 0.964 0.033
PID-5—Disinhibition 0.688 (0.42) 0.842 (0.61) 31.000 0.497 0.294
PID-5—Psychoticism 0.462 (0.53) 0.900 (0.83) 25.000 0.221 0.629
SCL-90-R—Somatization 46.909 (4.93) 51.714 (9.30) 25.000 0.219 0.646
SCL-90-R—Obsessive-Compulsive 47.000 (8.96) 53.857 (11.98) 23.500 0.173 0.648
SCL-90-R—Interpersonal Sensitivity 48.182 (9.03) 51.857 (12.17) 31.000 0.492 0.343
SCL-90-R—Depression 50.818 (11.64) 54.286 (12.91) 33.500 0.649 0.282
SCL-90-R—Anxiety 52.636 (11.23) 52.143 (10.72) 37.000 0.892 0.045
SCL-90-R—Hostility 49.455 (12.84) 54.143 (11.768) 24.500 0.203 0.381
SCL-90-R—Phobic Anxiety 49.273 (5.62) 53.857 (13.40) 34.000 0.681 0.446
SCL-90-R—Paranoid Ideation 46.636 (10.25) 54.429 (12.05) 23.500 0.173 0.697
SCL-90-R—Psychoticism 46.727 (8.34) 50.429 (10.15) 29.000 0.384 0.399

SCL-90-R—Global Score 49.455 (10.59) 52.571 (12.39) 31.000 0.496 0.270

Note. SD, standard deviation; PID-5, Personality Inventory for DSM-5; SCL-90-R, Symptom Checklist-90-Revised.

RSEC results are summarized in Table 2, along with statistics, cluster size and MNI
coordinates for each suprathreshold cluster of between-group differences. Overall, we
found that UD and O showed different patterns of seed-to-voxel functional connectivity.
Specifically, the UD group showed lower functional coupling between the left amygdala
and the left cerebellum (lobules VIII) as compared with the O group (Figure 1A). In addition,
the UD group showed lower functional coupling between the right hippocampus and the
posterior portion of the right middle temporal gyrus on the lateral surface of the brain
(Figure 1B). Otherwise, the UD group showed higher functional coupling between the right
amygdala and the anterior cingulate cortex on the medial surface of the brain, as compared
with the O group (Figure 1C). Effect sizes for each suprathreshold cluster described above
are provided in Figure S2 in supplementary material.

Table 2. Results of the contrast between the O and UD groups.

Seed/Target X y z Clg;z::er Cp}:]sjt;r Cplj:i:r ;iankc Effect
Amygdala LH
Lobule VIII LH -32 —-56 —-56 64 0.018471 0.000324 0.000028 —
Amygdala RH
ACC 2 44 16 57 0.037827 0.000714 0.000066 +
Hippocampus RH
pMTG RH 54 —64 6 86 0.002723 0.000066 0.000007 —

Note. Target regions are shown in italics. LH, left hemisphere; RH, right hemisphere; ACC, anterior cingulate cortex; pMTG, posterior
middle temporalgyrus; +, higher coupling in UD; —, lower coupling in UD.



Brain Sci. 2021, 11, 1539

6 of 15

0.00

-5.79

Figure 1. Seed regions are shown in the center, with the left amygdala in red, the right amygdala in green and the right

hippocampus in blue. For each region, significant suprathreshold clusters (p < 0.05 cluster-size p-FDR) are reported

in the panel (A-C). Clusters of voxels with lower functional connectivity in the UD group are shown in green-to-light

blue patches, whereas clusters with higher functional connectivity in the UD group are shown in red-to-yellow patches.

Panel A. Functional coupling between the left amygdala and the left cerebellum (lobules VIII). Panel B. Functional coupling

between the right hippocampus and the posterior portion of the right middle temporal gyrus on the lateral surface of the

brain. Panel C. Functional coupling between the right amygdala and the anterior cingulate cortex on the medial surface of

the brain.

4. Discussion

In the current work, we explored resting-state functional connectivity in participants
with a UD attachment compared to O individuals, and we found specific patterns of
activation in the two groups. Early traumatic experiences of abuse and neglect can lead to
the development of a UD attachment pattern that could be further reflected by structural
and functional alteration in brain regions associated with encoding of salient events,
emotion processing, memories retrieval and self-referential processing. In the current
study, we found that UD showed different patterns of functional connectivity in a subset
of investigated regions, namely the bilateral amygdala and the right hippocampus, with
target voxels that were mainly located in the cerebellum, the anterior cingulate cortex and
the posterior middle temporal gyrus. The two groups do not differ in any of the clinical
scales assessed, suggesting that differences found in the functional connectivity may be
ascribed to the attachment pattern rather than to other confounding clinical variables. This
evidence seems to suggest the potential and specific role of traumatic early attachment
experiences in resting state functional connectivity specific patterns even in non-clinical UD
individuals. For easiness of exposition, the discussion will be divided into subheadings,
according to the role of each investigated node.
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4.1. The Role of the Amygdala: Altered Functional Connectivity of the Bilateral Amygdala in UD
Compared to O Participants

The involvement of the amygdala in emotional processes has been showed in many
works [40-47], and an analysis of all the functions associated would be beyond the aim
of the present study. Therefore, we will focus on aspects more related to the dimension
of attachment. From a general perspective, it appears that the intense early stress of
childhood maltreatment (such as neglect in caregiving, physical and/or psychological
abuse, repeated violence) is associated with long-lasting alterations in the fronto-limbic
circuitry [48] and that both amygdala morphology and functioning are associated with
several typical behaviors of the UD attachment pattern.

One feature of many adults with UD is substance use. This specific behavior is
not necessarily associated with psychopathological pictures but is also associated with
subclinical conditions. In a study of drug users of methamphetamine [49], it was found that
childhood maltreatment was positively associated with resting state connectivity between
the amygdala and several structures including the hippocampus, the parahippocampal
gyrus, the inferior temporal gyrus and the orbitofrontal cortex in the right hemisphere, as
well as with the cerebellum and the brainstem. With respect to our study, the authors found
that connectivity between the amygdala and hippocampus was positively correlated with
measures of emotion dysregulation, which is a typical trait of subjects with UD attachment
pattern.

Similarly, but from a different perspective, it has been demonstrated that caregiving
stressors during infancy were associated with overdeveloped limbic areas [18,25,27,50,51].
With regard to our data, support comes from works by Cortes Hidalgo et al. [26] and Lyons-
Ruth et al. [18], who found evidence that a UD in the first 18 months is correlated with
enlarged limbic structures years later, suggesting, one more time, the effect of maltreatment
on attachment style and amygdala development.

Numerous animal model studies have also reached similar findings. For example,
studies in which maternal care and responsiveness were manipulated showed that higher
levels of stress due to neglecting maternal caring led to an increased amygdala volume that
also persisted at latter developmental stages of life [52-54]. This may be due to the features
of amygdala developmental trajectory that is characterized by a robust growth during
the first few years of life, with a peak around the timing of preadolescence in non-human
primates [55] as well as in healthy humans [56], highlighting how early environmental
stressors may perturb a typical development in such an area. Similarly, animal and human
studies showed that maternal care-related early life stress result in persistent alterations
in the amygdala functional circuitry [53], with alterations in functional connectivity of
the amygdala with the hippocampus [48,49,57], the medial prefrontal cortex [58] and the
anterior cingulate cortex [59,60].

With respect to the functional asymmetries, it has been proposed that the left and
right amygdala may play different roles in the processing of attachment stimuli [18] in
accordance with the motivational hypothesis of brain asymmetries, which postulates that
the left hemisphere is involved in approach-directed behaviors versus the right hemisphere
in avoidance-directed behaviors [61]. Accordingly, the left amygdala has been proposed to
be preferentially recruited in processing maternal stimuli in childhood [62], whereas the
right amygdala appeared to be involved in response to negative or threatening stimuli,
with fear circuitry alterations being linked to exposure to childhood maltreatment and
neglecting care [63,64]. In the current study, we showed blunted resting-state functional
connectivity in both the left and right amygdalae in healthy UD participants, suggesting
that the UD attachment pattern may interfere with both approaching and avoiding attitudes.
Contradictory expectations to caregivers’ behavior and the displaying of proximity-seeking
and avoidance behaviors toward the caregivers at the same time is a typical feature of UD
children, which represents their attachment figures as a source of simultaneouscare and
fear [8,9,11,12].
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Our data seem to support previous studies that link the typical psychological features
associated with UD attachment pattern, including emotion dysregulation, anxious and
depressive symptoms, as well as dissociative episodes and self-harming behaviors [65-67]
to alteration ofthe morphology and functioning of this limbic structure [68-73]. We may
speculate that traumatic memories of early fearful or neglectful experiences found in UD
IWMs [8,11] may represent stressful events that interfere with the typical development of
amygdala circuitry also in absence of a frank psychopathological picture; in addition, it
may be possible that differences in terms of amygdalar resting-state functional connectivity
between UD and O individuals may represent one possible brain mechanism associated
with psychological distress in UD attachment.

4.2. Higher Functional Connectivity between the Right Amygdala and the ACC in UD

The rostral part of the anterior cingulate cortex (ACC) is involved in conflict and error
monitoring, decision uncertainty and in monitoring for unfavorable outcomes [74-80], and
it appears to be connected with the amygdala [81,82] in a circuitry devoted to emotion
regulation and appraisal [83], with the cingulate cortex exerting an inhibitory influence
on the amygdala. Higher functional connectivity between the right amygdala and the
rostral part of the ACC may be interpreted as a difficulty in automatic emotion regula-
tion or a lack of cognitive control over emotions [84,85], reflecting the inability of UD
individuals in integrating traumatic attachment memories in a coherent and organized
representation and their emotional dyscontrol. Consistently, higher activity of the ACC
has been previously found in patients who had experienced physical and sexual abuse
and developed a post-traumatic stress disorder [86]. However, the anterior cingulate
cortex is also part of the so-called Cortical Midline Structures (CMS) system, which has
been associated with self-processing not only during stimulus-induced states but also
during restingstates characterized by spontaneous thoughts [87-89]. Scalabrini et al. [90]
proposed a neuropsychodynamic model of personality thattakes into account neural cor-
relates of the self and individuals’ early attachment experiences; such model posits the
relational alignment as a prerequisite for the construction of the self, which is described
as a neuro-ecological continuum between the brain and the external world and has its
origin in the earliest relations with a caregiver. Authors suggest that negative attachment
experiences are linked to difficulties in the construction of the self and are reflected in the
intrapsychic structure of the individuals. More specifically, in the psychotic personality
organization, the relationship between the CMS and the somatosensory network appears
to be altered, resulting in a lack of differentiation in processing intrinsic and extrinsic
stimuli; in the borderline personality organization, a lack of integration in the brain’s
self-other networks, including the CMS, can be observed and may lead to affective and
mentalizing dysregulation; and in the neurotic personality organization, difficulties to
expand and finalize themselves because their internal conflicts may be reflected in CMS
abnormal activity during restingstate as well as during tasks. Moreover, a neural overlap
between brain activity during the processing of self-specific stimuli and during restingstate
has been specifically found in the ACC [91]. Such rest-self overlap has been described
by Northoff [92] as a regional convergence between resting state activity and self-related
activity in the CMS system, bringing into consideration the hypothesis that the self can
no longer be considered as a higher-order feature of cognitive function but as a basis
function of the brain’s spontaneous activity. The ACC appears to play a fundamental role
within the CMS in the monitoring of mental states: deficits in the ACC activity have been
linked to schizophrenic patients” impaired internal monitoring of one’s own actions [93]
and patients with lesions in the ACC showed apathy, lack of initiative and aberrant social
behavior, which could result from an inability to monitor behavioral and mental states [94].
Disorganized, incoherent representations of attachment may prevent important aspects of
the self from being integrated, thus predisposing the self-structure to fragmentation and
dissociation, with different contradictory self-states (e.g., helpless vs. hostile, victim vs.
persecutor)being considered as ensuing from UD attachment [95]. It may be speculated
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that deficit in the monitoring of self-mental states reflected in abnormal ACC activity may
be linked to difficulties in creating a coherent and integrated representation of the self as
observed in UD individuals, although further studies are mandatory in order to explore
such a hypothesis.

4.3. Lower Functional Connectivity between the Left Amygdala and the Left Cerebellum in UD

The amygdala, as well as other medial temporal lobe regions such as the hippocampus,
appears to be linked to the cerebellum via ascending projections of the cerebellar fastigial
nucleus [96], and resting state functional connectivity has been observed between several
cerebellar subregions and the amygdala, indicating the involvement of the cerebellum in
emotional processing [97,98]. Clusters of cerebellar activation comparable to cerebellar
areas found to be connected to the amygdala in the present study have beenobserved in
taste perception [99] and nociception [100,101]. Petrowski et al. [102] found lower brain
activity in the left cerebellum/cerebellar vermis in UD when compared to securely attached
participants while viewing faces of attachment figures, suggesting a lower ability in UD
individuals for emotional perception, bonding, and processing social information. This
hypothesis is further supported by our data about lower functional connectivity in healthy
UD individuals between the left amygdala and the left cerebellum, more specifically with
lobule VIII. To date, the connectivity between the cerebellum and the amygdala has not
been extensively studied; our data seem to indicate what other research has already shown,
namely the presence of an emotional function in the cerebellum [103,104].

4.4. Lower Functional Connectivity between the Right Hippocampus and the Right Middle
Temporal Gyrus in UD

The hippocampus has been shown to be sensitive to early life stressors, with smaller
hippocampi being found in low-income children [105-107] and children exposed to parental
separation or loss [108]. From a neurobiological standpoint, the hippocampus is involved
in stress-response modulation, providing inhibitory feedback and thus a return of the
system to homeostasis [109]. Early life stress has an impact on hippocampal neuroplasticity,
with maternal deprivation, neglecting care and infant traumas being correlated to a lower
number of available glucocorticoid receptors, resulting in an alteration of the hippocampus-
mediated feedback control of the hypothalamus—pituitary—adrenal axis [110,111]. Differ-
ences in hippocampal structure as well as in functional activity in response to attachment-
related stimuli have been observed in UD compared to O individuals [21,24-26], suggest-
ing that the hippocampus may play a role in dysfunctional stress responses-observed
UD pattern as well as in the retrieval of unresolved, traumatic or negatively valanced
autobiographical material associated with attachment memories. In the current study, we
found a significantly lower functional connectivity at rest between the right hippocampus
and the right middle temporal gyrus (rMTG) in UD individuals compared to participants
with an organized attachment pattern. The right pMTG has been linked to high-level visual
processing and in understanding others’ intentions from social cues such as the gaze [112]
and fear of social exclusion [113], and functional connectivity between the hippocampus
and the rMTG has been associated with the ability of forming new associations during
novelty processing [114]. Difficulties in processing social salient stimuli have been ob-
served in UD individuals [32,102] as well as deficits in understanding others” emotions
and mental states in maltreated children [115]. Taken together, this evidence points to
altered brain mechanisms underpinning an adequate processing of social stimuli that is
reflected in impaired social skills and dysfunctional interpersonal relationships in UD
individuals and in their difficulty in forming new, organized representations of self and
others. In a recent study, van Hoof et al. [24] found an enhanced connectivity between
the hippocampus and the middle temporal gyrus (MTG) at rest in UD participants, which
is the opposite trend shown in the current research. One possible explanation regards
the inclusion of non-clinical adults in the present study, whereas the sample from van
Hoof et al. [24] encompassed adolescents with (i.e., post-traumatic stress disorder, anxiety
and/or depressive disorders) and without a psychiatric diagnosis.
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5. Limitations and Conclusions

One limitation of this study is the small number of participants. Unfortunately, many
participants with disorganized attachment refused to participate in the fMRI study or with-
drew. Nevertheless, the effect size we observed (Figure S1) supports our results, despite the
small sample size. A second consideration is that we did not find any significant difference
between groups in any clinical scale, suggesting that the two groups are comparable in
terms of general psychopathological assessment and do not divert from the general popula-
tion performance; if these results may point to a possible role of attachment disorganization
in affecting RSFC in absence of a psychiatric diagnosis, it must be considered that our data
are not representative of a psychopathological population. Future studies are mandatory
in order to further address the specific role of UD attachment in differently affecting RSFC
in psychiatric as well as in non-clinical samples.

Limitations notwithstanding, while exploratory, the present work showed differences
between UD and O participants in RSFC of brain regions previously linked to disorganized
attachment and associated with encoding of salient events, emotion processing, mem-
ories retrieval and self-referential processing. Moreover, the majority of the structures
that displayed altered RSFC appear to be sensitive to early life stressor and maternal
neglect typically observed in UD individuals; in turn, such traumatic early experiences
may affect structural and functional features of these regions, including bilateral amyg-
dala, right hippocampus and anterior cingulate cortex. Importantly, our results extend
previous knowledge on RSFC and attachment to non-clinical UD individuals, suggest-
ing that differences in brain functional connectivity may occur also in absence of a frank
psychopathological picture. Future studies with larger sample sizes are mandatory to
generalize results from the present exploratory research and to better address such issues.
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