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Abstract: Surgical intervention or the control of drug-refractory epilepsy requires accurate analysis
of invasive inspection intracranial EEG (iEEG) data. A multi-branch deep learning fusion model is
proposed to identify epileptogenic signals from the epileptogenic area of the brain. The classical
approach extracts multi-domain signal wave features to construct a time-series feature sequence and
then abstracts it through the bi-directional long short-term memory attention machine (Bi-LSTM-AM)
classifier. The deep learning approach uses raw time-series signals to build a one-dimensional
convolutional neural network (1D-CNN) to achieve end-to-end deep feature extraction and signal
detection. These two branches are integrated to obtain deep fusion features and results. Resampling
is employed to split the imbalanced epileptogenic and non-epileptogenic samples into balanced
subsets for clinical validation. The model is validated over two publicly available benchmark iEEG
databases to verify its effectiveness on a private, large-scale, clinical stereo EEG database. The model
achieves high sensitivity (97.78%), accuracy (97.60%), and specificity (97.42%) on the Bern–Barcelona
database, surpassing the performance of existing state-of-the-art techniques. It is then demonstrated
on a clinical dataset with an average intra-subject accuracy of 92.53% and cross-subject accuracy of
88.03%. The results suggest that the proposed method is a valuable and extremely robust approach to
help researchers and clinicians develop an automated method to identify the source of iEEG signals.

Keywords: intracranial EEG (iEEG); SEEG; epileptogenic signals identification; multi-branch deep
learning fusion

1. Introduction

Intractable epilepsy is now recognized as a disease with significant morbidity and
mortality, resulting in severe threats to patients’ physical and mental health [1–3]. With
the aim of the precise administration of the disease to achieve a better outcome, invasive
inspection techniques are essential for the articulation of specific epileptogenic and non-
epileptogenic signals [4]. Different intracranial EEG (iEEG) invasive inspection techniques,
such as electrocorticography (ECoG) and stereo-electroencephalography (SEEG), have been
established to locate epileptogenic focus [5]. iEEG signals provide anatomically precise
information about the selective engagement of neuronal populations at the millimeter scale
and the temporal dynamics of their engagement at the millisecond scale, and they play a
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dominant role in the discovery and detection of particular zones in the impacted brain [6].
In clinical applications, ECoG must be recorded after the brain cortex is exposed, and the
recording can last for only minutes during the interictal period. SEEG is considered the
“gold standard” method to evaluate the epileptogenic zones for electrodes implanted in the
deep brain and can record interictal and ictal epileptic discharges for days before deciding
the extent of resection [6–9]. Our team at the China International Neuroscience Institute
(China-INI) of XuanWu Hospital has also confirmed the value of SEEG in the assessment
and guidance of thermocoagulation of epileptogenic foci [10].

However, visually determining abnormal discharges in a patient’s iEEG recording
is a tedious task for clinicians [11,12]. To improve this situation, an automatic computer-
identification method is necessary to provide the right support for clinical experts. Its
advantages can be reflected in the following three aspects. First, computer-aided epilepto-
genic signal identification is efficient, time saving and can assist low- and middle-income
countries and inexperienced doctors to a greater extent. Second, features that cannot be
easily detectable by human visual inspection can be identified by the computer localization
method. Third, the accuracy rate can be kept stable and is not affected by subjective factors
during computer operation.

Computer-aided epileptogenic signal identification is carried out in two stages. In
the first stage, the main purpose is to extract significant difference features to distinguish
the epileptogenic and non-epileptogenic signals—that is, extract highly sensitive digital
features or advanced abstract hidden layer features of abnormal patterns from the raw
iEEG signal. In the second stage, the different features of the previous step are sent to the
classifier for signal classification, which completes the identification of epileptic signals.
However, the end-to-end architecture of deep learning (DL) mostly integrates the first and
second stages to complete the task.

The key content of the first stage of epileptogenic signal identification is to extract
effective features to fully represent the signal [13]. Multiple-domain feature extraction,
such as the time, frequency or combined time–frequency domain extraction [14–16], and
nonstationary feature domain analyses [17–19] have been used to perform the epileptic
seizure detection task [20] and epileptogenic signal identification task [21]. Li et al. [14]
converted the signals into high-resolution time–frequency diagrams for feature extraction,
and then discriminative features were obtained according to 5 sub-bands of clinical interest.
In addition, our team [15] used multifractal analysis methods based on the generalized
Hurst exponent, Hurst exponent, fluctuation index, and mean and standard deviation
to extract important features and obtained satisfactory results. However, two main de-
ficiencies are involved in these methods. First, nonlinear characteristics of EEG cannot
be well represented. Second, when processing iEEG data with a high sampling rate, the
amount of calculation increases, resulting in a decrease in the accuracy of these methods.
Furthermore, the nonstationary feature domain has been proved effective in recent research.
In [17], iEEG signals were decomposed according to FAWT, and the log energy entropy and
fuzzy distribution entropy of 15 sub-bands were computed. Machine learning algorithms
were then used to verify the effectiveness of the selected features. In a follow-up study,
Rahman et al. [18] utilized features obtained from variational mode decomposition and
the discrete wavelet transform (DWT) domain, as well as improved composite multiscale
dispersion entropy, fuzzy entropy and other features. These entropy and nonstationary
feature domains can represent higher time–frequency resolution and better reflect the
nonlinear dynamics of the brain captured in the iEEG signal. Although these methods have
obtained encouraging results, they also suffer from decreases in the efficiency of feature
weight evaluation and show moderate accuracy when machine-learning methods face
large numbers of multi-domains and multi-features.

DL has been proved to be very efficient in many complex biomedical tasks [22–25],
especially in EEG signal aspects. A long short-term memory (LSTM) network works well
with time-series information due to its structural dependency [26,27], and the attention
mechanism (AM) [28,29] has the ability to focus on the abnormal signals of EEG. In ad-
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dition, convolutional neural networks (CNNs) can detect and extract relevant features
automatically [30]. The studies demonstrate that the DL solution can not only further
abstract traditional features but also extract weak features that cannot be found visually on
the original signal. However, it also suffers from complicated model tuning and poor inter-
pretability of the deep structure when facing high-dimensional and high-resolution data.

In the second stage, how to integrate different features to build a useful and accurate
classification model is an important breakthrough to achieve signal identification. In
the traditional method, the manually extracted features are sent to a machine-learning
classifier to perform feature selection to realize classification [15,31]. With the extraction
of multi-dimensional and multi-perspective features and the development of DL, many
studies have sent the obtained full-channel features into the DL model to complete signal
classification while abstracting high-level features [26,27]. Furthermore, DL end-to-end
architecture, complete feature extraction, and signal classification have been implemented
at the same time [30]. The above research provides theoretical and method support for
realizing accurate and robust epileptic signal detection. However, specific problems, such
as the specific identification of iEEG signals, remain to be studied.

To overcome the above shortcomings, a multi-branch DL fusion model is proposed
for epileptic and non-epileptic signal identification. The main contribution of the proposed
multi-branch DL fusion model is that it considers not only the signal wave features but also
deep high-order features. Both branches use the DL model (Bi-LSTM-AM and 1D-CNN) as
the classifier to high-level abstract the epileptogenic signal features based on the time-series
feature sequence and raw time-series signal and then accurately identify two-class signals.
The proposed method is extremely robust while ensuring accuracy.

Another unique contribution is that we have not only achieved state-of-the-art perfor-
mance in the databases of two public evaluation benchmarks but also better application
in a real-world clinical database. Specifically, (a) resampling technology is employed to
split the clinical database to overcome the limitation of extremely unbalanced data; (b) a
useful recognition result is achieved in intra-subject and cross-subject validation; (c) finally,
our study provides baseline methods and results for epileptogenic zone localization. We
believe that this represents a breakthrough in data science and clinical epilepsy that will
be very useful for precise preoperative positioning of pharmacoresistant epilepsy and the
precise administration of the disease for a better seizure outcome.

2. Materials and Methods
2.1. Experimental Databases

Three independent iEEG databases are employed to evaluate the proposed epilepto-
genic signal identification approach, including two publicly available benchmark iEEG
databases and one clinical SEEG database. The first two public databases are used to
build the proposed model and provide public evaluation criteria, and the third clinical
database is used to verify the reliability, accuracy and robustness of the approach in real
clinical application scenarios. Figure 1 shows an example of the three independent iEEG
database signals.
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Figure 1. Three independent iEEG databases. (a) Epileptogenic signals (ES) and non-epileptogenic signals (NES) in public
iEEG Bern–Barcelona database and its time–frequency diagram; (b) ES and NES in part of the small public iEEG Bonn
University database and the time–frequency diagram. (c) The upper left is the patient’s brain image, in which the blue lead
in the brain on the left is the epileptic lead, and the red lead in the brain on the left is the non-epileptic lead. Below are
clinical signals in the SEEG database, and in the upper right is the time–frequency diagram of ES/NES.

2.1.1. Public iEEG Bern–Barcelona Database

These public iEEG data were from the Bern–Barcelona database [21], which included
two categories of iEEG recordings from five epilepsy patients who suffered from drug-
resistant, long-standing temporal lobe epilepsy. This database is widely used in epilepsy
research to solve extremely challenging tasks and to distinguish whether a signal originates
from the brain epileptogenic zone (focal) or brain non-epileptogenic zone (non-focal)—that
is, to determine whether it is an epileptogenic signal. The iEEG signals were recorded for
20 s at a sampling rate of 1024 Hz and then downsampled to 512 Hz. Each data segment
contains 10,240 data points.

In the experiment of our study, the entire database is used to classify 3750 pairs of
epileptogenic (focal) and 3750 pairs of non-epileptogenic (non-focal) iEEG signals to train
and verify the proposed model.

2.1.2. Part of Small Public iEEG Bonn University Database

This small iEEG dataset was obtained from the Bonn University database [20], which
is widely used in seizure detection and consists of five subsets denoted as Z, O, N, F,
and S, each of which contains 100 single-channel EEG segments of 23.6 s duration. All
signals were recorded from the same 128-channel amplifier system with a sampling rate of
173.61 Hz.

Specifically, subsets Z and O are composed of scalp EEG segments acquired from
healthy volunteers who were relaxed and awake with eyes closed and opened, respectively.
Subset S comprises iEEG acquired from the epileptogenic zone during seizure activity.

However, considering that our study focuses on the interictal data of intracranial EEG,
we selected the N and F subsets. The interictal iEEG segments in subset N were recorded
from the nonepileptic area of the brain, and the interictal iEEG segments in subset F were
recorded from the epileptogenic zone of the brain. Thus, discriminating focal iEEG from
non-focal iEEG can be used to identify the epileptogenic signals of the brain.

2.1.3. Private Clinical SEEG Database

The private clinical SEEG data were collected and maintained by the Department of
Neurology Xuanwu Hospital in China.
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For each patient, stereotactic EEG recordings were collected by a Nicolet 256-channel
EEG detection system with a sampling rate of 2048 Hz. In the data collection of our study,
electrodes were implanted in patients before undergoing resection or destructive surgery.
No SEEG record was collected from the patients in the first two days after the implantation
of the electrode. The original EEG recording of the patient was recorded from the third day
after surgery. Thus, we selected the sleep data of the interictal period on the third and last
days after surgery.

Our work selected the interictal period SEEG of the sleeping state of five patients with
a single acquisition time of 2 h. We collected sleep period data based on the patient’s video
recording, the period in which relative deep sleeping and turning over occurred was light.
We cut the time series into contiguous segments of 10 s each, and each segment contained
20,480 data points. The entire dataset contained 64,890 SEEG signals in total. According to
the diagnosis and experience of clinical experts, the signal with the lead label as the origin
point was marked as an epileptogenic signal from the epileptogenic zone of the brain;
otherwise, it was marked as non-epileptogenic signal data from the non-epileptogenic zone
of the brain. The detailed information of the SEEG data for each patient is given in Table 1.

Table 1. Summary of the clinical SEEG data in our study.

Subject ID
Sex

F: Female
M: Male

Age
(Years)

Epilepsy
Duration

(Years)

Surgical
Pathology

Proportion
of ELs to

NELs

Number
of ES and

NES

Pt1 M 21 5 FCD 4:69 2596:2622
Pt2 M 21 7 HS 10:66 10350:10362
Pt3 F 12 7 HH 6:56 8640:8680
Pt4 M 29 21 FCD 4:71 2880:2928
Pt5 F 8 4 FCD 11:23 7920:7912

Total - - - - - 64890
Note: ELs: Epileptogenic leads, NELs: Non-epileptogenic leads, ES: Epileptogenic signals, NES: Non-
epileptogenic signals, FCD: Focal cortical dysplasia, HS: Hippocampal sclerosis, HH: Hamartoma.

2.2. System Overview

The system overview of the proposed epileptogenic signal identification model is
given in Figure 2. First, we obtained raw iEEG signals and performed preprocessing. Then,
we sent them in parallel to the classical approach to obtain the classical feature and the
end-to-end DL approach to obtain the automatic feature. The features from the two parts
were combined to obtain deep fusion features. Finally, a multilayer perceptron (MLP)
classifier was used to identify the result.

In this work, how to achieve a high accuracy rate and robustness in epileptic signal
identification is the main problem. Moreover, how to obtain effective and stable feature
extraction from raw iEEG signals is the most essential aspect. Thus, we not only performed
the feature-based method to fully represent the epilepsy of the signal but also extracted the
deep high-order feature of the signal through the end-to-end method based on DL.
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Figure 2. The framework of the proposed epileptogenic signal identification model. (a) ES (the blue
one) and NES (the red one) were the input of this part; (b) combine the Classical Approach and
Deep Learning Approach to get the Deep Fusion feature; (c) though an MLP Classifier to achieve
ES identification.

2.3. iEEG Data Processing and Balance Treatments
2.3.1. Data Processing for Public iEEG Bern–Barcelona Database

For the first Bern–Barcelona database, the same operation was first applied to the
original two-channel iEEG signals. We used the Butterworth bandpass filter [32] to obtain
the signal from 0.5 Hz to 80 Hz. Then, the signals were decomposed into sub-bands using
DWT, and the wavelet coefficients obtained by the two channels were averaged. Among
them, the frequency bands of the DWT decomposition coefficients A4, D4, D3, D2, and D1
corresponded to 0.5–5 Hz, 5–10 Hz, 10–20 Hz, 20–40 Hz and 40–80 Hz, respectively.

For the second small Bonn University database, for single-channel data, the above
decomposition process was repeated.

2.3.2. Data Balance for Private Clinical Database

Before data processing and feature extraction, a data-balance treatment for the private
clinical database is proposed, based on the downsampling technique.

Suppose there are M leads from the majority class (non-epileptogenic leads) and N
leads from the minority class (epileptogenic leads), where M > N. With the number of
signals from non-epileptogenic leads as the upper limit, the signals from epileptogenic
leads were resampled, that is, a sliding window was used for epileptogenic signals, and
the resampling technique was used to equalize the number of two-class samples.
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Specifically, in order to ensure that single SEEG acquisition and segmentation were
complete with 10 s, we changed the size of the sliding window according to the ratio of M
to N. The sliding window size is calculated as Equation (1):

slidsize = CalIntegralMultiple
(

S
M/N

)
(1)

where CalIntetgralMultiple is used to ensure that the start and endpoints of each signal are
complete one or half-second data, and we set the sliding window size to multiples of 0.5.

Finally, we resampled using the sliding window, and the number of epileptogenic
signals n is calculated as Equation (2) and non-epileptogenic signals m is calculated as
Equation (3):

n =
dur
S

(2)

m = f ix
(

dur− S
slidsize

)
(3)

where dur is the duration of a continuous signal segment, which may be half an hour or
2 h, depending on the data collection situation. S is the time of the segments, which is 10 s.
fix is a function that rounds toward zero.

In summary, we used the above operations to overcome the imbalanced limitations of
the clinical databases and form a balanced dataset, as shown in Table 1, to ensure that the
model can fully learn the information of all channels and leads.

2.3.3. Data Processing for Private Clinical Database

For the clinical SEEG dataset, to reduce the influence of unnecessary noise and artefacts
on the location, our study removed the bad leads and the electrodes located in the functional
area from the clinical data. Then, the signals were segmented into a Butterworth bandpass
filter to obtain a signal from 0.5 Hz to 256 Hz. Other decomposition treatments were the
same as in Section 2.3.1.

2.4. Epileptogenic Signal Identification by Classical Approach

In this approach, we performed feature extraction on the original signal after pro-
cessing, divided it into 4 continuous segments, sent them to Bi-LSTM-AM to learn timing
features, and then obtained the classical feature.

2.4.1. Feature Extraction

iEEG is an intracranial nonstationary time series, and the analysis methods are usually
divided into linear analysis and nonlinear analysis. The selected features of our study in
the time–domain analysis mainly included 12 features. Frequency–domain analysis can
intuitively reflect the distribution and changes of EEG signals in different frequency bands;
thus, we mainly included 6 frequency domain features. In nonlinear feature analysis, we
extracted different entropy features from empirical mode decomposition (EMD) and the
wavelet coefficients of DWT. Detailed characteristics and formulas are shown in Table 2.

In the time–domain analysis, the selected features of our study mainly included the
(a) mean; (b) variance; (c) coefficient of variation, which reflects the absolute value of
the dispersion degree of iEEG data; (d) skewness; (e) kurtosis; (f) interquartile range;
(g) activity of the Hjorth parameter, which reflects the variance of the average power of the
iEEG signal; (h) mobility of the Hjorth parameter, which reflects the ratio of the root mean
square of the signal’s slope to the root mean square of the signal’s amplitude, which is a
parameter to estimate the mean frequency; (i) complexity of the Hjorth parameters, which
reflects the signals’ ratio change and is used to estimate the bandwidth of iEEG signals;
(j) zero crossing rate, which is low in places with high energy and high in places with low
energy; (k) Hurst parameters; and (l) DFA fractal.
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Table 2. Detailed characteristics and formulas of feature.

Category Num Name Formula

Time domain

1 Mean µ = 1
N

N
∑

i=1
xi

2 Variance σ2 = 1
N

N
∑

i=1
(xi − µ)2

3 Coefficient of variation cv = |σ|
µ

4 Skewness s =
1
N ∑N

i=1(xi−µ)3

( 1
N−1 ∑N

i=1(xi−µ)2)
3/2

5 Kurtosis k =
1
N ∑N

i=1(xi−µ)4

( 1
N ∑N

i=1(xi−µ)2)
2 − 3

6 IQR iqr = xsort(N+1)×0.75 − xsort(N+1)×0.25

7 Activity act = σ2

8 Mobility mob =
√

σx′
2

σ2

9 Complexity com =

√
σx′′

2/σx′
2

σx′
2/σ2

10 Zero-crossing ZC = 1
2

N
∑

i=1
|sgn(xi)− sgn(xi−1)|

11 Hurst
H = logN

C·E


max(L1, L2, · · · , LN)
−min(L1, L2, · · · , LN)

|σ|


,

Li = ∑N
i=1(xi − µ)

12 DFA F(n) =

√
1
N

N
∑

i=1

(
N
∑

i=1
(xi − µ)− yn(i)

)2

∝ nα

Frequency domain

13 Sub-band power ratio
(60–140 Hz/0–60 Hz)

SPR =

∫ ω2
ω1

sxx(ω)dω∫ ω3
ω2

sxx(ω)dω

14 Power spectral density sxx(ω) = lim
T→∞

E
[∣∣X̂(ω)

∣∣2]
15 Amplitude spectral

density X̂(ω) = 1√
T

∫ T
0 x(t)exp−iωtdt

16 Spectral centroid SC =
∑N

i=1 fi ·p( fi)

∑N
i=1 p( fi)

17 Spectral kurtosis SK =
∑N

i=1( fi−sc)4 p( fi)
sp4 ∑N

i=1 p( fi)

18 Spectral entropy SE =
−∑N

i=1 Pi · log Pi
log(length(Pi))

, P = xi
∑N

i=1 xi

TF domain 19–20 Fuzzy entropy FE = ln Om(m, r)− ln Om+1(m, r)

Non-linear

21–25 Kraskov entropy

K̂E(X) = −ϕ(k) + ϕ(N) + log(Vd)

+ · · · d
N

N
∑

i=1
log(2δ(xi , k)),

Vd = πd/2/Γ(1 + d/2)/2d, k = 4

26–30 Renyi entropy REα(X) = 1
1−α log

(
N
∑

i=1
pα

i

)
, α = 2

31–35 Permutation entropy PED = − 1
log2 D!

D!
∑

i=0
pi log2 pi , D = 3

36–40 Sample entropy
SaE = − ln

[
(N−k+1)−1 ∑N−k+1

i=1 Ak
i (r)

(N−m+1)−1 ∑N−m+1
i=1 Bm

i (r)

]
,

m = 2, r = 0.2× |σ|, k = m + 1

41–45 Shannon entropy ShE(X) = lim
α→1

REα(X) = −
N
∑

i=1
pi log pi

46–50 Energy E =
N
∑

i=1
xi

2

51–55 SVD Entropy Svd = − 1
log(N)

N
∑

j=1

(
s2

j

∑k s2
k

)
log
(

s2
j

∑k s2
k

)
56–60 PFD PD =

log n
log n+log( n

n+0.4N )

61–65 KFD KD =
log n

log( d
L )+log n

66–70 HFD HD = ln
(

k
∑

m=1
Lm(k)

)
Note: TF: Time and frequency, IQR: Inter quartile range, DFA: Detrended fluctuation analysis, SVD: Singular value decomposition, PFD:
Petrosian fractal dimension, KFD: Katz fractal dimension, HFD: Higuchi fractal dimension.
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The frequency–domain features selected in our study mainly included the (a) sub-
band power ratio; (b) power spectral density, which estimates the power spectrum of iEEG
signals and transforms time–domain iEEG signals whose amplitude changes with time into
the power spectrum of iEEG with frequency; (c) amplitude spectrum density; (d) spectral
centroid; (e) spectral kurtosis; and (f) spectral entropy.

However, there is a limitation of time–domain and frequency–domain methods, and
the precise frequency and time information involved in a specific time cannot be provided
separately. To overcome these limitations, our study used EMD to adaptively analyze the
main components of the signal and used DWT methods for nonlinear analysis, which can
better reflect the distribution of signals.

The advantages of EMD methods do not need to be predetermined or forced to
give a basis function when decomposing signals but depend on the characteristics of the
signal itself and decomposes adaptively. We obtained 5 corresponding intrinsic mode
function (IMF) components through EMD methods, and the fuzzy entropy value of the
IMF component was calculated. Then, the sample quantile method was used to obtain the
quantiles of the fuzzy entropy values of multiple IMF components. We returned a value
with dimensions of 2*1 that contained the first and third quartile values.

Moreover, nonlinear feature extraction was performed based on DWT to obtain five-
level multiresolution decomposition wavelet coefficients through a Butterworth bandpass
filter, and each sub-band signal was characterized by 10 disparate entropies (as shown in
Table 2). The extracted nonlinear features specifically included (a) Kraskov entropy, also
called entropy estimation, which is used to compare the performance of the signal’s Shan-
non entropy; (b) Renyi entropy, which quantifies the diversity, uncertainty or randomness
of iEEG signals; (c) permutation entropy, which is a dynamic mutation detection method,
has an amplification effect on small changes in signals and can measure the complexity of
iEEG signals; (d) sample entropy, which is used to measure the complexity of iEEG signals;
(e) Shannon entropy, which reflects the uncertainty of iEEG signals; (f) energy; (g) SVD
entropy (because of nonoverlapping bumps in the boxplot, it can be concluded that the true
median was indeed different with 95% confidence—SVD entropy measures the richness of
features, in a sense; (h) PFD; (i) KFD; and (j) HFD.

2.4.2. Bi-LSTM-Attention Classifier with the Classical Approach

Figure 3 illustrates a sample iEEG recording and the four segments we divided with a
sliding window, as T0, T1, T2 and T3. To present a personalized solution in epileptogenic
signal identification, we enhanced the representation of Bi-LSTM with an attention ma-
chine (AM). The attention-based enhanced Bi-LSTM can facilitate the identification of the
epileptogenic signals to learn specific features of different patients and tune our model to
achieve accurate recognition of individual iEEG signals.

Figure 3. iEEG segments are illustrated (a 20 s LSTM sequence consists of 4 timesteps with no overlap
between adjacent windows).
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In the following subsection, we describe the architecture of a Bi-LSTM cell and the
AM. Figure 4 depicts the overall structure.

Figure 4. The structure of the Bi-LSTM network.

(a) Bi-LSTM Network

LSTM is a recurrent neural network (RNN) that solves the gradient problem of disap-
pearance and explosion by learning long-term and short-term dependencies. One LSTM
processes the iEEG serials from left to right, and the other one processes them from right

to left. At each time step t, a hidden forward layer with hidden unit function
→
h is com-

puted based on the previous hidden state
→

ht−1 and the input at the current step xt, and

a hidden backward layer with hidden unit function
←
h is computed based on the future

hidden state
←

ht+1 and the input at the current step xt. The forward and backward context

representations, generated by
→
ht and

←
ht, respectively, are concatenated into a long vector.

The combined outputs are the predictions of teacher-given target signals.
Bi-LSTM uses two LSTMs to learn each token of the iEEG serials based on both the

past and the future context of the token (Figure 4).

(b) Attention Machine

An AM can improve the performance of Bi-LSTM by paying attention to the specific
input feature with the most discriminative information. To capture the importance of each
input segment, the AM is defined as Equations (4)–(6):

ut = tanh(Wwet + bw) (4)

ht =
exp
(
uT

t uw
)

∑t exp
(
uT

t uw
) (5)

vt = ∑
t

ht·et (6)

where vt is the output of the attention layer, while Ww, uw and bw denote two trainable
weights and the bias, respectively. Through multiplication of et and ht, it selects and
extracts the temporal and spatial information from et that contributes most significantly to
the decoding tasks.



Brain Sci. 2021, 11, 615 11 of 23

(c) Bi-LSTM-Attention

All 280 features from the 4 timesteps in each segment were fed to the first Bi-LSTM
layer. The final Bi-LSTM layer was followed by an attention layer, which was, in turn,
followed by a fully connected layer with a sigmoid activation function to predict the
probability of each category.

2.5. Epileptogenic Signals Identification by DL Approach

In this approach, we performed end-to-end epileptogenic signal identification on
the original signal after processing. Figure 5 depicts the overall structure of 1D-CNN.
Our study first selected a local signal frame and used this local signal frame to scan the
entire signal.

Figure 5. Schematic of 1D-CNN learning local features.

1D-CNNs, first proposed by [33], involve nature language processing (NLP), which
takes inputs of varying lengths and produces fixed-length vectors as output. Moreover,
a 1D-CNN has many dimensional networks, few parameters, fast training speed, and an
excellent overall effect. However, iEEG signals and NLP share the features of continuity
and nonstationarity.

Thus, our study exploits the ability of a 1D-CNN to automatically detect and extract
relevant features that may be too complex or subtle to be noticed by humans. The architec-
ture we propose has four convolutional layers and two MLP layers. Each convolutional
layer consists of a convolutional layer, a batch normalization layer, an activation layer and
the maximum pooling layer. The specific structure interpretation and learning process of
iEEG local features are shown in Figure 5.

At the convolutional layer of the end-to-end model, convolution, multiple filters
with different window sizes move on the iEEG data serials to perform one-dimensional
convolution. As the filter moves on, many feature data, which capture the local correlation
before and after the signal and minor changes, are generated. However, the data points
of a signal have the most influence on the data points before and after it and have no
relationship with data points farther from this data point. Thus, each neuron must be
locally connected only to the previous layer, which is equivalent to scanning a small area
around each neuron. Sharing the weights of many neurons is equivalent to scanning the
global area, thus forming a feature map, as shown in Figure 6.
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Figure 6. Original iEEG signals and feature maps from 1D-CNNs. (a) Schematic diagram of the original ES; (b) This is the
Conv1-4_1d feature maps from 1D-CNNs, which represent signals learned by the detector in different convolutional layers.
Specifically, since the 1D-CNNs model contains 32 channels, each layer contains 32 feature maps. Among them, the x-axis
of each feature map represents the number of data points in the model learning and downsample process, and the y-axis
represents the value of the data points. The right side of each layer has its corresponding feature map.
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In the pooling layer, a max-overtime pooling operation is applied to capture the most
useful local features from feature maps. Moreover, it can compress the amount of data and
parameters and reduce overfitting. It has no parameters; it just downsamples the results
given to it by the upper layer. Activation functions are added to increase the nonlinear
expression ability of the model. The outputs of multiple filters are concatenated in the
merge layer. After another dropout process, a fully connected SoftMax layer outputs the
probability distribution over labels from multiple classes. At the fully connected layer of
the end-to-end model, the previous local features are reassembled into a complete signal
through the weight matrix. All neurons in the fully connected layer must be connected by
weight at the end of 1D-CNN.

One dimensional convolutional neural networks have fewer parameters and faster
training speed than 2D- or 3D-CNN. There are a few remarkable things to note in Figure 6b.
The first layer acts as a local signal detector. At that stage, the activations retain almost
all the information present in the initial signal, as shown in Figure 6b (conv1_1d). The
features extracted by a layer become increasingly abstract with increasing depth of the layer
and less visually interpretable. Moreover, the sparsity of the activations increases with
increasing depth of the layer: in the first layer, all filters are activated by the input signal,
but in the following layers, increasingly many data points are blank. They start encoding
higher-level concepts, such as high-frequency oscillation or fast activity. Therefore, the
activation of higher layers carries decreasing information about the specific input and
increasing information about the class of the signal: epileptogenic or non-epileptogenic.
Above all, a 1D-CNN effectively acts as an information distillation pipeline, with raw signal
data entering and being repeatedly transformed so that irrelevant information is filtered
out while useful information is magnified and refined.

2.6. Feature Extraction from Classical & DL Approach and Feature Fusion

The core of our proposed method is the multi-branch DL fusion model, as shown in
Figure 7.

Figure 7. Overview of the multi-branch DL fusion model. (a) combine the signal feature from the
classical approach and the automatic deep feature from the DL approach; (b) splice features into a
fusion feature, then fed into an MLP neural network and mapped into two categories, ES and NES.
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We obtain features from the pretrained model, combine the signal feature from the
classical approach and the automatic deep feature from the DL approach, and splice them
end to end into a fusion feature. The specific dimensions of the classical feature are 1 × 128,
and the automatic feature is 1 × 128; therefore, the dimension of the fusion feature is
1 × 256.

A binary cross-entropy loss function was employed for training as defined in Equation (7).

l(y, ŷ) = −[y log(ŷ) + (1− y) log(1− ŷ)] (7)

where ŷ and y are the desired output and the calculated output, respectively, and l(y, ŷ) is
the loss function.

Finally, the deep fusion feature is fed into an MLP neural network and mapped into
two categories, ES and NES.

3. Results
3.1. Evaluation Metrics

The goal of our study is to judge whether iEEG originates from epileptogenic zones
of the brain—that is, to achieve epileptogenic signal identification—which becomes a
binary classification problem. Therefore, accuracy, sensitivity and specificity are essential
indicators for evaluating the epileptogenic signal identification model.

The true positive count (TP) represents the number of epileptogenic signals correctly
identified, the true negative count (TN) represents the number of non-epileptogenic signals
correctly identified, the false positive count (FP) represents the number of signals falsely
identified as epileptic signals, and the false negative count (FN) represents the number of
signals falsely identified as non-epileptic signals.

Accuracy (ACC) evaluates the ratio of signals found and classified correctly as epilep-
togenic signals and non-epileptogenic signals by the model. Sensitivity (SE) and specificity
(SP) evaluate the ratio of correctly found epileptogenic signals and non-epileptogenic
signals, respectively. The specific formula is shown as follows as Equations (8)–(10):

Accuracy(ACC) =
TP + TN

(TP + FP + TN + FN)
(8)

Sensitivity(SE) =
TP

(TP + FN)
(9)

Specificity(SP) =
TN

(TN + FP)
(10)

3.2. Parameter Setting

The optimal values for all these parameters in our study are presented in Table 3.

Table 3. Training parameters.

Parameters Bi-LSTM-Attention Parameters 1D-CNN

LSTM hidden size 64 Conv num layers 4
LSTM num layers 2 (in, out, kernel size, stride, padding) of layer1 (1,16,3,1,1)

LSTM dropout 0.1 (in, . . . , padding) of layer2 (16,32,3,1,1)
hidden linear size 256 (in, . . . , padding) of layer3 (32,32,3,1,1)

linear dropout 0.3 (in, . . . , padding) of layer4 (32,32,2,1,1)
batch size 20 batch size 32

training epochs 100 training epochs 100

To select the optimal input time window size for the epileptogenic signal identifica-
tion model, our study experimented with different input time window sizes to evaluate
the performance. According to the model network architecture, we can also accept 1 s
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input windows, 1, 5, 15, and 20 s, and the segmentation length of 20 s with 20,480 data
points showed better performance because of its high temporal resolution. In this study,
the segment size of public database was set to 20 s, and the private database contained
20,480 data points for feature extraction and signal identification. The performance indices
with different input time windows are shown in Figure 8.

A number of parameters for the deep network were explored and tuned to achieve
the best results for the deep fusion model, including the Bi-LSTM-Attention, 1D-CNN, and
MLP classifiers. These hyperparameters included the LSTM hidden size, LSTM num layers,
LSTM dropout, hidden linear size, linear dropout, batch size, and number of training
epochs, which are applied after the Bi-LSTM-Attention input layer. Notably, the size of
the kernel is an important hyperparameter of the 1D-CNN to tune. An MLP also contains
hidden nonlinear layers. Additionally, some hyperparameters were tuned for the stochastic
Adam optimizer [34].

Figure 8. Changes in the size of the model input window according to the performance indices. The
horizontal axis is the duration of the signal segment, in seconds. The vertical axis is the accuracy of
different models.

3.3. Training and Testing Sets

For two public iEEG databases, we randomly selected 70% of all iEEG signals as
training samples, and the remaining 30% were selected as the tested samples.

For the third private SEEG database, we prepared SEEG data of five cases for intra-
subject and cross-subject training and testing. For intra-subject training and testing, in
each subject, we randomly selected 60% of all samples as the training set of the proposed
model, 10% as the validation set used to select accurate and stable model parameters, and
the remaining 30% as the testing set used to judge the synthesis performance of the model.
For cross-subject training and testing, using the leave-one-out method with a total of five
subjects, four subjects’ data were randomly selected as the training set, and the remaining
one subject’s data were used as the testing set.

3.4. Results Overview

Our study obtained iEEG data not only from two public benchmark iEEG databases
but also from a private clinical SEEG database.

We achieved the epileptogenic signal identification model with high values of accu-
racy (97.60%), sensitivity (97.78%), and specificity (97.42%) in the Bern–Barcelona public
database that contained 7500 signals of five patients, which is the highest performance in
all experimental comparisons. Moreover, to select the optimal input time window size, our
study experimented with different time window sizes to evaluate the performance. The
segmentation length of 20 s showed better performance because of its high time resolution;
even the segmentation length of 5 s can reach a sensitivity higher than 87.35%.
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For the small public Born University database, we conducted experiments on subsets
of its iEEG and achieved accuracy of 92.07%, sensitivity of 91.13%, and specificity of 92.96%.

Furthermore, our study validated the proposed model and achieved automatic epilep-
togenic signal identification on the clinical SEEG dataset that contained 64,890 signals
of five patients. For the intra-subject experiment, we obtained an epileptogenic signal
detection average accuracy of 92.53% (mean ± SE = 92.53% ± 0.0338), sensitivity of 93.18%
(mean ± SE = 93.18% ± 0.0297), and specificity of 91.80% (mean ± SE = 91.80% ± 0.0395).
For the cross-subject experiment, we achieved a performance evaluation index of increased
accuracy (90.30%), sensitivity (89.06%), and specificity (91.58%). Our method was able to
objectively identify the epileptogenic signals in five patients.

3.5. Evaluation Results Over Public iEEG Databases
3.5.1. Results from the Public Bern–Barcelona Database

To illustrate the effectiveness of signal feature extraction and the advantage of the
deep model to learn higher-order features automatically from the original iEEG signals,
our study used a public iEEG database to train and verify the performance of the proposed
deep fusion model. We use the Bern–Barcelona public dataset [21] to evaluate our epileptic
iEEG signal identification model by public benchmarks.

The experiment extracted multiple features across multiple domains selected in the
Methods section and compared them with different machine learning algorithms or single
models, such as the support vector machine (SVM) [35], logistic regression (LR) [36],
extreme randomized tree (ERT) [37], deep neural network (DNN), 1D-CNN and Bi-Stack-
LSTM models [38]. The experimental results are shown in Table 4.

Table 4. Results from the multi-branch DL fusion model with public Bern–Barcelona dataset.

Method Extracted Feature ACC SE SP

SVM 70 various features 90.87% - -
LR 70 various features 92.27% - -

ERT 70 various features 92.67% - -
1D-CNN 70 various features 95.33% 95.06% 95.62%

DNN 70 various features 96.80% 96.88% 96.72%
LSTM 70 various features × 4 segments 94.80% 96.48% 93.18%

Bi-LSTM 70 various features × 4 segments 95.13% 95.84% 94.43%
Bi-LSTM-AM 70 various features × 4 segments 97.20% 97.29% 97.10%

DNN Automatic 58.07% 55.74% 60.61%
Stack LSTM Embedding + Automatic 87.87% 88.13% 87.59%

1D-CNN Automatic 89.87% 90.13% 89.59%

Proposed 70 various features × 4 segments
+ Automatic 97.60% 97.78% 97.42%

3.5.2. Results from Small Public Bonn University Database

Few people use this dataset for iEEG epileptogenic signal identification. Our study
compared several methods reproduced by ourselves, as shown in the Table 5. The evalua-
tion metrics of the deep fusion model are much higher than in our previous research [15].

Table 5. Results from the multi-branch DL fusion model with small public Bonn University database.

Method Extracted Feature ACC SE SP

DNN 70 various features 82.50% 84.21% 80.95%
Bi-LSTM-AM 70 various features × 4 segments 85.00% 89.47% 80.95%

1D-CNN Automatic 90.00% 94.74% 85.71%

Proposed 70 various features × 4 segments +
Automatic 92.07% 91.13% 92.96%
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3.6. Evaluation Results over Private SEEG Database
3.6.1. Intra-Subject Experiments Results

In the clinical SEEG database, we used the multi-branch DL fusion model for epilep-
togenic signal detection. In the experimental results, five cases with intractable epilepsy
were put into the proposed model, and the average intra-subject accuracy was 92.53%
(87.35–97.14%), as shown in Table 6.

Table 6. Results from the multi-branch DL fusion model with clinical SEEG dataset using intra-subject scheme (patients 1–5).

Patients Method Extracted Feature ACC SE SP

Pt1
Bi-LSTM-AM 70 various features × 4 segments 95.31% 96.18% 94.35%

1D-CNN Automatic 95.59% 94.96% 96.31%

Proposed 70 various features × 4 segments +
Automatic 97.14% 96.85% 97.44%

Pt2
Bi-LSTM-AM 70 various features × 4 segments 87.50% 80.95% 94.74%

1D-CNN Automatic 86.75% 92.51% 91.35%

Proposed 70 various features × 4 segments +
Automatic 87.35% 88.47% 85.82%

Pt3
Bi-LSTM-AM 70 various features × 4 segments 93.91% 93.18% 94.64%

1D-CNN Automatic 84.93% 82.49% 87.55%

Proposed 70 various features × 4 segments +
Automatic 91.09% 92.09% 89.96%

Pt4
Bi-LSTM-AM 70 various features × 4 segments 90.93% 91.37% 90.46%

1D-CNN Automatic 89.59% 90.75% 88.34%

Proposed 70 various features × 4 segments +
Automatic 91.96% 92.63% 91.40%

Pt5
Bi-LSTM-AM 70 various features × 4 segments 94.20% 93.33% 95.14%

CNN Automatic 91.38% 91.86% 90.86%

Proposed 70 various features × 4 segments +
Automatic 95.13% 95.84% 94.43%

3.6.2. Cross-Subject Experimental Results

Our study used the leave-one-out method, and five sets of experiments were carried
out. The average accuracy was 88.03% (85.63–90.30%), as shown in Table 7.

Table 7. The results for the multi-branch DL fusion model with the clinical SEEG dataset using the cross-subject scheme
(patients 1–5).

Patients Set Method Extracted Feature ACC SE SP

Pt1-4/Pt5
Bi-LSTM-AM 70 various features × 4segments 83.28% 84.40% 82.18%

1D-CNN Automatic 77.68% 82.52% 72.65%

Proposed 70 various features × 4 segments +
Automatic 87.59% 88.58% 86.62%

Pt2-5/Pt1
Bi-LSTM-AM 70 various features × 4 segments 85.16% 86.32% 84.03%

1D-CNN Automatic 78.42% 82.73% 74.21%

Proposed 70 various features × 4 segments +
Automatic 87.68% 87.16% 88.21%

Pt3-5,1/Pt2
Bi-LSTM-AM 70 various features × 4 segments 88.59% 82.96% 91.92%

1D-CNN Automatic 85.11% 86.30% 83.89%

Proposed 70 various features × 4 segments +
Automatic 90.30% 89.06% 91.58%

Pt4-5,1-2/Pt3
Bi-LSTM-AM 70 various features × 4 segments 86.20% 83.08% 89.41%

1D-CNN Automatic 78.14% 86.87% 69.14%

Proposed 70 various features × 4 segments +
Automatic 88.93% 88.42% 89.41%

Pt5,1-3/Pt4
Bi-LSTM-AM 70 various features × 4 segments 83.82% 86.09% 81.63%

CNN Automatic 80.59% 83.97% 77.16%

Proposed 70 various features × 4 segments +
Automatic 85.63% 87.91% 83.42%
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4. Discussion

The high-precision detection capabilities of the multi-branch DL fusion model of our
study were illustrated not only on a public iEEG dataset but also on a clinical SEEG dataset.

4.1. Comparison with Other Methods

Our multi-branch DL fusion model can detect epileptogenic iEEG signal with high
accuracy because of the exceptional feature extraction that combines DL features with
multiple features across multiple domains. The multi-branch DL fusion model surpassed
the performance of existing state-of-the-art techniques with accuracy of 97.60%, as shown
in Table 8. We have proved that our multi-branch DL fusion model is effective on the
Bern–Barcelona public dataset.

Table 8. Comparison of the Bern–Barcelona public dataset DL fusion model experimental results.

Method/Year Extracted Feature Classifier ACC SE SP

Das and Bhuiyan [39] EMD-DWT,
log energy entropy KNN 89.40% - -

Sriraam and Raghu [40] 26 various features SVM 92.15% 94.56% 89.74%
Rahman et al. [18] VMD-DWT Ensemble stacking 96.1% 94.4% 95.2%

Li et al. [15] Entropy-based
features RBF 93.91% 92.94% 94.88%

The Proposed (2021) 70 various features × 4 segments +
Automatic feature Proposed Model 97.60% 97.78% 97.42%

4.2. Multi-Branch Feature Extraction

The key of epileptogenic iEEG signal detection was to extract effective features to
fully represent the signal. Our multi-branch DL fusion model used two approaches, the
classical approach and the DL approach, which are completely different methods and ideas
for signal processing.

For the classical approach, Bi-LSTM-AM achieved better performance of accuracy
(97.20%), sensitivity (97.29%), and specificity (97.10%) in the Bern–Barcelona dataset be-
cause of not only the extraction of multiple features but also the timing characteristics of
the deep structures. We analyzed the distribution and contribution of the different features
used in this study and calculated the top three most important features ranked, using XG-
Boost [41,42]: sample entropy of D4, SVD entropy of A4, and sample entropy of D2, where
the difference between the means of the two classes (epileptogenic/non-epileptogenic)
can be observed. Experiments showed that the three most important features in the data
distribution can clearly distinguish epileptogenic signals from non-epileptogenic signals,
as shown in Figure 9.

Moreover, we also analyzed features importance by clinical SEEG dataset, and the
three top importance features ranked was HFD of D4, Hurst, and Kraskov entropy of D1.
Furthermore, we analyzed the Bi-LSTM-Attention classifier of the classical approach. Its
feature extraction ability is improved by introducing an AM and segmenting sequences
into time segments. The Bi-LSTM-Attention classifier not only learns its features on the
basis of a full signal but also learns time-dependent features, which can effectively detect
small changes in iEEG.

For the DL approach, a 1D-CNN model is constructed for end-to-end identification of
original signals and obtaining deep high-order features automatically, which obtained an
epileptogenic signals detection accuracy of 89.87%. The activation of higher layers carries
decreasing information about the specific input and increasing information about the class
of the signal, deep higher-level concepts, such as high-frequency oscillation or fast activity,
as shown in Figure 6.

Furthermore, we combined the classical approach and the DL approach as a pretrained
model and obtained a fusion feature.
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In summary, we proposed a multi-branch deep fusion model based on the classical
approach and DL approach in which the combined features include not only basic signal
features and time–frequency domain features in signal processing but also the time depen-
dence of the signal, and further integrate the deep high-level features of the original signal.
Therefore, the detection of epileptic signals benefits from high precision and low false
positives from perfect multi-domain, multi-feature extraction and deep features extraction.
It also provides a solid technical foundation for identifying the epilepsy origin of the signal.

Figure 9. Feature analyses overview in our study using XGBoost, which shows the three most important features in the
public dataset. (a) the top three most important features ranked, sample entropy of D4, SVD entropy of A4, and sample
entropy of D2; (b) The top 5 features’ bar graph.

4.3. Epileptogenic Signal Classification

The signal features selected in our study can effectively represent unstable, nonlinear
iEEG signals. Moreover, the results of selecting the DL model as the classifier are superior
to those of the machine-learning algorithm, indicating that when the feature data volume
is larger, the deep structure can better fit high-dimensional data than traditional machine
learning algorithms.

Our study also compares the training/testing times of the multi-branch DL fusion
model. We noticeably decreased the testing time of the fusion model to 40 ms per signal
as shown in Table 9. The DL approach automatically extracts higher-order features and
realizes the identification of epileptic signals in a much shorter time than the classical
approach. However, the sensitivity and accuracy of the end-to-end identification model
differ from those of the classical approach by approximately seven percentage points.
Although accuracy and test time are indicators that must be weighed, for iEEG-based
epilepsy signal detection tasks, the accuracy rate has a higher priority than the test time.
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Table 9. Comparison of training/testing time of the epileptogenic signal identification method. We
calculate the training and testing times of the single methods and deep fusion model separately,
using three iEEG databases.

Method
Manual Feature (ms) Train (ms) Test (ms)

1 2 3 1 2 3 1 2 3

Bi-LSTM-AM 18874 7549 37723 2 1 5 1 1 2
1D-CNN - - - 47 19 93 40 16 81

Proposed Model 18874 7549 37723 50 20 98 41 17 83

4.4. Significance of Epileptogenic Signal Identification for the Localization of the Epileptic Zone

Only when a pathologically abnormal iEEG signal is detected can an abnormal lead
be traced back and the localization of the epileptic zone be determined. Based on clinical
studies, Liu et al. [43] considered high-frequency oscillations a reliable biomarker for
seizure onset zone identification, and Patrick Chauvel’s team [44,45] used signal patterns,
such as fast activity, low-frequency suppression, and preictal spikes, as fingerprints for
epileptogenic zone positioning [11,13,46].

The experimental design and research ideas for the next step of this paper are to trace
back the epileptogenic signal and use statistical features to locate it. After detection of the
epileptic signal, our study traced it back to the epileptic lead contact. For example, one lead
contact is labeled as the origin point. If 85% of the signals in the verification set where the
contact is located are detected as epileptic signals, then the lead is an epileptic lead contact.
Then, the epileptic lead contact to the MRI image is mapped, and its resection area label is
verified. There is no reasonable logic to truly realize epileptogenic zone localization with
digital signal characteristics. Therefore, there is scope for further research in this aspect.

4.5. Limitations of the Study

Due to the imbalance of positive and negative samples in clinical applications, our
clinical SEEG dataset adopts a resampling method to balance the number of epileptic
signals. The structure of our model does not solve the problem of data imbalance in
practical applications.

In the cross-subject process, we assume that different kinds of epilepsy signals have
the same imaging degree, and there is no specific disease type. However, it is influential
to the clearer signal recognition of the lesion location. It also proves that our method is
extremely robust.

5. Conclusions and Future Works
5.1. Conclusions

A multi-branch DL fusion model is proposed for the identification of epileptogenic
signals from the epileptogenic area of the brain. Not only signal wave features but also
deep high-order features are considered. Both branches use the DL model (Bi-LSTM-
AM and 1D-CNN) as the classifier to high-level abstract the epileptogenic signal features
based on a time-series feature sequence and raw time-series signal, and then two-class
signals are accurately identified. Moreover, resampling is employed to split the imbalanced
epileptogenic and non-epileptogenic samples into balanced subsets for clinical validation.
This paper achieved not only state-of-the-art performance in the databases of two public
evaluation benchmarks but also good application in a real-world clinical database. The
proposed method is extremely robust while ensuring accuracy.

5.2. Future Work

Our work will focus on two aspects. On the one hand, we will focus on models capable
of online epileptogenic signal detection rather than using an offline pretraining model.

On the other hand, localization of the epileptogenic zone is the ultimate goal of our
follow-up research. In follow-up research, we will continue to collect a large amount of



Brain Sci. 2021, 11, 615 21 of 23

data on different types of epilepsy and focus on building more accurate models for the
same type of epilepsy. From the perspective of improving the accuracy of epileptic signal
detection, we will investigate the epileptic foci of specific disease identification. Combined
with the different models that we have constructed, we can analyze the reasons for the
differences in the performance of different diseases—that is, the significant difference
characteristics and biomarkers. Moreover, the connection between signal patterns and
digital features will be explored.
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