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Abstract: Stimulation of glucagon-like peptide-1 (GLP-1) receptors increases the insulin release in the
pancreas during high glucose levels, and also stimulates a feeling of satiety. Likewise, synthetic GLP-1
receptor agonists derived from exendin are used successfully in the treatment of type-2 diabetes
mellitus and obesity. Interestingly, preclinical and clinical studies further suggest that GLP-1 receptor
agonists may decrease motor, behavioral, and cognitive symptoms in (animal models) Parkinson’s
disease and Alzheimer’s disease and may slow down neurodegeneration. These observations suggest
stimulation of GLP-1 receptors in the brain. The GLP-1 positron emission tomography (PET) tracer
68Ga-NODAGA-exendin-4 has been developed and successfully used for imaging in humans. In an
ongoing study on the effects of bariatric surgery on GLP-1 receptor expression, we performed 68Ga-
NODAGA-exendin-4 PET in obese subjects. Here we evaluated whether GLP-1 receptor binding
could be visualized in the central nervous system in 10 obese subjects (seven woman; body mass
index: mean ± SD: 39 ± 4.4 kg/m2) before bariatric surgery. Although we observed clear uptake
in the pituitary area (mean SUVmax 4.3 ± 2.3), we found no significant uptake in other parts of the
brain. We conclude that 68Ga-NODAGA-exendin-4 PET cannot be used to analyze GLP-1 receptors
in the brain of obese subjects.

Keywords: GLP-1 receptor; PET; obesity; brain; 68Ga-NODAGA-exendin-4

1. Introduction

Glucagon-like peptide-1 (GLP-1) is predominantly synthesized in enteroendocrine
cells of the distal small intestine and secreted in the blood when food enters the duodenum
(for a recent review, see Mori et al. [1]). GLP-1 belongs to the incretin family (INtestinal
seCRETion of INSulin). Incretins increase the release of insulin in the pancreas during high
blood glucose levels, which is named the “incretin effect” [2].

GLP-1 is also synthesized in the brain, and particularly in the nucleus tractus solitarius,
which is located in the brainstem [3]. These GLP-1 expressing neurons extend to parts of
the hypothalamus, particularly the paraventricular nucleus and arcuate nucleus [4]. GLP-1
secretion stimulates a feeling of saturation, and as such plays a role in the regulation of
appetite. Likewise, synthetic GLP-1 receptor agonists are used successfully in the treatment
of type-2 diabetes mellitus and to reduce overweight in obesity (for recent reviews, see
Nauck and Meier [5] and Hussein et al. [6]).
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GLP-1 receptors are, however, not only located in the hypothalamus and nucleus
tractus solitarius, but also in the substantia nigra, amygdala, hippocampus as well as in
cortical areas such as the lateral prefrontal cortex [4,7–11]. Stimulation of these receptors
may induce synaptogenesis/neurogenesis and protect against oxidative stress, neuroin-
flammation, and apoptosis [12]. Interestingly, in animal models of Parkinson’s disease (PD)
and Alzheimer’s disease (AD), administration of GLP-1 receptor agonists may decrease the
amyloid load, slow down dopaminergic degeneration, and improve motor and cognitive
functions such as learning and memory [8,12–23].

The half-life of GLP-1 is short (a few minutes) because it is rapidly metabolized by
the enzyme dipeptidyl peptidase IV (DDP-IV) [24]. Fortunately, the naturally occurring
GLP-1 agonist exendin-4 is resistant to DDP-IV degradation. Exendin-4 has a much longer
half-life (approximately 2.4 h) [25] than GLP-1 and is thus suitable for treating type-2
diabetes mellitus by increasing insulin secretion. Several synthetic GLP-1 agonists derived
from exendin-4 have been produced successfully [26].

Importantly, a recent randomized, placebo-controlled study showed that administra-
tion of the GLP-1 agonist exenatide (a synthetic GLP-1 analog derived from exendin-4)
is able to slow down motor progression in patients suffering from PD [27]. Moreover, a
smaller, open label study showed significant effects on cognition in PD [28]. Additionally,
a small randomized, placebo-controlled study on AD showed that exenatide prevented
decline of cerebral glucose metabolism, measured with 18F-FDG positron emission tomog-
raphy (PET) [29].

PET tracers derived from exendin have been developed successfully, including 68Ga-
NODAGA-exendin-4 (for a recent review, see Jansen et al. [30]). In a recent study, we
demonstrated the ability of 68Ga-NODAGA-exendin-4 to visualize GLP-1 receptor expres-
sion on pancreatic beta cells [31]. Since GLP-1 receptor agonists are successfully used
to reduce body weight and improve insulin resistance in obese subjects, and bariatric
surgery may influence GLP-1 levels [32], we recently started a clinical study on the effects
of bariatric surgery on GLP-1 binding as measured with 68Ga-NODAGA-exendin-4 PET.

Although it is undisputed that GLP-1 agonists have central effects, the localization
of GLP-1 receptors in the brain in human and mechanisms of GLP-1 agonists to cross
the blood–brain barrier (BBB) are debated, especially since several observations do not
support that these agonists can cross the BBB by general BBB permeability [4,9,33]. To
contribute to this relevant issue, we here evaluated whether 68Ga-NODAGA-exendin-4
PET can be used to visualize and quantify GLP-1 receptors in the central nervous system
(CNS). Furthermore, we discuss possible mechanisms of GLP-1 agonists to enter the CNS.

2. Materials and Methods
2.1. Participants

Study subjects have been participating in an ongoing clinical study on the effects
of bariatric surgery on GLP-1 receptor expression at the Radboud University Medical
Center (Radboud UMC, Nijmegen, The Netherlands). Inclusion criteria for participation in
this study were obesity (body mass index (BMI) ≥ 35 kg/m2), age > 18 years, scheduled
for bariatric surgery, and type-2 diabetes mellitus treated with insulin, sulfonylureas, or
metformin. Exclusion criteria included pregnancy or breast feeding, kidney failure, liver
failure, treatment with GLP-1 receptor agonists or DDP IV inhibitors, and BMI ≥ 50 kg/m2.
Subjects underwent a medical evaluation, including medical history, physical examination,
and blood tests, before study participation.

Participating subjects were eligible for the present analysis if they underwent whole-
body 68Ga-NODAGA-exendin-4 PET imaging before surgery. All procedures were ap-
proved by the medical ethics committee of the Radboud UMC, and all subjects provided
written informed consent in accordance with the Declaration of Helsinki.
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2.2. Anthropometric Measurements

Demographic and anthropometric parameters were measured and documented by
trained medical doctors.

2.3. PET Imaging

To measure GLP-1 receptor expression, subjects underwent PET imaging after an
overnight fast or fasting for at least four hours. Imaging was performed 60 min after
intravenous bolus injection of approximately 100 MBq 68Ga-NODAGA-exendin-4 PET (for
details on the synthesis of the radiotracer, see Boss et al. [31]). PET imaging from the skull
to pelvis was performed on a Biograph mCT-40 time-of-flight PET-CT scanner (Siemens)
located at the Radboudumc.

After acquiring a low-dose CT scan, static images were acquired for 5 min per bed
position. Low-dose CT (40 mAs, 130 kV) was obtained without contrast and applied for
attenuation correction and anatomical localization. PET was reconstructed using ultra-
high definition, time-of-flight, scatter and attenuation correction and post-reconstruction
Gaussian filter of 3 mm FWHM settings.

2.4. Volume-of-Interest (VOI) Analysis

Specific 68Ga-NODAGA-exendin-4 binding was assessed in the whole brain (exclud-
ing the pituitary), pituitary, and pancreas. Blood pool activity was determined in the
left ventricle and uptake in liver and subcutaneous adipose tissue was used to assess
background activity. Tracer uptake was determined in ellipsoid volumes of interest (VOI)
that were representative for the whole organ and quantified using Inveon Research Work-
place (version 4.1; Siemens Healthcare). Within the VOIs, the maximum standardized
uptake (SUVmax) and mean SUV (SUVmean) values were determined. Calculation of SUV
was carried out as activity concentration (kBq/g)/[injected dose (MBq)/body weight (g)];
corrected for decay and assuming that 1 g tissue is equal to a volume of 1 mL.

2.5. Statistical Analysis

Since we analyzed data in 10 subjects with obesity, only descriptive statistics
were performed.

3. Results
3.1. Study Subjects

We included 10 subjects (seven woman) with a median age of 55 years and a mean
BMI of 39 kg/m2 (Table 1).

Table 1. Demographic and anthropometric characteristics of the 10 included subjects.

Sex, Woman (%) 7 (70%)

Age (years) 53 ± 5.5
Weight (kg) 113 ± 13

BMI (kg/m2) 39 ± 4.4
Data are expressed as number of cases (%) or mean ± SD.

3.2. PET Analysis

In the CNS, we observed clear 68Ga-NODAGA-exendin-4 uptake in the pituitary area
(Figure 1), which was variable between subjects, with a mean SUVmean of 1.7 ± 0.57 (range:
0.88–2.7) and mean SUVmax of 4.3 ± 3.3 (range: 1.4–9.1). However, no 68Ga-NODAGA-
exendin-4 uptake was visible in other parts of the brain (mean SUVmean: 0.0010 ± 0.0066
(range: 0.0001–0.21) and SUVmax of 0.17 ± 0.095 (range: 0.013–0.32)) (Table 2).



Brain Sci. 2021, 11, 1647 4 of 9Brain Sci. 2021, 11, x FOR PEER REVIEW 4 of 9 
 

 
Figure 1. 68Ga-NODAGA-exendin-4 PET/CT scans of the head acquired 60 min after injection in an obese subject. Note the 
intense uptake in the pituitary. 

Table 2. Uptake values of 68Ga-NODAGA-exendin-4 (n = 10). 

 SUVmean SUVmax 

Pituitary 1.7 ± 0.6 (0.9–2.7) 4.3 ± 2.3 (1.4–9.1) 
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Liver 0.67 ± 0.17 (0.26–0.96) 2.1 ± 0.6 (1.3–3.3) 
SAT 0.20 ± 0.05 (0.14–0.29) 0.65 ± 0.16 (0.38–0.91) 

Data are mean values ± standard deviation (range). SAT: subcutaneous adipose tissue, SUV: stand-
ardized uptake value. 

In peripheral organs, clear uptake of 68Ga-NODAGA-exendin-4 was visible in the 
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tissues highest uptake levels were measured in the liver (SUVmean: 0.67 ± 0.17) and lowest 
in subcutaneous adipose tissue (SUVmean: 0.20 ± 0.054). 
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4 in the brain (parts inside the blood–brain barrier; BBB) of subjects with obesity, although 
there is clear uptake in the pituitary. We also reproduce the accumulation of 68Ga-
NODAGA-exendin-4 PET in the pancreas [31]. 

Figure 1. 68Ga-NODAGA-exendin-4 PET/CT scans of the head acquired 60 min after injection in an obese subject. Note the
intense uptake in the pituitary.

Table 2. Uptake values of 68Ga-NODAGA-exendin-4 (n = 10).

SUVmean SUVmax

Pituitary 1.7 ± 0.6 (0.9–2.7) 4.3 ± 2.3 (1.4–9.1)
Whole brain 0.01 ± 0.01 (0.00–0.02) 0.17 ± 0.10 (0.01–0.32)

Pancreas 5.5 ± 1.8 (2.3–8.1) 10.3 ± 3.0 (5.0–15.5)
Blood pool 1.5 ± 0.2 (1.2–2.0) 3.3 ± 0.6 (2.4–4.4)

Liver 0.67 ± 0.17 (0.26–0.96) 2.1 ± 0.6 (1.3–3.3)
SAT 0.20 ± 0.05 (0.14–0.29) 0.65 ± 0.16 (0.38–0.91)

Data are mean values ± standard deviation (range). SAT: subcutaneous adipose tissue, SUV: standardized
uptake value.

In peripheral organs, clear uptake of 68Ga-NODAGA-exendin-4 was visible in the
pancreas (Figure 2), with an average SUVmean of 5.5 ± 1.8 (range 2.3–8.1) and SUVmax of
10.3 ± 3.0 (range: 5.0–15.5). In the blood pool, average SUVmean was 1.5 ± 0.23 and in
background tissues highest uptake levels were measured in the liver (SUVmean: 0.67 ± 0.17)
and lowest in subcutaneous adipose tissue (SUVmean: 0.20 ± 0.054).
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Figure 2. 68Ga-NODAGA-exendin-4 PET maximum intensity projections of the abdomen of one subject in a coronal, axial,
and sagittal view (left, middle, and right panel, respectively). Uptake in the pancreas (closed arrow), duodenum (open
arrow) and kidneys can be observed.

4. Discussion

In this study, we show that there is no significant uptake of 68Ga-NODAGA-exendin-
4 in the brain (parts inside the blood–brain barrier; BBB) of subjects with obesity, al-
though there is clear uptake in the pituitary. We also reproduce the accumulation of
68Ga-NODAGA-exendin-4 PET in the pancreas [31].
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4.1. 68Ga-NODAGA-Exendin-4 Uptake in Peripheral Organs

We have confirmed the ability of 68Ga-NODAGA-exendin-4 to assess GLP-1 binding
in the pancreas [31]. In line with this finding, other radiotracers derived from exendin
showed the ability to visualize the GLP-1 receptor expression in the pancreas [30,34].

4.2. 68Ga-NODAGA-Exendin-4 Uptake in the Pituitary Area

We can show significant 68Ga-NODAGA-exendin-4 uptake in the pituitary of subjects
with obesity. Since earlier studies showed the ability of 68Ga-NODAGA-exendin-4 PET
to visualize GLP-1 receptors in beta-cells of the pancreas [31], and the pituitary is located
outside the blood–brain barrier (BBB) and expresses GLP-1 receptors extensively in rats
and humans, particularly in the neuro-pituitary [35,36], this was an expected finding. As
GLP-1 receptors play an important role in appetite and stress regulation, and the pituitary
is an essential part of the hypothalamus–pituitary–adrenal gland (HPA)-axis, the GLP-1
receptor expression in the pituitary may play a role in appetite and stress regulation in
humans [37–39]. Importantly, GLP-1 receptor tracers such as 68Ga-NODAGA-exendin-4
offer the unique opportunity to test this postulate directly in humans.

The basal part of the hypothalamus is closely located to the pituitary. GLP-1 receptors
are expressed in the paraventricular nucleus and arcuate nucleus [4,9], which are both
located in the basal hypothalamus. The median eminence is a small brain area forming both
the structural and functional bridge between the hypothalamus and the pituitary [40]. In the
basal part of the hypothalamus and the median eminence, the blood–brain barrier (BBB) is
not as tight as in other regions of the brain but rather “leaky”, due to fenestrated capillaries.
The entry of hormones and other compounds into the brain, through fenestrated capillaries
may be important for feedback regulation of, amongst others, the HPA-axis [41]. In other
words, this special connection between the basal hypothalamus and the (neuro)pituitary
may play a crucial role to integrate changes in hormones relevant for metabolism (like
GLP-1 in blood) and food intake, with feedback systems within the brain (e.g., feeling
of satiety).

In the present study, we were not able to differentiate binding to the pituitary from
binding in the basal hypothalamus. Therefore, we cannot exclude that we did not measure
only uptake in the pituitary, but also in the basal hypothalamus. In other ongoing studies,
by also acquiring magnetic resonance (MR) images for better anatomical referencing, we
aim to evaluate this relevant topic.

4.3. No Significant Uptake of 68Ga-NODAGA-Exendin-4 in the Brain

Apart from uptake in the pituitary, we observed that there is no significant uptake
of 68Ga-NODAGA-exendin-4 in other parts of the brain of subjects with obesity. Al-
though expression of GLP-1 receptors is well documented in cortical and subcortical brain
areas [4,8–10], the lack of uptake may be explained by the low lipophilicity and/or large
molecular weight of the PET tracer. Indeed, other gallium-68-labelled tracers such as
68Ga-dotatate (which binds preferentially to the somatostatin receptor-2) also showed no
uptake in the brain (being much smaller than exendin and containing less charges), while
these somatostatin receptors are expressed throughout the brain in deep layers of cortical
cortex as well as in the cerebellum [42]. If labeling with the radionuclide gallium-68 indeed
hinders brain uptake, development of e.g., fluorine-18 labelled PET tracers derived from
exendin-4 may allow the visualization of GLP-1 receptors in the brain. Interestingly, recent
animal studies using 18F-AlF-NOTA-MAL-Cys39-exendin-4 showed indeed some in-vivo
binding to GLP-1 receptors in the brain of rats [43,44]. However, the specific binding in
brain was very low, which precluded use of this tracer in brain studies in humans. Finally, a
recent study evaluated another fluorine-18 labelled PET tracer derived from exendin-4 (18F-
FB(ePEG12)12-Exendin-4) in humans; this tracer also did not show any brain uptake [45].
So, it is questionable if this approach will be successful in future human PET studies aiming
to visualize GLP-1 receptors in the brain (see also below).
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4.4. Uptake of GLP-1 Receptor Agonists in the Brain

As already mentioned, administration of GLP-1 analogues induces central effects,
which suggests that GLP-1 analogues may pass the BBB. Indeed, several studies suggested
that GLP-1 analogues may pass the BBB [46,47]. Also, in a placebo-controlled clinical
study in PD, in which half of the PD patients were treated for almost 1 year with the
GLP-1 analogue exenatide [27], exenatide was detectable in the cerebrospinal fluid (CSF).
Conversely, a clinical study in type 2 diabetes showed that the transfer from blood to CSF
of the GLP-1 analogue liraglutide was only minimal [48].

Successfully developed radiotracers for brain studies in humans are transported
actively over the BBB, or diffuse rapidly into the brain [49]. For example, the PET tracer
18F-DOPA is taken up fast by the large neutral amino acid transport carrier-mediated
system of the BBB [50]. Alternatively, successful brain PET/SPECT tracers should not be
transported rapidly from the brain back to the blood, e.g., by efflux via the P-glycoprotein
(PgP) expressed in the BBB [51].

However, whether, and what extent, GLP-1 analogues penetrate the BBB is an impor-
tant point of discussion in research on the mechanism of action of this class of drugs [9,23].
For example, the GLP-1 analogue liraglutide (which is marketed both for treatment of
type-2 diabetes and obesity) was injected intraperitoneally (i.p.) in mice, and later on the
levels of this drug were measured in the brain. Interestingly, there were no significant levels
of liraglutide found 5 min post-injection in the brains of mice administered with a 2.5, 25
or 250 nmol/kg dose of the peptide. Also, at higher doses (25–250 mg/kg bodyweight), no
significant levels of liraglutide were found 5 min post i.p., but only at later time-points [46].
This may indicate that the passage of GLP-1 analogues (and possibly related radiotracers)
via the BBB is not rapid, and probable not by active transport. Moreover, to evaluate the
mechanism by which liraglutide is able to reduce body weight, mice were injected subcu-
taneously with liraglutide labeled with a fluorescent probe [52]. Interestingly, liraglutide
labelling was highly abundant within parts of the hypothalamus, including the arcuate
nucleus and paraventricular nucleus, as well as the median eminence, but not in other
brain areas. No liraglutide signal was observed in the nucleus tractus solitarius, which
could indicate that peripheral administration of liraglutide does not directly engage the
GLP-1 receptor in this brain region.

Interestingly, recent evidence indicates that peripheral administrated peptides (e.g.,
GLP-1) may enter the brain via transcytosis across so-called tanycytes (which are classified
as astroglia). These tanycytes are located around the floor of the third ventricle (in the area
of the median eminence and basal hypothalamus), and by transport via these tanycyte
peptides can enter the third ventricle (CSF), but also distant brain structures lining the
ventricles (for a recent review see Garcia-Caceres et al. [33]). Importantly, a recent study
by Gabery and co-workers demonstrated that tanycytes express GLP-1 receptors. They
also showed that the GLP-1 analogue semaglutide, when administrated peripherally, do
not enter the brain by general BBB permeability, but via the tanycytes [9]. Regarding
neuro- PET imaging, if PET tracers derived from exendin-4 may enter the brain also via
transcytosis by tanycytes, this approach may not lead to a successful development of neuro
PET tracers.

4.5. Final Remarks and Limitations

In sum, we only observed uptake in the brain of 68Ga-NODAGA-exendin-4 in the
pituitary area of subjects with obesity and it is becoming more likely that (part) of the
mechanism of actions of GLP-1 receptor agonists and PET tracers on brain functions
might be due to (slow) uptake by tanycytes, located in the median eminence/basal hy-
pothalamus. To shed more light on this topic, it may be relevant to determine whether
68Ga-NODAGA-exendin-4 binds in-vivo in humans only in the pituitary, or also in the
median eminence/basal hypothalamus. Additionally, it still cannot be excluded that the
central effects of GLP-1 analogues are (partly) induced via peripheral mechanisms and/or
by direct uptake via the pituitary/basal hypothalamus.
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If future novel PET tracers derived from exendin-4 do show rapid and intense uptake
in the brain, it is unlikely that this brain uptake is only by the tanycytes. If this happens, it
is more likely that they pass the BBB by an active mechanism or diffuse rapidly through the
BBB. Furthermore, it may be relevant to determine whether tracers derived from exendin-4,
like 68Ga-NODAGA-exendin-4, are a substrate for the efflux transporter PgP.

We only studied 68Ga-NODAGA-exendin-4 in obese subjects. We therefore cannot
exclude that it is possible to visualize GLP-1 receptors in the brain in disorders in which
the BBB function is severely disrupted. Finally, we only studied a small number of subjects.
Therefore, our findings are in need for replication.

5. Conclusions

In conclusion, we have shown that in subjects with obesity there is no significant
uptake of 68Ga-NODAGA-exendin-4 in the parts of the brain located within the BBB.
Therefore, 68Ga-NODAGA-exendin-4 PET cannot be used to analyze GLP-1 receptors in
the brain of obese subjects. However, there is clear uptake of the tracer in the pituitary,
which offers the unique opportunity to evaluate the role of GLP-1 receptor expression in
the pituitary in health and disease.
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