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Abstract: The benefits of early detection and classification of epileptic seizures in analysis, monitoring
and diagnosis for the realization and actualization of computer-aided devices and recent internet
of medical things (IoMT) devices can never be overemphasized. The success of these applications
largely depends on the accuracy of the detection and classification techniques employed. Several
methods have been investigated, proposed and developed over the years. This paper investigates
various seizure detection algorithms and classifications in the last decade, including conventional
techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the
steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding.
A performance comparison was carried out on the different algorithms investigated, and their
advantages and disadvantages were explored. From our survey, much attention has recently been
paid to exploring the efficacy of deep learning algorithms in seizure detection and classification,
which are employed in other areas such as image processing and classification. Hybrid deep learning
has also been explored, with CNN-RNN being the most popular.

Keywords: epileptic seizure; EEG; wavelet; statistical parameters; SVM; random forest; deep learning;
disorders of consciousness

1. Introduction

According to the International League Against Epilepsy, epilepsy is a momentary event
of signs and symptoms due to abnormal synchronization and rapid neuronal activities
in the brain [1,2]. It is one of the brain neurological chronic disorders that affect around
50 million people worldwide due to the brain cells’ excessive electrical activities, and it is
characterized by epileptic seizures [3]. These epileptic seizures can result in neurological,
physiological, social and cognitive consequences as a result of loss of consciousness and
can even lead to death if proper monitoring and diagnosis have not been in place [4,5].

The loss of consciousness as a result of epileptic seizures has some common features
with disorders of consciousness (DOCs), as established in the literature such as the work
of [6–8]. In this condition, the eyes of the patient may be open, but even with external
stimuli, their response might be meaningless. Moreover, a simple response/behavior may
be observed even though the presence of sleep–wake cycles cannot be guaranteed due to a
lack of sufficient time to determine its presence. Therefore, some of the types of disorders
of consciousness exhibited during the occurrence of seizures are acute consciousness
disorders (ACDs) that include coma, confusion, drowsiness and stupor, as well as delirium
and chronic disorders of consciousness (CDOCs) that consist of minimally conscious and
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vegetative states (VS) [9]. One major difference between impaired consciousness during
the seizure and these types of DOCs is in their duration, in which seizures only last for
a short time, with the exception of status epilepticus, while other DOCs last for days,
months or years [6,10]. The convergence of some types of DOCs and epileptic seizures
to a common structure such as in cortical and subcortical regions helps researchers to
develop models that improve epileptic seizure patients’ lives and treatment methodologies
by analyzing the behavioral and clinical features of these types of DOCs [11]. The detection,
prediction and classification of epileptic seizures may shed more light on determining the
pathophysiology and physiology of other types of DOCs. Two types of seizures have been
considered from the monitoring aspect: electrographic and behavioral. An electrographic
or electroencephalographic epileptic seizure is an irregular paroxysmal pattern of an
electroencephalogram (EEG). Simultaneously, a behavioral epileptic seizure is the clinical
signs of epilepsy that the patient or an observer can observe or that can be recorded on
video [12].

The observation and diagnosis of epileptic seizures manually by a neurologist is
tedious, time-consuming and easily prone to errors. The development of an automatic
computer-aided system is therefore of paramount importance to help neurologists and
patients identify and detect epileptic seizures by minimizing the long-term EEG recording
to be analyzed by neurologists [13,14]. To develop an automatic CAD system, there are
several steps for epileptic seizure detection from EEG analysis such as signal acquisition,
data preprocessing, feature extraction, channel selection, classification and performance
analysis/decision making. Due to the complex morphology of the EEG signal and visual
similarity between epileptic and normal signals, suitable and meaningful features need to
be extracted for classifiers to properly and correctly recognize and characterize different
epileptic seizures [15–17].

The EEG signals can be used to acquire significant information to describe neurological
conditions and need to be recorded to localize epileptic seizures. One of the most important
scales in clinical EEGs for evaluating defects and cognition is frequency. A recorded EEG
has a frequency somewhere within the 0.01 to 100 Hz range. The frequency content can be
divided into five major bands known as delta, theta, alpha, beta and gamma [18–22]. Details
on the frequencies associated with these bands are provided in Table 1. The abnormal
activities exhibited by epileptic patients are in ictal and interictal conditions. Ictal refers
to the epileptic seizure activity, while interictal is the activity that occurs between two
epileptic seizures and can be regarded as seizure-free activity. Sharp, spikey, complex and
uninterrupted or continuous structural wave forms are usually seen in the ictal signals,
while interictal signals are seen as sharp, spikey and temporary waveforms. Research
studies [16,22] have shown that some characteristic changes in the EEG signals following a
seizure can be detected so that the dynamic mechanisms of the seizures are characterized,
identified and localized. An intracranial recording is also conducted in some patients to
determine the brain region responsible for initiating the seizure and implantable devices
for epilepsy treatment [22–25].

Researchers have explored different types of methods and domains for automatic
seizure detection such as the time domain, frequency domain, time–frequency domain, non-
linear methods and Empirical mode decomposition (EMD). However, studies have shown
significant improvements in performance when two or more conventional methods are
combined [12,26], which describe methods for seizure detection and provide mathematical
descriptions of these methods. The authors of [27] provided a review on the applications of
entropies with their advantages and disadvantages in epilepsy analysis. A brief description
of the epileptic seizure detection and analysis process including preprocessing, feature
extraction, feature ranking/selection and classification was conducted in [28]. Automated
epileptic seizure detection techniques based on multi-domain approaches were reviewed
and highlighted in [29]. In [30], the authors provided a background of pattern recognition in
epileptic seizure detection with a review and analysis of some works conducted in epileptic
detection, emphasizing analysis of the DWT influence in epileptic detection systems. Focal
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and non-focal characterization and localization in seizure detection systems were reviewed
by [31,32]. Various parameters such as fractal dimension, entropy and Hjorth parameters
were used in focal and non-focal EEG signal characterization, and their performances were
compared using the Bern-Barcelona EEG database.

Most of the review articles found in the literature on epilepsy detection systems are
focused on conventional or traditional techniques. However, recently, much attention is
being paid to machine learning and, now, deep learning networks to explore their potential
in the detection and characterization of epileptic seizures. Therefore, this study high-
lights various techniques for feature extraction and selection commonly used in epileptic
seizure recognition systems in conventional methods and deep learning from 2010 to 2020.
It also includes the fundamental components of an EEG seizure detection system and
performance metrics.

This paper reviews the classification techniques commonly used in epileptic seizure
detection. Our review includes works that used EEG and intracranial EEG (iEEG) or both
in their seizure detection models. Reliable and significant feature extraction methods were
investigated. A comparison of the performance of various algorithms for the recognition
of seizures and classification systems were explored and analyzed. This work will bring
researchers up to date on the significant feature extraction techniques, statistical and
machine learning classifiers and recent deep learning algorithms. Another contribution
of this review is to help researchers to identify publicly available databases of recorded
epileptic seizure signals. Finally, based on this current review, suggestions on future
research directions are provided.

Table 1. EEG frequency bands.

Frequency Band Name Frequency Bandwidth (Hz)

Alpha <4
Beta 4–8

Gamma 8–12
Delta 12–30
Theta <30

2. Epileptic Seizure Detection System

This section provides a general overview of an epileptic seizure detection system. A
typical system consists of the following stages, as shown in Figure 1: 1. data acquisition,
2. preprocessing, 3. feature extraction, 4. classification and 5. performance analysis
and evaluation.

Figure 1. Block diagram of an epileptic seizure detection system.

2.1. Data Acquisition and EEG Database

The study of epileptic seizure detection and analysis has been carried out with both
scalp EEG recordings (EEG) and intracranial EEG recordings (iEEG). Scalp EEG recordings
use electrodes placed on the surface of the head at equal distance with the 10–20 system as
the most commonly used configuration [20,33]. The iEEG signals use intracranial electrodes
placed inside the skull when the clinical, structural and functional data are obtained before
implantation to locate the epileptogenicity region in the brain [22].
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Local databases that were used in previous studies were developed based on the infor-
mation and data obtained and analyzed from epilepsy patients before epileptic surgeries.
The small sample sizes, short time durations prior to seizures and small seizure actions
hindered their applicability, limiting the specificity evaluation in the interictal signals.
Therefore, recording of long-term signals from various seizures to properly and efficiently
evaluate the sensitivity and specificity of algorithms is necessary [32].

Recently, various research works on epilepsy have employed some online databases
that are publicly available, while some require permission from the owners such as the An-
drzejak database [34] from the Department of Epileptology, University of Bonn, Germany,
the Freiburg database from the Epilepsy Centre of the University Hospital of Freiburg, Ger-
many [35], the Boston Children’s Hospital-MIT EEG datasets [36] and the Bern-Barcelona
database from the University of Bern, Barcelona, Spain [37]. The largest epileptic seizure
database available is the European Database on Epilepsy, with 2500 recorded seizures in
45,000 h of recording duration. Among the more than 250 subjects, 50 underwent iEEG
at a sampling frequency of 250–2500 Hz over 122 channels [38]. Another recently used
database is the data obtained from the Neuro Vista ambulatory monitoring system, which
supplied continuous iEEG signals for many months [39,40]. Figure 2 shows University of
Bonn data for class S for ictal conditions and class N for interictal conditions.

Figure 2. Example of epileptic seizure signals for ictal and interictal conditions.

2.2. Preprocessing

Biomedical signals are usually contaminated with various types of noise and artifacts
during data acquisition and processing, which greatly influences the quality of feature
extraction techniques. The artifacts’ sources are generally categorized into technical, physi-
ological and environmental sources [41–43]. Therefore, one of the aims of biomedical signal
processing is to search for how to minimize or eliminate artifacts and still retain the most
useful and relevant information in the raw EEG signal.

Artifacts that are caused by technical issues or instruments used during EEG acqui-
sition are related to the equipment’s settings and the EEG type, that is, either an EEG
recorded from the scalp or an intracranial EEG recording [17]. Some of these settings are
gain, high-pass and low-pass filters’ cut-off frequencies, sampling rate and electrode types.
Artifacts due to physiological sources are electromyograms (EMGs), which are muscle
activity, electrooculograms (EOGs) due to eye movement and electrocardiograms (ECG),
which are due to the heart rate activity. In contrast, environmental interference depends
on the environmental conditions and setting of EEG acquisition and recording [44–46].
Artifacts can be divided into two groups: physiological and nonphysiological artifacts, as
summarized in Table 2.

The presence of these strong unwanted components severely reduces the quality of
the signal and diminishes the accuracy of further processing such as feature extraction
and classification. Therefore, the need for denoising and removing these artifacts and
noises can never be overemphasized. Different techniques and algorithms have been
developed to eliminate artifacts and noise to make the process more reliable for further
processing and analysis [45]. These methods include early prevention steps taken during
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the EEG recording, which include preventing muscular and ocular artifacts by limiting eye
blinking, eye movements and movements by other parts of the body. Another method is
the threshold criterion which excludes corrupted trials of EEG signal recordings [47]. The
method of location and elimination of contaminated activity is also a feasible approach
using the electrooculogram (EOG) subtraction technique [48,49]. Independent component
analysis (ICA) is one of the most popular techniques in EEG artifact rejection and denoising
with excellent results. Researchers have extensively studied time–frequency techniques as a
viable approach that includes wavelet transform denoising techniques. The autoregressive
method, proposed in [50], can be used to subtract the artifact signal from the original
EEG signal. Adaptive filtering is also another technique to optimize performance by
adjusting its transfer function by itself. Other techniques include the support vector
machine (SVM) approach, which categorizes the EEG epilepsy signal into different classes
and then eliminates artifacts such as head movement [51].

Table 2. Types of artifacts in EEG signals.

Interior Artifacts Exterior Artifacts

Blinking of the eye (EOG) Power line
Heartbeat (ECG) Machine fault

Muscle movements (EMG) Faulty electrode/poor placement
Skin resistance ventilation

Subject’s movement Digital artefacts (loose wiring, etc.)

2.2.1. Filtering Technique

One of the popular techniques for artifact elimination/reduction is the filtering tech-
nique. In the filtering technique, filters are applied to the raw EEG signals to remove
or reduce artifacts and noise for better EEG interpretation, diagnosis and analysis. The
filtering technique has been used in EEG signals for removing power line noise (50 Hz or
60 Hz), unwanted high-frequency components such as artifacts generated from muscular
activities and low-frequency components such as low-frequency drifts.

Several filtering approaches have been developed by researchers over the years, from
simple classical approaches [52,53] to adaptive approaches [54,55]. The Kalman filter,
Weiner filter and Bayes filters are some of the common filtering approaches [29]. However,
adaptive filtering has the best performance. Adaptive filtering, unlike the simple filtering
technique that uses a fixed frequency range, adaptively adjusts its weights after estimating
the artifact signals using a reference signal, and a clean EEG signal is obtained after
subtracting the estimated artifactual components. It is easy to use, has no calibration
requirements and can be implemented online. These are some of its advantages. However,
the use of reference signals in this technique requires additional sensors, which increase
the cost and complexity.

The structure of adaptive filtering is shown in Figure 3, where d(n) is the desired
signal, x(n) is the reference signal, y(n) is the adaptive filter estimated output and e(n) is
the residual error which is given in Equation (1):

e(n) = d(n)− y(n) (1)

Adaptive filtering uses optimization algorithms to help in adjusting its weights to
obtain the optimum filter coefficients. Recursive least squares (RLS) is one of the best
and common optimization algorithms employed in adaptive filtering [56]. The least mean
squares (LMS) algorithm is another optimization algorithm used in the adaptive filtering
technique [57–59].
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Figure 3. Adaptive filtering method.

2.2.2. Blind Source Separation Techniques

Blind source separation techniques (BSS) are some of the most commonly used tech-
niques for artifact and noise removal from EEG data by excluding neuronal activity signal
sources from artifact source signals [60–63]. One of the major merits of BSS is that the
previous mixing information from different sources is not needed, or in some situations,
a very small amount of information is needed. Let X be multi-channel EEG signals with
linear mixing of sources S; then, mathematically,

X = AS (2)

where A is the mixing matrix. BSS can be used to generate an un-mixing matrix W to
separate the sources:

Ŝ = WX (3)

where Ŝ is the estimation of the sources.
Once all of the neuronal and artifactual sources are known, the latter can be removed

to obtain an artifact-free EEG. There are many BSS algorithms developed to remove artifacts
from EEG signals, including independent component analysis (ICA), principal compo-
nent analysis (PCA), canonical correlation analysis (CCA) and morphological component
analysis (MCA).

In the preprocessing stage, a signal is also normalized to compare the signal with that
of different patients and that recorded by another acquisition system.

3. Feature Extraction Techniques

To develop a robust automated scheme for epileptic seizure detection, categorizing
EEG signals (epileptic seizures) into a pre-seizure, seizure and post-seizure occurrence
must be identified and evaluated. Many features have been explored in the literature to
describe seizure behavior properly. These features describe the EEG static behavior in time
and space as well as dynamic properties. Feature extraction techniques commonly found
in the literature include time domain, frequency domain and time–frequency analyses,
wavelet analysis, energy distribution, entropy analysis and feature tensors [64]. However,
recently, most CAD systems use two or more methods combined as a hybrid technique.

3.1. Time Domain Analysis

Epileptic EEG signals in their raw form are a function of time. Therefore, features that
are calculated and extracted on these signals are called time domain features, although
time domain features are not mostly used alone in EEG epileptic signal analysis. Some
features such as amplitude, synchronization and regularity, which change during epileptic
seizure events, characterize the EEG signal. Some of the works that used these features
include [65–67], in which the relative duration, relative average amplitude and the coeffi-
cient of amplitude were used in epileptic seizure detection techniques. Another method
is to use empirical mode decomposition (EMD); this method is applied to nonstationary
signals in nature [68]. Several works have reported accuracies obtained after applying
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higher-order spectra in their approach, as in [69–71]. This paper selected some feature
extraction techniques in the time domain that are predominantly new in the literature and
explained as follows.

Statistical Parameters

Researchers have used statistical parameters such as skewness, kurtosis and line
length to characterize between non-seizure and seizure conditions because the statistical
distribution of EEG signals for various conditions is different. Therefore, these parameters
are calculated as features to differentiate between normal and a seizure event.

For example, let X be the sequence used for feature extraction such as an epoch of an
EEG signal, donated as in Equation (4) [65]:

X = [x[0], x[1] . . . . . . x[N − 1]] (4)

where N is the length of the sequence.
The most common statistical parameters used in extracting features are as follows:

mean =
1
n

n

∑
1

xi (5)

median =

(
N + 1

2

)th
(6)

S.D. =
√

∑n
1 (Xn −mean)

2
n− 1

(7)

skewness =
N

∑
n=1

(xn −mean)
3

(N − 1)S.D.3
(8)

kurtosis =
N

∑
n=1

(xn −mean)
4

(N − 1)S.D.4
(9)

max = max[xn] (10)

min = min[xn] (11)

The curve length or line length is expressed as

L(x) =
N

∑
i=1
|x[i]− x[x− 1]| (12)

Other statistical variants include average power, energy, root mean squared value
(RMS), cross-correlation, independent component analysis, linear discriminant analysis
and principal component analysis, among others.

3.2. Frequency Domain

To capture the frequency components of epileptic EEG signals during various signal
seizure conditions, signal transformation is conducted to describe the details of the fre-
quency representation of the signal to obtain some useful information about the signal.
The popular Fourier transform calculates all the frequency components in the signal so
that different brain activities can be isolated and described based on their frequency. To
extract features based on the signal power division at each frequency, the power spectral
density (PSD) method is used to calculate and analyze the features. Some of the spectral
features calculated using the PSD technique include peak frequencies or dominant fre-
quency, average band frequency, spectral edge frequency, intensity weighted bandwidth
and the bandwidth of the dominant frequency [72].
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One of the methods for obtaining the PSD values is using a Welch frequency estimation
technique. The EEG data are segmented into overlapping segments, and each segment is
windowed, averaged and estimated from its periodogram.

If x(n), wherein n = 1,2, . . . , N, is the data sample derived from the available signal
data, the estimated periodogram is given as [32]

P̂PER( f ) =
1
N

∣∣∣∑N
n=1 x(n)e−iω f n

∣∣∣2 (13)

where P̂PER( f ) is the periodogram power estimation. If the data segments are expressed as
xl (n), l = 1,2, . . . , S, the Welch spectrum is given as

P̂w( f ) =
1
S ∑S

l=1 P̂l( f ) (14)

P̂l( f ) =
1
M

1
P

∣∣∣∑M
n=1 v(n)xl(n)e−iω f n

∣∣∣2 (15)

where M is the length of each EEG segment, while P̂l( f ) is the periodogram estimation of
the first segment, v(n) refers to a data window, P̂w( f ) denotes Welch PSD values, S refers to
segment number and P is the average of v(n), which is expressed as

P =
1
M ∑M

n=1|v(n)|
2 (16)

This approach is known as the non-parametric method, and its limitation is spec-
tral leakage due to its windows. The parametric method is proposed to overcome non-
parametric limitations. The signal is taken as a random stationary process, with the noise
as input when the signal is modeled as filter output. Filter parameters are later determined
after that. One of the parametric methods is the autoregressive model. This technique
uses a linear combination of the signal’s earlier activities with uncorrelated noise [26,73,74],
given as

ei = ∑P
j=0 Ajxi−j (17)

where Xi is the input signal, Aj is the model coefficient matrix, p is the model order and ei
refers to a multivariate zero-mean uncorrelated vector.

∑p
j=0 AjR(j− k) = −R(−k), k = 1, . . . , m (18)

To determine the Aj matrix, the linear equation m x p: was solved, where m is the
number of channels, p is the AR model’s calculated order and R(k) refers to the covariance
matrix biased values.

In [75], the authors applied a step-wise least square estimation algorithm (SLSA) on
seizure and normal EEG signals to estimate the autoregressive model (AR) orders. In
contrast, the Burg method was applied for the estimation of PSD values. EEG epileptic
seizures were classified with the SVM method based on an optimal AR model order and
firefly optimization (FA) [76].

3.3. Time–Frequency Domain

The shortcoming of time domain analysis is that, while the exact location of events can
be located, the events’ frequency components cannot be determined. While the frequency
domain provides information on frequencies involved in the signal, it cannot provide infor-
mation about when they occur. The time–frequency domain was developed to overcome
the limitations of the time domain and frequency domain. Several techniques for signal
transformation and decomposition to provide information in both time and frequency have
been developed in the literature [12]. Short-time Fourier transform (STFT), Weiner–Ville
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distribution (WVD), spectrography and wavelet transform analysis are commonly used
techniques to calculate and extract epileptic EEG features.

3.4. Wavelet Analysis

Wavelet transform (WT) is a popular biomedical signal processing approach due
to its oscillatory nature, finite length and suitability in dealing with nonstationary and
transient biomedical signals [77,78]. In EEG epileptic seizure signal analysis, WT is used to
decompose the signals into various components by using scaling and shifting functions
over the whole signals to obtain a signal component in time and frequency domains
simultaneously [79]. Mother wavelet has to be chosen as a function that can be used to
interpret the original signal into sub-bands. Generally, wavelet functions can be defined in
Equation (19) as

Ψs,τ =
1√

s
Ψ
(

t− τ

s

)
(19)

where s is the scale parameter and τ is the shift parameter.
From Equation (19), wavelet transform is given as

γ(s, τ) =
∫

f (t)Ψ∗s,τ(t)dt (20)

Meanwhile, Equation (21) defines inverse wavelet transform as

f (t) =
x

γ(s, τ)Ψs,τ(t)dτds (21)

In discrete wavelet transform (DWT), a low-pass filter g[n] and a high-pass filter h[n],
which correspond to scaling and shifting functions, respectively, were designed [80] as
quadrature mirror filters successively. These filters produced approximation coefficients
and detail coefficients, as shown in Figure 4. The decomposition level should be chosen so
that the filtering and decimation processes continue up to that level [81,82].

Let an EEG signal be x(n), decomposed into multiple frequency bands of different
scales (j), and assume the length of the signal N satisfies Equation (22):

N = 2j (22)

The decimation process is performed at each level by downsampling the frequency
by half to obtain a good frequency resolution. The efficacy of wavelet transforms in EEG
epilepsy detection analysis has been explored by many research works. Figure 5 shows an
example of an epileptic seizure signal from the Bonn University dataset decomposed up
to level 10. The detail coefficients, which contain most of the noisy components, are set
to zero as most of the signal information lies in approximate coefficients (low frequency).
This process is also known as thresholding. However, the authors of [72–75] addressed
the limitation associated with thresholding (i.e., deciding thresholding values for detail
coefficients to be chosen).

Most of the works reported in the literature that used wavelet analysis combined this
approach with another technique.

Other techniques employed and used in time domain analysis are statistical param-eters,
curve length or line length, energy, power and RMS. According to Logesparan et al. [83], line
length is one of the best features for characterizing the epileptic EEG region.
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Figure 4. Discrete wavelet decomposition.

Figure 5. Example of epileptic seizure signal decomposed into various levels.

3.5. Non-Linear Analysis

The non-linearity of EEG epileptic signals can be well detected by the frequency
domain. The non-linearity and non-stationarity of EEG signals render it to be considered
chaotic. Therefore, the changes in EEG signals are difficult to be detected by visual in-
spection [84]. Common techniques to detect minute data changes due to EEG signals’
non-linear and dynamic behavior are entropies and Lyapunov techniques.

Entropy Analysis

Entropy may generally be defined as the measure of uncertainty and fluctuation of a
system. The values of entropy represent the degree of uncertainty and how chaotic a system
is. Larger values of entropy indicate a more chaotic and uncertain system. Various entropy
estimators have been applied to detect and analyze EEG epileptic signals to distinguish
and inspect seizure occurrence and normal signals. The most common entropy estimators
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are Shannon entropy, approximate entropy, sample entropy, Renyi’s entropy, fuzzy entropy
and permutation entropy [85–88].

4. Classification Techniques

The quality of classification algorithms is largely dependent on the feature extracted
and fed to the classifier. The features are extracted with the assumption that they can be
characterized between normal and different seizure categories. Classifiers are decision-
making systems in which the class data boundaries are defined and labeled based on their
features. The classification method can be simple such as thresholding techniques, or
complex such as machine learning algorithms.

In the classification stage. There are generally two steps to be carried out, that is,
training and testing phases. The extracted features are divided into those phases, and after
training the classifier with training data, the new data can be classified with the trained
network. Classifiers in epileptic seizure detection systems can be developed using statistical
analysis such as clustering, machine learning or, recently, deep neural networks [89].

4.1. Machine Learning Techniques

Machine learning algorithms are the most widely used classifiers in automated
epilepsy detection systems. The conventional handcrafted feature extraction methods
are used to extract features and statistically analyze, rank and select data that are used
as input to machine learning algorithm classifiers. Several classification techniques have
been proposed in the literature, such as k-nearest neighbor (k-NN), logistic regression,
random forest, artificial neural networks (ANNs), fuzzy logic and SVMs with various
kernel functions. A list of studies using machine learning algorithms with different feature
extraction techniques is shown in Table 3.

Table 3. Summary of reviewed works that used conventional feature extraction techniques and machine learning classifiers.

Author Year Features Classifier Performance (%)

[90] O. Faust et al. 2010 PSD RBF SVM Acc = 98.33

[91] Subasi et al. 2010 PCA, LDA, LDA SVM Acc = 98.75

[92] Guo et al. 2010 DWT ANN Acc = 99.60

[93] Oweis 2011 EMD + MEMD Euclidean Clustering Acc = 94.00

[94] Orhan et al. 2011 DWT K-Means Clustering Acc = 96.67

[95] Yuan et al. 2011 Entropy/Hurst exponent ANN/PD Acc = 96.50

[96] Marcus and Dragan 2012 Bilinear TFD SVM/ Acc = 99.30

[97] Arslan et al. 2013 SVD SVM Acc = 99.00

[98] Gajic et al. 2014 Wavelet Quadratic Classifier Acc = 98.50

[99] Nabeel 2014 Statistical, Non-linear Linear Classifier Acc = 99.85

[100] Yatindra et al. 2014 Wavelet entropy SVM Acc = 90.00

[101] Jaiswal et al. 2015 EMD, Wavelet, Morphological filters Fuzzy Clustering PI = 98.03, QV = 23.82

[102] Rajaguru et al. 2015 Morphological filters ANN Acc = 98.33

[103] Bhattacharyya et al. 2015 Focal and non-focal, EWT SVD, EM, MEM Acc = 90.00

[104] Li et al. 2016 DD-DWT LS-SVM Acc = 99.36

[105] Li et al. 2016 Entropy GA-SVM AUC = 0.97

[106] Peker et al. 2016 DTCWT CVNN Acc = 100

[107] Riaz et al. 2016 EMD SVM Acc = 96.20

[108] Ghayab et al. 2016 SRS and SFS LS-SVM Acc = 99.90

[109] Upadhyay et al. 2016 DWT LS-SVM Acc = 100

[110] Kabir et al. 2016 Optimum allocation technique LMT Acc = 95.33
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Table 3. Cont.

Author Year Features Classifier Performance (%)

[111] Pippa et al. 2016 Time domain and frequency
domain features Bayesian Net Acc = 95.00

[112] Jaiswal and Banka 2016 SpPCA and SubXPCA SVM Acc = 94.60

[113] Sharma and Pachori 2017 TQWT LS-SVM + FD Acc = 100

[114] Patidar et al. 2017 TQWT and Kraskov entropy LS-SVM Acc = 97.75

[115] Diykh et al. 2017 Weighted complex network
combined with time domain features LS-SVM Acc = 98.00

[116] Li et al. 2017 MODWT and LND RFC Acc = 100

[117] Tiwari et al. 2017 Pyramid scheme for keypoint
localization and LBP SVM Acc = 99.89

[118] Mursalin et al. 2017 ICFS RFC Acc = 100

[119] Shaikh et al. 2017 EMD ANN Acc = 96.10

[120] Kocadagli
and Langari 2017 DWT and fuzzy relations ANN Acc = 99.90

[121] Torse et al. 2017 EMD CSM-SVM Acc = 96.40

[122] Sharma et al. 2018 MMSFL-OWFB-based KE SVM Acc = 100

[123] Tzimourta et al. 2018 Wavelet transform-based features Random Forest
Classifier Acc = 95.00

[124] Sriraam et al. 2018 Teager energy feature
Supervised

Backpropagation
Neural Network

Acc = 96.66

[125] Sudalaimani et al. 2018 Sub-frequency band features GRNN Acc = 91.60

[126] Raghu and Sriram 2018 NCA SVM Acc = 98.80

[127] Li et al. 2018 GMM and GLCM features,
RFE-SVM SVM Acc = 100

[128] Cooman et al. 2018 HRI features SVM + Adaptive
Heuristic classifier EPsen = 83.30

[129] Li et al. 2018 WPT and KDE LS-SVM Acc = 99.60

[130] Cruz et al. 2018 ACC and EMG
SVM on

CloudComputing
Platform

Acc = 83.30

[131] Zhang et al. 2018 WPD, fDistIn KNN Acc = 98.33

[132] Feng et al. 2018 WPD SVM Acc = 98.67

[133] Tanveer et al. 2018 FAWT and entropy-based features RELS-TSVM Acc = 100

[134] Choudhury et al. 2018 XHST KNN Acc = 100

[135] Wani et al. 2018 DWT ANN Acc = 95.00

[136] Naser et al. 2019 DWT and approximation and
abe entropies SVM Acc = 98.75

[137] Lamhiri
and Shmuel 2019 Hurst exponent k-ANN Acc = 100

[138] Raghu et al. 2019 Sigmoid entropy SVM Acc = 100

[139] Wang et al. 2019 Symlet wavelet processing,
and grid search optimizer

Gradient Boosting
Machine Acc = 96.10

[140] Bose et al. 2019 Multifractal detrended
fluctuation analysis SVM Acc = 100
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Table 3. Cont.

Author Year Features Classifier Performance (%)

[141] Dalal et al. 2019 FAWT and FD RELS-TSVM Acc = 90.20

[142] Osman
and Alzahrani 2019 SOM RBFNN Acc = 97.47

[143] Fasil O.K.; Rajesh R 2019 Time domain Exponential Energy Acc = 99.50

[144] Saminu et al. 2019 DWT, Entropies, Energy SVM, FFANN Acc = 99.00

[145] Mahjoub et al. 2020 TQWT, IMFs, MEMD SVM Acc = 98.78

[146] Raluca et al. 2020 DWT ANN Acc = 91.10

[147] Ozlem et al. 2020 Ensemble EMD KNN Acc = 97.00

[148] Khaled 2020 NA Random Forest Acc = 97.08

Table 3 compares the performance of various EEG detection algorithms in past works
in terms of the feature extraction technique, the classifier employed and the accuracy
obtained. Faust et al. [90] achieved an accuracy of 98.33% using a single-feature, PSD and
radial basis function SVM model. An accuracy of 100% was recorded with the DWT feature
by Upadhyay et al. [109] with an LS-SVM model. A new feature, Teager energy, was used
by Sriraam et al. [124] to achieve 96.66% accuracy with supervised backpropagation. Some
studies have also employed multiple features with an ML technique such as the work
of Saminu et al. [144]. This study used a feedforward neural network (FFNN) coupled
with an SVM to detect and classify ictal and interictal signals. It was computationally
less complex with a high accuracy of 99.6%. Mahjoub et al. [145] conducted feature
extraction of epileptic EEGs with tunable-Q wavelet transform (TQWT) and intrinsic mode
functions (IMFs) of multivariate empirical mode decomposition (MEMD) and directly
from the EEG raw data. This approach was a mix of linear and non-linear parameters
and multiple features as its edge; an accuracy of 98.7% was recorded with SVM. From
Table 3, it can be seen that the genetic algorithm, Bayesian net and fuzzy clustering are
not popular classifiers in EEG signal processing [101,105,111]. RFC, ANN and KNN are
quite promising classifiers with great accuracy [116,146,147]. However, SVM is the most
commonly applied classifier [116–130,149–152].

Overview of Support Vector Machine

SVM is a machine learning classifier highly suitable for binary classification with
feature vectors of a high dimension. It is very suitable and popularly used in biomedical
signal processing and applications due to its capability to deal with many predictors and
high accuracy. The distance of the optimal hyperplane obtained by SVM from the feature
space of a high dimension and that of each class closest to the data sample is maximized
by SVM [153]. It depends on its regularization parameter, which controls the level of
overlap between the class and kernel functions, which is used to map training data to a
feature space of a higher dimension from an input space [154]. Figure 6 depicts an example
of a 2D separable classification problem by denoting the maximum margin and optimal
hyperplane. The support vectors are those data points on the margin line [155].

One of the common kernel functions used in SVM is the linear kernel function with
the following equation:

K(X, Y) = XTY (23)

Another type of kernel function is a polynomial with a degree d as follows:

k
(
Xi, Xj

)
=
(
Xi, Xj

)d (24)

where d(d ≥ 1) is the number of polynomials.
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If the number of polynomials is d = 2 or d = 3, then the function is called a quadratic
kernel function.

Figure 6. An example of a separable problem in a 2D space.

4.2. Deep Learning Techniques

Deep learning algorithms were employed in automated epilepsy detection systems
to cater for the limitations associated with machine learning techniques. DL does not
require handcrafted features to be extracted manually; due to its multilayer architecture,
it can deal with large datasets, execute imbalanced datasets and provide a result without
biasing towards a majority class [156,157]. Some of the DL architectures include long
short-term memory (LSTM) networks, convolutional neural networks (CNNs) and gated
recurrent units (GRUs). A variety of convolutional models have been proposed and applied
by different researchers to investigate their capability in automated epilepsy detection
systems [158–160].

The most common approach is a convolutional neural network with a variety of
architectures such as temporal CNNs (TCNNs), temporal graph convolutional networks
(TGCNs) and CNN-recurrent neural networks (RNNs) [161]. A CNN’s basic structure
consists of convolutional layers, max pooling layers, fully connected layers and softmax
layers [162,163].

Uniquely, the CNN architecture conducts feature extraction automatically by itself
in the process of classifying the EEG signal. The convolutional layer conducts the filter-
ing/feature extraction, while the max pooling layer carries forward the significant feature
decided/chosen by the convolutional layer. The fully connected layer simply compiles the
extracted data for the softmax layer that conducts the binary classification, i.e., converting
the data into probabilities between 0 and 1.

Although deep learning algorithms outperform their conventional counterparts, large
datasets’ requirements for their operation become their major limitation. A list of works in
automated epilepsy detection and analysis that used deep learning methods is summarized
in Table 4.
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Table 4. Summary of reviewed works that used deep learning techniques.

Authors Year Features Performance (%)

[163] Qi et al. 2014 MCC-based R-SAE model EPsen = 100

[164] Thodoroff et al. 2016 CNN + RNN EPsen = 85.00

[165] Johansen et al. 2016 CNN AUC = 94.70

[166] Antoniades et al. 2016 CNN EPacc = 87.51

[167] Lin et al. 2016 SSAE EPacc = 96.00

[168] Achilles et al. 2016 CNN AUC = 78.33

[169] Wei et al. 2016 Multichannel CNN EPacc = 92.40

[170] Yuan et al. 2017 STFT-Mssda EPacc = 93.82

[171] Gogna et al. 2017 Semi-supervised stacked autoencoder EPacc = 96.90

[172] Ullah et al. 2018 P-1D-CNN EPacc = 99.90

[173] Acharya et al. 2018 CNN EPacc = 88.67

[174] Tjepkema-Cloostermans et al. 2018 CNN (1D and 2D) and/or LSTMs EPspe = 99.90

[175] Yuvaraj et al. 2018 CNN EPsen = 86.29

[176] Maria Hugle et al. 2018 CNN EPsen = 96.00

[177] Thomas et al. 2018 CNN EPacc = 83.86

[178] Hussein et al. 2019 LSTM + FC EPspe = 100

[179] Emami et al. 2019 CNN DR = 100

[180] Jang and Cho 2019 Dual deep neural network EPsen = 100

[181] Haotian Liu 2019 CNN, LSTM, GRU Acc = 0.96

[182] Rohan Akut 2019 WT-CNN Acc = 99.40

[183] Thara et al. 2019 DNN Acc = 97.21

[184] Turk et al. 2019 CNN Acc = 93.6

[185] Akyol 2020 SEA Acc = 97.17

[186] Rahib et al. 2020 Deep CNN Acc = 98.67

[187] Zhou and Li 2020 Improved RBF NA

[188] Ilakiyaselva et al. 2020 CNN Acc = 98.50

[189] Gao et al. 2020 Deep CNN Acc = 92.60

[190] Fabio et al. 2020 CNN Acc = 98.82

[191] Kyung-Ok et al. 2020 CNN, FCNN, RNN AUC = 0.993

[192] Wei Zhao et al. 2020 1D DNN Acc = 99.52

Table 4 compares the performance of various EEG detection and classification algo-
rithms previously employed by researchers using deep learning schemes. Gao et al. [189]
recently implemented a deep convoluted neural network (DCNN) for epileptic EEG sig-
nal classification called (EESC). They used PSD energy diagrams for feature extraction
with accuracy of over 90% on the CHB-MIT EEG dataset. Jang and Cho [180] proposed
a dual deep neural network using spectral analysis features for automatic detection of
seizures from EEG signals. It has a low computational cost and a sensitivity of 100%.
In focal epileptic seizure detection, a CNN (1D and 2D) and/or LSTMs were adopted
by Tjepkema-Cloostermans et al. [174] with an AUC of 0.94 and specificity of 99.9%. A
feature learning scheme using unsupervised deep convoluted neural networks proposed
by Yuvaraj et al. [175] achieved a sensitivity of 86.29% and a latency rate of 2.1 s. In another
study, Nogay et al. [159] implemented a pretrained 2D AlexNet CNN coupled with transfer
leaning to detect epileptic seizures from EEG data. It also uses spectrogram short-term im-
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ages and achieved 100% accuracy. Other studies that used spectrograms include [153,158]
and [176]. A 3D kernel of Wei et al. [169] combined 2D images of an individual-channel
EEG time series to obtain a 3D image. This was used to predict ictal, pre-ictal and interictal
periods with an accuracy > 90%, and sensitivity of 88.9%. Olokodana et al. [160] proposed
a DNN with distributed kriging-bootstrapping for seizure classification. This approach
achieved relatively high accuracy at 91% in less time than basic DNN. Yuan et al. [170]
developed stacked sparse denoising autoencoders (SSDA) for feature extraction from an
EEG spectrogram synthesized from short-time Fourier transform. A study by [184] imple-
mented a 2D scalogram derived from continuous wavelet transform for feature extraction.
A CNN was used to classify the features over five classes of EEG records, and an accuracy
of >90% was obtained across the board.

5. Discussion

Selecting the most relevant and significant features is an important step in developing
reliable and precise models. Therefore, understanding signals’ statistical properties is cru-
cial as each implanted electrode’s statistical measures and channel are different. Analyzing
these properties, such as skewness, energy and entropy, will help researchers avoid using
irrelevant features that may increase the dataset and increase the computational complex-
ity of the machine learning classifiers. Most of the researchers adopted testing different
machine learning classifiers and evaluated their performance compared to classifiers. The
best classifier is considered for brain datasets to solve seizure detection problems.

Several classifiers have been tested and evaluated for EEG epileptic seizure detection
to discriminate between seizure and non-seizure states. The heterogeneity of features
supplied to classifiers, differences in processing techniques and patient data makes it
difficult to compare classifiers. ANN and SVM classifiers are the most common techniques,
with the latter being easier and faster than the former.

Despite researchers’ contribution and effort to develop and improve seizure prediction
and characterization algorithms, the realization of clinical devices by converting these
existing techniques has been a major bottleneck. Based on the algorithms’ studies, it is
evident that the specific build-up to a seizure state is responsible for the seizure and not a
random process. From this review, most researchers employed feature extraction schemes
such as wavelet transform, statistical methods and chaos techniques such as entropy
analysis. However, in deep learning EEG seizure application, periodograms are the most
promising feature extraction technique. From this survey, it appears that multi-feature
extraction schemes did not perform better than single-feature classifiers. Hence, only
significant features should be included to avoid increasing complexity with little or no
improvement in performance. Wavelet transform combined with other techniques such
as entropy and statistical parameters has also been employed [64]. Figure 7 shows the
percentage of conventional methods used by researchers based on our reviewed articles’
analysis, while Figure 8 depicts the comparison of conventional techniques and deep
learning models in percentages employed by researchers from 2014 to 2020.

Standardization of epileptic seizure techniques is also an issue of concern because ho-
mogenous comparison performance measures must be grouped to provide a homogeneous
and standard comparison. Another issue is related to recording the EEG signals’ duration
in either scalp EEG or intracranial EEG.

Researchers have devoted much attention to investigating and developing hybrid
models over the years, as indicated in Figure 7. The figure shows the percentage of
conventional techniques reviewed in this paper. Hybrid techniques are the most employed
approach, with 37% of the cases. SVM is the most used technique in the case of stand-alone
techniques, which covered 26% of the reviewed articles. Its simplicity, suitability for binary
classification, capability to deal with many predictors and high accuracy are some of the
advantages of SVM. ANN covered 12% of the reviewed articles which used the number of
neurons and layers instead of kernel functions as in SVM. Other techniques investigated
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are clustering with 5% of the reported articles and the random forest technique with 3% of
the investigated techniques.

Figure 8 shows the number in percentage of published articles from 2014 to 2020 for
conventional techniques and deep learning approaches. The trends indicate the surge in
researchers’ attention towards deep learning approaches from 2014 upwards, with 22%
of reviewed articles in 2014, increasing to 68% in 2019. In comparison with conventional
schemes, the chart shows a continuous decrease from 78% of published articles in 2014 to
24% in 2020. This shows how researchers have focused their attention on exploring the
efficacy of deep learning approaches.

Figure 7. The percentage of conventional techniques involved in epilepsy studies.

Figure 8. Comparison of conventional techniques and deep learning models used by researchers
from 2014 to 2020.

5.1. Challenges

Despite the progress achieved in the detection and classification of epileptic seizures
recently, there are still some challenges holding researchers back that include, among others,
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the following: (1) Many research studies have used various available datasets; however,
combining these datasets is quite difficult as each has a different sampling frequency, a
different number of electrodes and different parameters, which hinders researchers in
combining different datasets to obtain a large dataset for training the model. (2) Real-time
signals need to be used for detection and classification to realize real-world applications
in a clinical setup. Still, most of the datasets available contain a chosen segment of EEG
signals that are not suitable for real-world clinical implementation. (3) The lack of standard-
ization among the developed algorithms is another challenge that makes a homogenous
performance comparison difficult. (4) In recent deep learning models, the requirement
of higher computational resources that are not available to some researchers hinders the
realization of reliable, practical and precise non-invasive models that meet the demand of
mobile health and IoMT.

5.2. Future Research Direction

This paper provides a comprehensive investigation of epileptic seizure identification
and detection techniques. Over the years, tremendous progress has been witnessed,
ranging from traditional techniques to the recent deep learning application. However,
some challenges have been identified and raised that bring some interesting research
questions that still need to be addressed to implement and improve these developed models
successfully. The following are some of the suggestions for uplifting future research.

1. With a large volume and high dimension of epileptic seizure datasets, dimensional
reduction techniques that reduce the dataset dimension and still retain the significant
signal information need to be further investigated.

2. Suitable features that reduce the classifier’s computational complexity and time
should be considered.

3. For models that use invasive recordings, the developed methods must identify seizure
onset and measure the seizure strength.

4. Researchers should choose a classifier that will not miss or skip all the relevant EEG
channels and electrodes.

5. Deep learning structures must be carefully selected based on the problem’s peculiari-
ties and involve relevant datasets for real-time, online and offline detection.

6. Hybrid deep learning techniques should be extensively explored.
7. EEG signal analysis is a neurophysiological approach which holds great potential for

enhanced diagnosis and classification of acute disorders of consciousness (ADOCs)
such as a vegetative state (VS) and a minimally conscious state (MCS), among others.
It can be used to predict the dynamics in the thalamocortical connections as it depicts
changes in the activities of the reticular system. Detection and classification of epilep-
tic seizures using EEG signals are a significant step towards advanced diagnosis of
unresponsive wakefulness syndrome (UWS) and MCS by characterizing the level
of awareness as they share some common features with epileptic seizures. Previous
work such as that of Naro et al. [193] used γ-band transcranial alternating current
stimulation (tACS) as a non-invasive neurostimulation protocol on DOC patients to
differentiate UWS and MCS individuals. Another neuromodulation approach was
also applied in [194], while electrophysiologically based approaches were discussed
in [195]. Further research on deep learning techniques could be employed in the
classification of VS, MCS and UWS.

6. Conclusions

This study investigated and reviewed various automated EEG epileptic seizure detec-
tion and classification techniques. It also highlighted both traditional feature extraction
techniques and statistical and machine learning classifiers. Any developed model must
be subjected to a rigorous performance evaluation to test its efficacy in identifying and
detecting epileptic seizure signals. Conventional feature extraction techniques commonly
employed by researchers are wavelet transform, entropy and non-linear techniques. ANN,
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SVM and random forest are the most commonly used machine learning classifiers, while
CNN is most commonly used for deep learning. Further investigation must be thoroughly
conducted on seizure detection techniques to improve the outcome. Recent studies have
also focused on hybrid deep learning schemes. This recent research direction needs to
be investigated and compared with conventional techniques. Advanced detection and
classification using EEG signals must be further investigated to characterize the level of
awareness in epilepsy and DOC patients to differentiate between VS, MCS and UWS. With
all these, the future is very promising for early diagnosis and treatment of epileptic seizures.
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Abbreviations

ACD acute consciousness disorder
ANN artificial neural network
ApEn approximate entropy
AR autoregressive
CAD computer-aided diagnosis
CCA canonical correlation analysis
CD correlation dimension
CDOC chronic disorder of consciousness
CNN convolutional neural network
DBF deep belief network
DCNN deep convoluted neural network
DOC disorder of consciousness
DNN deep neural network
DWT discrete wavelet transform
EEG Electroencephalogram
EESC epileptic EEG signal classification
EOG Electrooculogram
FDR Fisher discriminant ratio
FA firefly optimization
GMM Gaussian mixer model
GRU gated recurrent unit
HOS higher-order spectra
HRS hierarchical region splitting
ICA independent component analysis
ICGA integer coded genetic algorithm
IMF intrinsic mode function
IoMT internet of medical things
KNN k-nearest neighbor
LLC locally linear classification
LMS least mean square
LMTS long short-term memory
MCA morphological component analysis
MCS minimally conscious state
MRF Markov random field
MRI magnetic resonance imaging
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NB naive Bayes
NLMS non-local means
PCA principal component analysis
PD Parkinson’s disease
PSD power spectral density
PNN probabilistic neural network
PSO particle swarm optimization
RMS root mean square
RLS recursive least square
STFT short time Fourier transform
SVM support vector machine
SLSA step-wise least square estimation algorithm
SRS simple random Sampling
SSDA stacked sparce density autoencoders
TCNN temporal CNN
TGCN temporal graph convolutional networks
TQWT tunable Q-wavelet decomposition
UWS unresponsive wakefulness syndrome
VS vegetative state
WPE wavelet packet entropy
WT wavelet transform
WVD Weiner–Ville distribution
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