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Abstract: Brain image segmentation is one of the most time-consuming and challenging procedures
in a clinical environment. Recently, a drastic increase in the number of brain disorders has been
noted. This has indirectly led to an increased demand for automated brain segmentation solutions to
assist medical experts in early diagnosis and treatment interventions. This paper aims to present
a critical review of the recent trend in segmentation and classification methods for brain magnetic
resonance images. Various segmentation methods ranging from simple intensity-based to high-level
segmentation approaches such as machine learning, metaheuristic, deep learning, and hybridization
are included in the present review. Common issues, advantages, and disadvantages of brain image
segmentation methods are also discussed to provide a better understanding of the strengths and
limitations of existing methods. From this review, it is found that deep learning-based and hybrid-
based metaheuristic approaches are more efficient for the reliable segmentation of brain tumors.
However, these methods fall behind in terms of computation and memory complexity.

Keywords: brain image segmentation; machine learning; deep learning; tumor

1. Introduction

Brain imaging is important for the diagnosis of brain-related diseases such as neuro-
logical disease (Parkinson’s disease), neurodegenerative disease (Alzheimer’s syndrome),
and brain tumors. According to the American Cancer Society and the National Cancer
Institute Report, brain and nervous system cancer is the tenth most common cause of
death for both genders. About 18,020 deaths (10,190 males and 7830 females) and 23,890
new cases (13,590 males 10,300 females) among adults were estimated due to primary
cancerous brain tumors and other nervous system diseases in 2020 in the United States [1].
Therefore, early detection of brain tumors and related brain structures using effective brain
imaging techniques is important where treatment can be initiated at an early stage of the
brain tumor. High-quality brain images can be produced using magnetic resonance (MR)
imaging, a standard non-invasive imaging key technique. MR imaging is useful for the
diagnosis and treatment of brain tumors without inflicting harmful radiation on other
brain structures and skull artifacts of the patients [2]. MR images are used to differentiate
suspicious regions of the brain tumor from healthy brain tissue. Conventionally, location,
shape, and type of brain tumors are identified visually using multimodal MR images by
qualified medical doctors.

Accurate and consistent segmentation of target brain regions or tumors from the
surrounding tissues using the MR images is crucial for clinical evaluation of disease
progression, surgical planning, post-surgical matching, and radiation therapy outcomes.
Since the manual segmentation of the brain tumors and related small brain structures
is laborious and time-consuming, many automated solutions have been explored and
presented thus far. Generally, the automated brain segmentation methods using MR images
can be classified into three main theoretical categories (Figure 1), namely, (i) intensity-based,
(ii) machine learning, and (iii) hybrid, which are explained in this paper. Section 2 discusses
the search methodologies used in this review. Next, this paper discusses the typical
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segmentation approaches and the respective challenges in Section 3. The conclusion of the
present critical review is presented in Section 4.

2. Search Strategy and Selection Criteria

The present review aims to summarize information and identify problems from rele-
vant research articles that utilized computer vision techniques in the context of automated
brain medical imaging over the last five years. The inclusion and exclusion criteria were
applied to conference papers and journal articles published on brain medical imaging in
the chosen databases from 2016 until 2021. Studies that were not written in English, were
duplicative, out of the study period, and did not have the full text available were excluded.

The studies were collected using the search keywords on 11 selected databases
(i.e., Scopus, Web of Knowledge, Science Direct, IEEE Xplore, Springer, Frontiers, Wiley
Online Library, Arixiv, ACM Digital Library, Hindawi). These databases offered comprehen-
sive literature regarding brain image segmentation approaches and are highly appropriate.
First, a search was conducted on the basis of the following keywords/terms: (delineation
OR segmentation OR contouring) AND (brain tumor OR neoplasia OR brain tissues OR
brain anatomical structure)) AND (ALL(“automatic delineation” OR “automatic segmenta-
tion” OR “automatic contouring” OR “semi-automatic delineation” OR “semi-automatic
segmentation” OR “semi-automatic contouring”)) AND (brain tumor OR neoplasia OR
brain tissues OR brain anatomical structure)) AND intensity-based methods—((delineation
OR segmentation OR contouring) AND (“thresholding” OR “region” OR “Otsu” “level
set” OR “active counter”) (brain tumor OR neoplasia OR brain tissues OR brain anatomical
structure) AND (ALL(“automatic delineation” OR “automatic segmentation” OR “auto-
matic contouring” OR “semi-automatic delineation” OR “semi-automatic segmentation”
OR “semi-automatic contouring”)) AND (PUBYEAR > 2015) AND (“MRI”))), machine
learning methods ((delineation OR segmentation OR contouring) AND (“clustering” OR
“classification” OR “deep learning” OR SVM OR ANN OR K-means OR FCM OR FCN
OR CNN OR convolution OR UNet OR U-Net) AND (brain tumor OR Neoplasia OR
brain tissues OR anatomical structure) AND (ALL(“automatic delineation” OR “automatic
segmentation” OR “automatic contouring” OR “semi-automatic delineation” OR “semi-
automatic segmentation” OR “semi-automatic contouring”) AND (PUBYEAR > 2015) AND
(“MRI”))), and so on, as well as for the hybrid method and its subcategories.

In the beginning, 761 publications were retrieved by searching the selected databases.
An additional 15 publications were identified through cross-referencing. Following dupli-
cate publications removal, the remaining 459 publications were evaluated via exclusion
criteria. Based on screening the title and abstract, 394 publications were excluded. A total
of 85 full-text studies were evaluated for eligibility, and 50 papers were included in this
review. Then, an additional search was conducted on all selected publications by using the
backward and forward approach for the references search method introduced by Webster
and Watson [3]. Through the backward search, the citations of each publication were
assessed to obtain further publications to be included in the review. Through the forward
search, for example, the references were obtained using Google Scholar were used to obtain
further relevant studies. The results reported 10 additional publications. Overall, a total of
60 publications were selected. Figure 1 illustrates the search strategy with the publications’
selection methods.

Figure 2 shows the taxonomy of reviewed research papers published in the last 5 years.
It was noted that recent publications predominantly applied deep learning and hybridized
metaheuristic-based methods for brain image segmentation.
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Figure 2. An overview of brain segmentation approaches [5–65].

3. Brain Segmentation Approaches
3.1. Intensity-Based Approaches

The intensity-based methods for brain segmentation function in the spatial domain
and depend on the pixel value, which can be further classified into a thresholding and
region-based approach.

3.1.1. Thresholding

The thresholding approach is one of the conventional and the easiest image segmenta-
tion methods where the regions of the image are categorized by measuring their intensities
and compared with one or more intensity thresholds. For instance, Otsu’s method enables
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the determination of the global threshold optimal value to distinguish the target object
from the image background. In a previous study, Otsu’s thresholding approach was cou-
pled with morphological operations to detect brain tumors using MR images [5]. Another
study by Khan et al. [6] presented a grade-wise brain tumor identification method where
segmentation of the tumor was conducted first through the threshold approach. Then, a
logical formula was employed to extract the desired tumor region. Moreover, feature set
parameters, such as the angle, area, density, solidity, size, center of mass, and perimeter,
were extracted from the tumor region. The extracted features were then analyzed using
the partial tree (PART) algorithm to grade the brain tumor. However, the thresholding
approach is sensitive to noise and intensity non-homogeneity, which limits its application
for the entire tumor region. To overcome the limitation, statistical optimization of the
threshold method was reported by Sharif et al. [7], where particle swarm optimization
(PSO) was employed to achieve the maximum class variance between the tumor regions
and healthy brain tissues. Then, hand-crafted local binary patterns (LBP) and deep (fine-
tuned capsule network) features of segmented images were extracted, and the best features
were selected using a genetic algorithm (GA). Finally, an artificial neural network (ANN),
a support vector machine (SVM), and an ensemble of linear discriminant analysis (LDA)
were utilized to classify the tumor grades.

The above-mentioned methods have several limitations such as (i) low convergence
rate and an insufficient local and global search and (ii) the optimization being trapped
into a local minimum that results in low segmentation accuracy. To improve the local and
global search of the multi-level thresholding approach, a new metaheuristic approach of the
differential evolution (DE) technique, which was termed as adaptive differential evolution
with Lévy distribution (ALDE), was introduced by Tarkhaneh and Shen [8] for brain tissue
segmentation. The proposed approach was adopted to resolve the multi-level threshold
issue and achieve optimal results by preventing a local minimum through the establishment
of a balance between exploration and exploitation coupled with the convergence rate boost.
However, some of the tested images in this model did not segment properly, which could
be attributed to the limitation of the thresholding approach that does not consider the
spatial information of images, resulting in insensitivity towards different levels of noise
and intensity.

Oliva et al. [9] proposed an adaptive differential evolution and linear population size
reduction (LSHADE) metaheuristic algorithm to determine the optimal threshold value by
employing the minimum cross-entropy as a fitness function for the segmentation of brain
tissue from MR images.

In a different study [10], Renugambal et al. proposed a new hybridization approach
based on the Otsu and new hybrid water cycle and moth-flame optimization algorithm
(WCMFO) for the brain tissue segmentation. The new WCMFO algorithm was proposed to
determine the optimal values for Otsu’s objective functions on various axial T2 modalities
of MR brain images. However, the model cannot convert several parameters, including the
water cycle and moth-flame algorithms.

3.1.2. Region-Based

The region-based approach enables the extraction of a connected region of an image
by following pre-defined conditions such as pixels’/voxels’ information with matching
intensities. This approach is performed in three steps: (i) selection of an initial seed point,
(ii) locating the points in objects or regions, and (iii) selection of points connected to the
initial point with similar intensity values. Recently, several studies applied a region-based
approach for brain tissue segmentation [11–15].

A semi-automatic approach, which consists of a localized active contour integrated
with a background intensity compensation, termed LACM-BIC for tumor region segmenta-
tion, was presented by Ilunga-Mbuyamba et al. [11]. The T1 contrast and T2 MR images
were fused and used to segment the tumors. An automated initialization of the initial
contour in the LACM-BIC method was conducted using the k-means algorithm accompa-
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nied by a hierarchical centroid shape descriptor. This method chose the best initialization
number of the cluster, k, for the k-means algorithm, in which wrong selection of the ini-
tialization may lead to unwanted regions in the segmentation. Hence, the contour may be
trapped into the wrong local minimum.

In another region-based study, a 3D-MR image brain symmetry analysis for tumor
segmentation was reported by Kermi et al. [12]. Specifically, the fast-unsupervised bound-
ing box (FBB) and geodesic level-set methods were used. The FBB algorithm was adopted
to locate initial tumor voxels and to manage intensity variations among different MR
images without the use of a training dataset. Subsequently, the region growing method
was combined with a 3D level set method to acquire the final tumor region. The drawbacks
of this method include the inability to avoid noise and non-uniform intensity besides being
limited to tumor segmentation.

In a more recent study, Achuthan and Rajeswari [13] presented an automated point set
registration approach to establish a prior knowledge model with a lower data intensiveness
for hippocampus segmentation. In comparison to the usage of the entire 3D volume as
used in the atlas-based methods, this study utilized a collection of representative points
on the boundary of the hippocampus. The prior model was created and integrated into
a level set model to perform hippocampus delineation. Nevertheless, some parameters
are required to be specified experimentally, and it is a subjective task that depends on the
target image properties.

Another approach for hippocampus segmentation of MR images using an automated
level set method has been proposed by Safavian et al. [14]. First, prior knowledge was
obtained from an affine registration with a non-linear registration stage. Then, this in-
formation was locally integrated into an innovative level-set framework using a binary
weighting map. The image gradient information adaptively utilized both local and global
region information of the corresponding image. However, manual setting of parameters is
required, which is very subjective and depends on the target image properties.

In a different study, Virupakshappa and Amarapur [15] presented a modified level set
segmentation method for brain tumor segmentation that provides an automatic initializa-
tion point as indicated by the maximum pixel point that serves as the initial contour. The
maximum pixel was determined from the histogram, and an automatic segmentation was
performed using an anisotropic diffusion filter instead of the Gaussian filter. The utilization
of the anisotropic diffusion filter enhanced the local edges by detecting discontinuity within
the local edge. Boundaries formed as a result of noise were removed completely, and the
contours of the object were also improved. However, the manual setting of the initial
contour of the level set is required to be performed based on the maximum pixel point,
which is very subjective and depends on the intensity non-homogeneity.

3.2. Machine Learning

Another category of brain image segmentation approaches is traditional machine
learning, comprising clustering and classification and deep learning approaches. The
sections below detail these approaches.

3.2.1. Traditional Machine Learning

The clustering and classification approaches, being the traditional machine learning
methods, are motivated by multidimensional feature space that may be obtained from
different MR modalities. Classifiers are trained using a feature space that is created by
combining different intensity and textural-based features representing the known classes.
Then, a class prediction that the target structure belongs to is performed by assigning
a class label, which is most similar to the target structure’s feature space. Meanwhile,
clustering methods are unsupervised pixel-based methods that segregate unlabeled images
into clusters of pixels that have similar features without utilizing training images. Some of
the machine learning-based methods were applied for brain tissue segmentation in recent
studies [16–20]. A 3D super-voxel learning method for brain tumor segmentation was
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proposed by Soltaninejad et al. [16]. In the study, the MR images were partitioned into the
equivalent size of patches with similar intensity ranges based on the simple linear iterative
clustering (SLIC) algorithm. Super-voxel clusters were formed by combining information
from the MR multimodal images using a distance metric. For each super-voxel cluster, a set
of texton descriptors along with the first-order static features were extracted from different
MR modalities. The features were then used to train a random forest (RF) classifier to
classify each super-voxel into a core tumor, edema, or healthy tissue. This approach was
found to effectively combine the unsupervised SLIC algorithm for initial tumor region
localization and the supervised RF method for tumor classification. The approach enabled
the classification of located regions into sub-regions in a unified system and resulted in
promising segmentation findings. However, this approach limits the segmentation of
complex structural boundaries such as the smaller tumor cores as the super-voxel may
include voxels from various tissue types.

In another study, a semi-supervised method based on a co-training technique with
clinical and spatial constraints for the extraction of the glioma region, namely whole tumor
(WT), tumor core (TC) and enhancing tumor (ET) from multi-sequence MR images, was
assessed by Zhan et al. [17]. Firstly, the labeled brain MR image was used for both SVM
and sparse representation classification (SRC) classifiers training. This allows the extraction
of high confidence data as pseudo-labeled samples from the test samples. The pseudo-
labeled samples that resulted from each classifier were then added to the training sets of
the other side of the classifier to re-train the corresponding classifier. The process was
iteratively repeated until the results of classification remained stable. Finally, a super-pixel
graph was plotted on the post-contrast T1 image to generate spatial and clinical constraints
to remove false-positive and interference of noise. This classification method provides
generalization fitting using a limited training set. However, it has a drawback where prior
clinical knowledge is required to refine the segmentation results by manually correcting
the pixel labeling, which is subjective as it depends on the user’s expertise.

Meanwhile, Nitta et al. [18] investigated an approach for brain tissue segmentation
using a modified k-means clustering algorithm. The researchers proposed a selection of 16
high probabilities of dominant grey-level pixels as initial centroids to resolve the issue of
the arbitrary selection of initial centroids in the standard k-means algorithm. The proposed
approach is sensitive to noise and has a non-uniform intensity distribution.

In a recent study by Imtiaz et al. [19], a tumor segmentation approach based on super-
pixel features extracted from 3D planes of MR images (FLAIR, T1c, and T2 modalities) was
evaluated. Several statistical and Gabor textural features were extracted from each super-
pixel of the three planes to avoid imbalanced planar data and mislabeling of pixel issues in
a plane. Based on feature effectiveness, feature selection was performed using histogram
consistency analysis and local descriptor pattern analysis. The feature vector for each super-
pixel was then subjected to extremely randomized trees (ERT) for binary classification.
Then, the voting algorithm was used to assign a class label (tumor or non-tumor) for
each pixel in all three planes. The benefits of this approach include fast computation and
high robustness to the scale-invariant and rotational changes. However, this approach is
sensitive to noise and distortions, in addition to leading to the extraction of redundant
features at different scales.

In a different study by Chen et al. [20], a hybrid two-stage framework of cascaded RF
and a dense conditional random field (CRF) was evaluated for intra-tumor segmentation.
Firstly, the appearance features (statistical intensity and template-based) and contextual
features (Gaussian mixture model-based lesion tissue probability maps) were extracted
and used to train the initial RF classifier. The predicted probability map obtained by the
RF classifier was used as the prior input into a dense CRF model for further segmentation
improvement. Then, the results of the dense CRF model were used as the contextual
information to train a cascade of RFs by the hierarchy in combination with template-
based asymmetrical and original statistical features. The authors proposed a multi-layer
optimization architecture as the post-processing step to further increase the efficiency
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of RF. The step is easy to implement and can be effectively incorporated into the local
appearance and global contextual features, which can improve the segmentation outcome.
The limitation of this framework includes the evaluation was performed using a small
dataset, and a post-processing step is required to fine-tune the extracted tumor regions.

3.2.2. Deep Learning

Recently, the deep learning-based method has attracted much research interest due
to its excellent performance and ability to automatically capture adaptive features, which
outperform manually created features. Moreover, these features were learned in an in-
creasing feature complexity trend, which results in more robust feature learning. During
the last few years, more studies have been designed using a combination of the deep
learning-based method and the new brain tumor segmentation method. Most of the studies
utilized convolutional neural networks due to their effectiveness in detecting patterns in
an image, specifically the MR images, with promising results reported. To date, the deep
learning-based segmentation was performed using 2D, 2.5D, or 3D MR images, which is
elaborated in the following sections.

Deep Learning-Based Methods Using 2D Images

Deep learning using 2D images requires brain image slices or extracted 2D patches
from 3D images as an input for the 2D convolutional kernel. Several studies [21–37]
have been published on the deep learning-based method using 2D images. Sergio Pereira
et al. [21] introduced cascade layers using small 3*3 convolutions kernels to reduce overfit-
ting. The study enabled the segmentation of the image into four regions, namely (i) necrosis,
(ii) enhancing tumor, (iii) edema, and (iv) normal tissue. Two convolutional neural network
(CNN) architectures were trained and used in the proposed work to extract the feature
maps, which were low-grade glioma and high-grade glioma. The use of small kernels led
to a deeper architecture design, which reduced the number of weights in the network and
significantly affected overfitting. However, for the initial phase, the user has to manually
identify the glioma grade where prior medical knowledge is required, which is one of the
limitations. Additionally, the tissue segmentation was performed as a patch-based task
in the study where the local dependency of labels during pixel classification was ignored.
Another drawback of the proposed method is the poor segmentation of tumor core regions
in the BRATS 2015 Challenge dataset.

Similarly, the application of another novel Cascade CNN model for fully automatic
brain tumor segmentation was reported by Havaei et al. [22]. Cascade architecture of 2D
CNN was used in the study to preserve local dependency of labels during pixel classifica-
tion and extract local and global contextual features which deal with imbalanced tumor
labels. However, the model suffers from two drawbacks: (i) poor segmentation between
the enhanced and core regions of the brain tumor inferior to the complete tumor and (ii)
only the local dependency of the labeled samples was considered, with the appearance and
spatial consistency neglected when applied on 3D images.

Moeskops et al. [23] presented an automatic approach based on a multi-scale CNN
for segmenting white matter hyperintensities of presumed vascular origin (WMH) (basal
ganglia and thalami, brain stem, cortical grey matter, white matter, cerebellum, WMH,
peripheral cerebrospinal fluid, and lateral ventricular cerebrospinal fluid) from MRI modal-
ities (T1, T2, FLAIR, and T1inversion recovery). The proposed multi-scale CNN model
was claimed to be the first modern MRI segmentation method that applies CNN for ad-
ditional WMH segmentation. Furthermore, the model was assessed in two large MRI
datasets of older patients that were affected by motion artifacts and varying degrees of
brain abnormalities.

Another study by Chen et al. [24] proposed a 2D novel method based on a CNN
architecture identified as Dense-Res-Inception Net (DRINet) for multi-class brain tumor
segmentation. The DRINet consisted of three blocks, namely, (i) convolutional, (ii) deconvo-
lutional, and (iii) unpooling blocks. The convolutional block carried out dense connections
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and was used to alleviate the effect of vanishing gradients. Meanwhile, the deconvolu-
tional block carries out the residual inception modules to aggregate feature maps from
different branches. The unpooling block was used for the aggregation of different sampled
feature maps. The use of this method resulted in accurate findings on segmenting complex,
challenge, multivariate domains (tumor and cerebrospinal fluid (CSF)), and multi-organ
segmentation on abdominal CT images. Nevertheless, the DRINet approach has a complex
network structure that requires millions of parameters (i.e., billions of connections between
neurons and millions of weights), which could lead to a difficult training phase, and testing
can be slower depending on the ground truth label requirements.

Iqbal et al. [25] proposed three different improved network architectures for intra-
tumor segmentation, which were an extended version of SegNet (deep convolution encoder-
decoder architecture), as follows: (i) Interpolated Network, (ii) SkipNet, and (iii) SE-Net.
All three structures consisted of decoder/encoder architecture, and four sub-blocks were
used in each phase. A batch of normalization layers was added next to each convolution
to avoid the disappearance or explosion of convolutional gradients and to maintain the
stability of the training phase. The advantage of this approach includes the use of simple
network structures as an intermediate convolutional map along with interpolation methods
to produce a quick model with a smaller memory space. However, the method has a
limitation where the segmentation performance could be affected if the model is trained
with limited ground truth samples.

In the same year, Cui et al. [26] reported on a hybridized cascade of a deep convolution
neural network (DCNN) architecture that can segment 2D brain images automatically in
two major steps. Firstly, the tumor region was localized immediately using the pixel-
wise fully convolution network (FCN) from the MR images. Then, the patch-wise CNN
with smaller kernels and deeper architecture was adopted for further classification of the
localized tumor region into multiple sub-regions. This approach alleviates the imbalanced
data issue using a hybrid CNN. However, the approach is time-consuming during model
training, and inference is required for operating the image patches.

In a different approach, Chen et al. [27] presented a combination of prior knowledge
and a DCNN to enrich the extracted features of DCNN for brain tumor sub-compartment
identification. This model requires an analysis of a left-right similarity mask (LRSM)
in the constructed feature space and uses LRSM as the location weight of the DCNN
features. These features were then used to train the model to determine the asymmetrical
location information of the input images via a similarity metric. This approach was
found to provide about 3.6% of dice similarity coefficient (DSC) improvement of complete
tumor segmentation over the conventional DCNN. The advantage of the proposed method
includes the ability to combine the symmetric masks in several layers of DCNN to assign
location weight for the extracted features. However, the method could not differentiate
between the tumor core regions and the enhanced tumor region as the LRSM mask can
reflect a complete tumor situation.

Li et al. [28] presented an automatic approach based on the improved version of
U-Net for multiclass brain tumor segmentation from 2D MR image slices. Firstly, the
up-skip connection between the encoding and the decoding elements was proposed to
further enhance the information flow and the network connectivity. Then, in each block, an
inception module was implemented to assist the network in learning richer representations.
Nevertheless, the model suffers from poor segmentation of enhancing tumor region as the
whole brain slices were used for model training. This led to a data imbalance issue due to
a small number of pixels that belong to enhance tumor and core regions inferior to other
brain tissue.

Another approach was reported by Guo et al. [29], where a supervised multimodal
image analysis was performed with three cross-modality of fusion level strategies, which
were feature learning, classification, and decision making. The three fusion strategies
were implemented and tested in three different patches-based CNNs with corresponding
variations in the network structures. Four modalities of imaging (CT, PET, T1, and T2)
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were used as fused inputs for brain tumor segmentation. Comparison between the single
model and multimodality showed that the CNN-based fusion network performed better
on PET, CT, and T2 modalities. This approach provides methodological guidelines for
designing and applying multimodal image analysis fusion strategies through different im-
plementations of CNN architecture. However, this approach is limited for complete tumor
detection. Another limitation is the dramatic decrease in the segmentation performance
within the misaligned regions based on the number of affected modalities and severity of
the misalignment.

An automated hybrid DCNN model for brain tumor segmentation was presented
by Sajid et al. [30] for different modalities of MR. This model extracted 27 × 27 sized
patches from four axial MR modalities to consider both spatial and contextual knowledge
for predicting segmentation labels of pixels. The proposed hybrid DCNN model combined
the output feature maps of two- and three-CNN paths. The model successfully addressed
local dependencies between the output labels, which was the major drawback of the two-
and three-CNN paths. By integrating the two- and three-CNN networks, an increase in
the effect of neighboring pixels was noted, and the output was recognized based on the
local and contextual features. Morphological operations were used to further enhance
the segmentation performance by eliminating minor false positives along the edges of the
expected outputs. The proposed model segmented the core and enhanced tumor regions
better compared to the complete tumor regions. This could be attributed to the fuzzy
boundaries of edema that limit the detection of the whole tumor region compared to other
regions. However, this approach has a limitation where a large amount of training data
and parameters are required for model training.

In addition to the various methods proposed, Zhang et al. [31] presented a residual U-
Net and attention mechanism in a unified architecture named AGResU-Net for patch-wise
brain tumor segmentation. Attention gate units were added into the up-skip connection of
the U-Net structure to highlight the important feature details along with disambiguates in
noise and irrelevant feature responses. The AGResU-Net was found to enhance feature
learning by extracting important semantic features focusing on the details of small-scale
brain tumor sub-regions, which improves the segmentation performance of the brain
tumors. Nevertheless, the AGResU-Net model has a drawback, where an amount of
contextual information and local details among different intra-slices were not included due
to modeling based on 2D U-Net.

In the same year, Zhang et al. [32] proposed another new method using attention
residual U-Net (AResU-Net) for end-to-end 2D brain tumor segmentation. The AResU-Net
embedded a series of attention and residual units among corresponding down-sampling
and up-sampling processes. The system simultaneously improved the local responses of
down-sampling and the recovery effects of the up-sampling process. However, the model
neglects contextual and local details of different intra-slices due to modeling based on
2D slices.

Recently, an innovative brain tissue segmentation method from MR images was
proposed by Lee et al. [33], where a patch-wise U-net architecture was used to divide the
MR image slices into non-overlapping patches. Corresponding patches of ground truth
were incorporated into the U-net model, and input patches were predicted individually. The
model was found to retain the local spatial information better compared to the conventional
U-Net model. The design successfully fixed the drawback, specifically the limited memory
problem, which was caused by multiple down and upsampling stages. The memory
problem was attributed to the storage of parameter values at each stage and difficulty in
maintaining local details as the entire image is incorporated into the network. Although
the memory problem was resolved using the proposed model, computational complexity
was higher in the training phase.

In another study, Silva et al. [34] proposed a three-stage cascade FCN architecture
based on the deep layer aggregation technique to gather further spatial and semantic
information for intra-tumor segmentation. The output features of one FCN are directly
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fed to the next layer for extending the feature hierarchy over different depths for better
segmentation refinement. However, the model requires high computational resources and
post-processing to refine the extracted tumor regions.

In addition to the various proposed methods, Wu et al. [35] suggested a multifeatures
refinement and aggregation network (termed MRANet) based on CNN for end-to-end
brain tumor segmentation. The model fully utilized the hierarchical features by adopting
the feature fusion concept at several levels, which extracts low-level, mid-level, and high-
level features by sampling similar hierarchical features of encoder and decoder. These
features were then aggregated and re-extracted for better segmentation refinement.

Ribalta Lorenzo et al. [36] proposed a deep learning method for brain tumor delin-
eation from the FLAIR modality of MR using the fully convolution neural network (FCNN)
inspired by U-Net. The authors trained the model on 256 × 256 patches extracted from the
intra-tumor regions that belong to only positive (tumorous) full-sized FLAIR MR image se-
quences. Firstly, data augmentation methods were used to expand the dataset and achieve
a robust algorithm against the heterogeneity of small training datasets. Subsequently, the
FCNN was trained using the DSC to maximize the model training to improve the quality of
the segmentation. The proposed FCNN model was claimed to be the best modern FLAIR
MR image segmentation method that applied hand-crafted features and was classified
using extreme random trees. This model offers controllable training time and instant
robust segmentation using the FCNN that was trained on heterogeneous and imbalanced
datasets. Nevertheless, this model exhibited potential drawbacks caused by the rapid data
augmentation process, as the unnatural increasing number of training patches resulted in a
reduction in overall average data accuracy.

Gunasekara et al. [37] proposed cascaded algorithms for glioma and meningioma
brain tumor segmentation and classification. Firstly, CNN was implemented to classify
meningioma and glioma regions. Then, the classified images were fed to R-CNN to localize
the tumor regions of interest, which was accompanied by active contouring to delineate
the exact tumor boundary. Finally, the Chan–Vese level set model was used to segment the
target tumor boundary.

Deep Learning-Based Methods Using 3D Images

The second category of deep learning-based tumor segmentation approaches uses 3D
MR images for segmentation to overcome the limitation of neglecting contextual informa-
tion in 2D CNN. Several studies [38–43] have reported the approaches under this sub-class.

The intra-tumor region segmentation method from 3D MR images based on the
asymmetric encoder-decoder network was presented by Myronenko [38]. The researchers
adopted CNN’s encoder-decoder structure with an asymmetrical large encoder to extract
deep features and reconstruct the dense segmentation masks using a decoder. To tackle
the issue of a small training dataset, a variational auto-encoder was added to the endpoint
of the encoder, and the input image was reconstructed together with the segmentation
to regularize the shared encoder at the inference time. This model enables accurate intra-
tumor segmentation based on the unsupervised feature learning method with a lower
requirement for ground truth labels and without the post-processing step. However, the
proposed method requires high computational resources to accelerate tumor annotation in
MR images.

To decrease the dependency on the ground truth images during the training stage,
Nema et al. [39] proposed a RescueNet approach for multi-class brain tumor segmentation
utilizing both residual and mirroring principles. Different training was performed to
segment whole, core, and enhancing tumors using three different networks. The proposed
RescueNet approach was trained based on the unpaired generative adversarial network
(GAN) method, which was utilized to enrich data for the training stage with better seg-
mentation results obtained using a larger amount of testing data. Finally, a scale-invariant
algorithm was suggested as a post-processing stage to improve the segmentation accuracy.
The pros of this approach include robustness to the appearance variations in brain tumors,
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the minimum requirement of labeled datasets for model training, and that the model is
10% trained and 90% tested. However, this approach requires a post-processing step for
further segmentation refinement.

In a more recent study by Baid et al. [40], an effective weighted patch extraction was
combined with a new 3D U-Net architecture for a fully automatic brain tumor segmentation.
The authors proposed a weighted patch-based segmentation approach to address the
imbalance of class among tumor and non-tumorous patches. The 3D weighted patch-based
method and a unique number of feature maps were designed to train the architecture,
which enables the accurate segmentation of intra-tumor structures. Finally, a 3D connected
component analysis was used as the post-processing method to improve the accuracy of the
tumor delineation. However, this approach failed to segment some of the tumor parts with
a small necrotic tumor cavity from the MR images due to a large variance in the training
and validation dataset features. This can be resolved by increasing the number of training
data to overcome the inter-patient variations.

To address the two main challenges, namely, exploding and vanishing gradients af-
fecting the traditional DCNNs performance, Zhou et al. [41] proposed a novel three-phase
framework for automatic brain tumor segmentation of the 3D MR images. Firstly, a dense
three-dimensional networking architecture was adopted to construct the features to be
re-used. Secondly, 3D atrous convolutional layers were used to design a new feature
pyramid module, which was added to the backbone end to fuse the multiscale contexts.
Finally, for further training promotion, a supervision 3D deep mechanism was equipped
to enhance the network convergence by adding auxiliary classifiers to alleviate the prob-
lem of exploding and vanishing gradients by utilizing dense connectivity. Overall, this
framework is considered a complete architecture without additional post-processing stages.
Furthermore, simple implementation and the use of adjustable parameters are the main
advantages of this framework. However, the segmentation of cores and enhancing tumors
are inferior compared to the complete tumor, which requires considerable improvement.

In another study, Sun et al. [42] presented a multipath way 3D FCN architecture for
brain tumor segmentation. The model extracts different receptive fields of feature maps
from multi-modal MR images using the 3D dilated convolution in each pathway and
fuses these features spatially using skip connections. This model helps FCN architectures
to better locate the boundaries of tumor regions. However, the model requires a post-
processing step, as direct connections between high- and low-level features will lead to
unpredictable consequences and the semantic gap between the encoder and decoder.

An effective mapping from MR volumes to voxel-level brain tissue segments was
proposed by Ramzan et al. [43]. A 3D CNN, which utilized the concept of residual learning,
skip connections, and dilated convolutions, was applied in the study. Dilated convolutions
were utilized to decrease the computational cost by computing spatial features with a high
resolution. However, the space complexity of this model was higher as dilated convolution
was used, and down-sampling of input volumes was neglected, which led to an increase in
the number of parameters and kernels by a certain factor.

Deep Learning-Based Methods Using 2.5D Images

Although 3D deep neural network (DNN)-based segmentation can better exploit 3D
features of 3D MR image information data, this approach has limitations related to network
intensiveness and memory consumption. Therefore, another category of 2.5D DNN was
researched. In comparison to the 2D and 3D DNN, 2.5 DNN has inter-slice characteristics
and lower memory demand.

An automated 2.5D patch-wise Hough-CNN model based on a voting strategy for
localizing and segmenting brain anatomies of interest (26 regions of the basal ganglia and
the midbrain) was presented by F. Milletari et al. [44] for different modalities of MRI and
ultrasound slices. The patch-based voting strategy was designed and integrated into the
Hough-CNN model to localize and segment brain structures that are corrupted by artifacts
or are partially visible.
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To overcome network complexity and memory consumption of the 3D based-segmentation
methods, Wang et al. [45] suggested a cascade of 2.5D CNN voxel-wise architecture for
sequential segmentation of brain tumors from MR images. The task of multiclass segmen-
tation was largely divided into a sequence of binary hierarchical tasks to segment complete,
core, and enhancing tumors for better utilization of hierarchical features of brain tumor
structures. The resultant segments were then used as a crisp mask to identify tumor cores
and enhancing tumors, which could lead to anatomical constraints during the final seg-
mentation. The predicted tumor core was constrained to be within the whole tumor, while
the enhancing tumor region was within the core tumor region. Additionally, the test-time
augmentation technique was used to obtain structure-wise and voxel-wise uncertainty
estimation of the segmentation results. Finally, a CRF was proposed as the post-processing
stage to smoothen the segmentation results. A robust segmentation resulted in a balanced
property of memory consumption, model complexity, and multi-view fusion. However, the
method has two main limitations: (i) it is highly dependent on the voxel-wise annotations
technique and (ii) time-consuming for large datasets. Additionally, this approach requires
post-processing for segmentation tuning. The advantages and disadvantages of all of the
discussed segmentation approaches are summarized in Table 1.

Table 1. Strengths and limitations of intensity-based and machine learning approaches for brain segmentation.

Categories Ref Strengths Limitations

Thresholding [5–10]
• Simple implementation.
• Low computation time.

• Low performance in heterogeneous
regions.

• Influenced by noise.
• The setting of the optimal threshold is very

subjective.
• Requires skillful user.

Region based [11–15]

• High segmentation accuracy
required for tumor regions.

• Low computation time.
• High segmentation efficiency for

3D images.
• High segmentation performance

in complex regions.

• Influenced by noise.
• Requires post-processing step.
• Requires prior knowledge for parameter

initialization.

Traditional
machine learning [16–20]

• High segmentation for whole
target cases.

• Simple implementation.
• Low computation time.

• Parameter initialization is subjective.
• Requires skillful users.
• Low segmentation performance for

semantic type segmentation.
• Optimum representation features

determination is very subjective.
• Model trapped in a local minimum due to

imbalance between exploration and
exploitation.

Deep learning [21–45]

• Adaptive feature map.
• High performance of

semantic-based segmentation.
• High performance in complex

regions.
• Best segmentation results

compared to other categories.

• Complex network architecture.
• Difficult to understand.
• High computation time.
• Requires high computational resources.

3.3. Hybrid Segmentation Approaches

Hybrid segmentation is the fourth category of brain image segmentation, which
includes the integration of different methods to improve the segmentation performance and
achieve the segmentation objectives. Therefore, hybrid approaches refer to the combination
of two or more related methods by utilizing their advantages to achieve high segmentation
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accuracy. In general, hybrid-based approaches perform well, possess better designs, have
shorter computational time, and have adaptive modulations towards the target task in
comparison to other segmentation approaches. Hybrid segmentation can be divided into
three sub-categories, namely, (i) contour-based and machine learning, (ii) metaheuristic,
and machine learning and (iii) deep learning and machine learning. Each sub-category
contains several approaches that aim to segment the required MR image.

3.3.1. Contour-Based and Machine Learning

The combination of the contour-based and machine learning approach can improve ini-
tialization parameters, perform further spatial constraints, direct the evolution of intensity-
based pipelines, and enhance data mining algorithms by refining the process. There are
several previous studies [46–49] that were conducted based on this sub-category.

Ma et al. [46] hybridized concatenated and connected random forests (ccRFs) and
multi patch active contour (mpAC) methods to automate the segmentation of glioma
structures from volumetric multimodal MR images and impose a contour evolution on
the voxel classification, which was considered as the local dependency of labels. The
ccRFs were used to represent the adaptive features iteratively and efficiently to handle
data imbalance issues by exploring both local and contextual information from multimodal
images. Meanwhile, the mpAC technique was used for the final segmentation of the initially
inferred tumor structure from the voxel classification of the ccRFs model. Although the
proposed method resulted in promising findings, there are some drawbacks. Firstly, the
hybridized approach highly depends on the labeled training data. Secondly, the use of
multiple imaging modalities for model training on a specific feature of learning kernels
and aggregation of feature maps by the max-out process is not optimal for the aggregation
of imaging modalities.

In another hybridization study, Lim and Mandava [47] proposed a semi-automatic
method that incorporated both prior knowledge and image statistics in three major phases
for the detection of brain abnormalities in the MR image. For the first phase, a user was
permitted to determine the regions of interest using a modified random walks algorithm to
perform initial segmentation and produce a feature map from each image. Then, the feature
maps were incorporated into the image information and combined using the weighted
averaging method. Finally, information-theoretic rough sets (ITRS) were used for the
post-processing phase to locate the ambiguous boundary regions between the tumor and
its background. However, the user-based interaction approach requires users to place
seeds manually to distinguish between the objects and backgrounds. The inappropriate
initialization of the seed can produce poor and inaccurate results. Moreover, the proposed
model was only tested using limited real brain images.

Recently, Tripathi et al. [48] proposed an integrated Otsu k-means method for tumor
components segmentation. This method integrated Otsu thresholding and k-means clus-
tering to generate tumors using T2-W and FLAIR image modalities. Although this model
addressed the data limitation problem, it is highly influenced by noise.

Another recent work by Khalil et al. [49] adapted the dragonfly algorithm (DA) to
perform a clustering-based contouring approach for brain tumor segmentation. First, the
two-step DA-based clustering was used to extract tumor edge as initial tumor contour
for the MR image sequence. Instead of using a random initial position in DA, k-means
was employed to identify the initial swarm centroids. Finally, the level set model was
used to extract the tumor region from all volume slices. However, the usage of k-means
to determine the initial centroids for DA may lead to non-stable performance because
k-means is known to suffer from (i) dependency on initialization and (ii) the tendency to
terminate in local optima.

3.3.2. Metaheuristic and Machine Learning

The combination of metaheuristic and machine learning methods is the second sub-
category of the hybridization method that can be used to optimize the separation charac-



Brain Sci. 2021, 11, 1055 15 of 31

teristics of the machine learning method in segmented images. Additionally, this type of
hybridized approach is generally used to solve or reduce the major drawbacks of machine
learning segmentation methods, such as the possibility of being trapped in a local mini-
mum and sensitivity to noise. Several studies [50–55] have employed a combination of
metaheuristic and machine learning methods.

A new hybridization method for brain tissue segmentation, which is a combination
of metaheuristic particle swarm optimization (PSO) method and kernelized fuzzy en-
tropy clustering with Baize correction method and spatial information (PSO-KFECSB),
was introduced by Pham et al. [50]. The approach was developed to partially overcome
clustering-based segmentation problems such as (i) intensity non-uniformity (INU) artifact
and sensitivity to noise and (ii) dependency on the initial clustering centroids and being
trapped in local minima. However, the performance of this approach decreased with the
co-existence of high noise levels and INU artifacts in the MR image data. Moreover, only
one KFECSB criterion was used to direct the solution search process where the global
optimum of standards may not be optimum for segmentation. The issue was solved as
reported in a different study by the same group of researchers, Pham et al. [51]. A multi-
objective optimization strategy was carried out to exploit the strengths of other criteria to
enhance the trade-off property between preserving image details and restraining noise for
image segmentation. A modified multi-objective particle swarm optimization (MOPSO)
approach was proposed to optimize both objective functions of fuzzy c-means (FCM) and
a region-based active contour method simultaneously to solve major drawbacks of this
hybrid segmentation approach for segmenting brain tissue. This approach aimed to achieve
compactness and separation by optimizing the separation between the clusters/regions
from each other and consider both bias correction and spatial information in the objective
functions to reduce noise effects and intensity non-uniformity artifacts. Nevertheless,
this approach requires high computational time to specify the two-scale parameters (ρ, ζ),
where ρ is the level of intensity inhomogeneity, and ζ is the level of noise. These parameters
control the influence of global and local fitting energy force that is subjective and highly
dependent on the degree of noise and INU artifact of the input images.

In another study, a hybridized model based on the combination of FCM, particle
swarm optimization (PSO), and the level set method for the segmentation of the brain
tumor was investigated by Ali et al. [52]. The PSO algorithm was found to improve the
conventional FCM clustering algorithm by selecting the optimal centers of clusters for
initial contour determination. Then, the level set methods were introduced for final tumor
dissection considering the spatial information. However, the noise and non-homogeneity
affect the performance of this method.

Recently, Boulanouar and Lamiche [53] introduced a new hybrid method based on
a modified fuzzy bat optimization algorithm (MFBA) and the FCM clustering approach
termed MFBAFCM for brain tissue classification. The MFBA algorithm was utilized
to obtain the optimal cluster centers, which were subsequently utilized as the adaptive
initial seed for the conventional FCM. This hybrid approach addressed the problem of the
conventional FCM clustering algorithm, which falls into a local, optimal solution. However,
the method is still partially sensitive to noise as well as requiring high computational
resources and a post-processing step to refine the extracted tumor regions.

Mishro et al. [54] introduced type-2 adaptive weighted spatial FCM (AWSFCM) to
overcome the problems of the conventional FCM clustering method, namely, (i) intensity
non-uniformity (INU) artifact and sensitivity to noise, (ii) model trapping in local minima,
(iii) the problem of equidistant pixels, and (iv) dependency on initial clustering centroids.
The type-2 FCM consisted of three main steps. First, noisy pixel misclassification was
reduced by embedding neighboring spatial information in the membership function of
FCM. Secondly, the effect of INU artifacts was reduced by the incorporation of adaptive
weights into the centroids of clusters. The issue of equidistant pixels was resolved by
assigning them to a specified cluster by providing higher weights to the pixel closer to
the expected decision boundary. Thirdly, the trapping in local minima was avoided by
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comparing the value of the fitness function with succeeding iterative stages. The approach
to segment brain tissue achieved promising results when tested with healthy brain images,
but the method was not tested with images containing lesions that affect the normal tissue
intensity and cause high INU artifacts.

In another novel study of brain tissue segmentation, an integrated method of the hid-
den Markov random field (HMRF) method with a combination of metaheuristic algorithms
based on cuckoo search (CS) and PSO was reported by Pham et al. [55]. The model adopted
metaheuristic approaches to specify adaptive parameters to perform balancing between
the segmented regions, spatial information, and local intensity. Besides, the HMRF method
aims to improve the efficiency of searching solutions in the maximum posteriori estimation.
This method utilized spatial information and local intensity to control the INU artifacts
and the high level of noise existing in the images. However, the model suffers from two
drawbacks: (i) the high computational cost due to the problem in setting the appropriate
value of parameters and (ii) the difficulty in converting a large number of parameters,
including CS and PSO algorithms.

3.3.3. Deep Learning and Traditional Machine Learning

The third sub-category is the hybridization of deep learning and other traditional
machine learning methods such as clustering or classification in the segmentation of brain
tissue. This hybridized approach was developed to overcome the limitations of promising
deep learning-based methods, and the segmentation results are increasingly aggregated
using the machine learning methods in the post-processing stage. Various studies [56–65]
have applied this combination of methods. Kamnitsas et al. [56] proposed a dual 3D-CNN
pathway to extract both local and contextual information from the 3D brain tumor images.
A fully connected 3D CRFs was used to post-process the soft segmentation and effectively
removes false positives. This approach uses a dense training strategy to overcome memory
requirements but still has relatively poor inference efficiency and a longer computational
time owing to the multi-scale patch-based analysis. Similarly, Zhao et al. [57] proposed a
new hybridized model of FCNNs and CRFs for semantic segmentation of brain tumors.
This model was trained using the 2D image patches in the following three steps: (i) the
training of FCNNs model using image patches, (ii) the training of CRFRNNs with FCNNs
parameters using image slices, and (iii) the refining of FCNNs and CRFRNN outcomes
using image slices. However, the approach is time-consuming during model training and
requires CRFs for further structured outputs.

Likewise, Hu et al. [58] combined the multi-cascade convolutional neural network
(MCCNN) and CRFs for sub-region segmentation of brain tumors. The segmentation
process involves two steps where a multi-cascade network architecture was proposed
to consider local label dependency and exploitation of multi-scale features for coarse
segmentation as the first step. Secondly, CRFs were used to maintain spatial contextual
information of tumor edges and eliminate false positives for refining segmentation results.
The method effectively segmented whole tumors using 2D patches obtained from the
Flair, T1c, and T2 modalities with lower computational complexity and fewer training
parameters. However, this approach suffers from a sample imbalance issue that could
affect the segmentation performance for both tumor cores and enhance tumors as they are
smaller in size relative to whole tumors.

A different approach of intra-tumor segmentation was detailed by Yang et al. [59],
where a small kernel two-path convolutional neural network (SK-TPCNN) was combined
with RFs. The SK-TPCNN system combined both small and large convolution kernels to
promote non-linear mapping ability, which can prevent over-fitting and can extract multi-
form features. The extracted features were then subjected to an RF classifier to perform
joint optimization, which can reduce feature redundancy, hence improving classification
accuracy. The RF classifier successfully incorporated redundant features and voxels of
each MR image, which were classified into normal brain tissue and different tumor parts.
However, the SK-TPCNN produced an over-segmentation result, requiring more training
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data and a longer computational time. Moreover, the post-processing step is also required
for further segmentation enhancement.

Ito et al. [60] presented another semi-supervised hybrid method with the combination
of expectation-maximization (EM) and DNN for the brain tissue segmentation using a
probabilistic method to address the labeling error issue. The EM algorithm was used to
determine the true label of the unlabeled image, and the expected label was estimated by
applying a special noise to the true label. The combination of the EM algorithm and the
DNN model uses a small number of annotated images and a high number of unlabeled
images to train the probabilistic model. This method improved the accuracy of small
region segmentation even with a limited amount of ground truth samples since unlabeled
images were incorporated in the training process. However, the proposed work suffers
from high computational cost for the training procedure and poor segmentation results,
as training the DNN with exact EM uses imbalanced label datasets. A recent study by
Khan et al. [61] presented a cascade method for automatic brain tumor segmentation using
IoT-generated images. First, three handcrafted features were extracted and subjected to
SVM for binary pixel classification to generate confidence surface modality (CSM). The
CSM was then exploited as the prior knowledge to address the dynamic appearance
challenge of a brain tumor. Then, the CSM, along with MR images, was incorporated
into three novel pathways of the CNN architecture. However, the model showed poor
performance on intra-tumor region segmentation as the CSM that resulted from SVM-based
pixel classification presented information only for two classes (tumor or non-tumor) instead
of providing information on individual intra-tumor regions.

Another study by Jiang and Guo [62] highlighted the hybrid of a 3D fully CNN based
on U-net and CRF for multi-class semantic segmentation of brain tumor and the hippocam-
pus. Firstly, the 3D DNN based on U-net was designed to learn the mapping between
image volume and labeling volume considering the early fusion of all MR modalities of
the training samples. The learned mappings were then fused and applied to the new
batch of samples to jointly determine the tissue marking. Moreover, a fully connected CRF
was also proposed as the post-processing step to obtain spatially consistent segmentation
results. This method effectively combined multiple predictions of the structure’s prior
information and ranking of labels. Nevertheless, the proposed method suffers from two
major drawbacks, which are (i) the high computational time for training and testing and
(ii) the post-processing requirements for further structured segmentation output.

In a more recent study, the 3D DCNN combined with 3D atrous convolution filters,
termed AFPNet, was proposed by Zhou, He and Jia [63] for intra-tumor segmentation. The
combination of methods aimed to avoid spatial information loss caused by striding and
pooling operations of traditional DCNNs and also to enrich the learning features of brain
tumors. The 3D atrous convolution layers were applied at various atrous rates to construct
an atrous convolution feature pyramid. Then, a 3D fully connected CRF was adopted as
the post-processing step to perform more structural segmentation. Despite the advantages,
the approach has some disadvantages, including the limited performance of tiny lesion
tissue segmentation. Therefore, it has a relatively low segmentation rate for enhancing and
core tumor regions in comparison to complete tumor segmentation. Additionally, it also
requires a post-processing step for further segmentation enhancement.

An automated segmentation and tumor severity level classification algorithm was
suggested by Mahesh et al. [64] based on PSO for tumor segmentation and meta-classifiers,
termed FJODCNN, for severity analysis of gliomas. The model consists of three main steps:
Firstly, the segmentation of the core and edema regions was performed using the PSO as a
clustering algorithm. Secondly, the features were extracted from these regions, and, finally,
the classification was performed using the DCNN and optimally tuned by the fractional
Jaya opKtimizer algorithm. However, no qualitative or quantitative results were observed
for PSO-based segmentation.

A unified Incremental DCNN model based on Heterogeneous CNNs (HCNN) and
CRF for brain tumor segmentation was proposed by Deng et al. [65]. The steps involved
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in the method include the following: (i) training of the HCNN using image patches,
(ii) training of the CRF-recurrent regression-based neural network (RRNN) using image
slices with fixed variables of the HCNN, and (iii) adjustment of the whole network with
image slices. Three segmentation models were trained, especially with axial, sagittal, and
coronal image patches and slices, and finally combined in a voting fusion technique.

Table 2 displays the strengths and limitations of each sub-category of hybrid methods.

Table 2. Strengths and limitations of hybrid segmentation approaches.

Categories Approaches Strengths Limitations

Contour-based and
machine learning

[46–49]
• Provides automatic parameter

initialization.
• Prevents contour-based issues.

• The parameter setting is subjective.
• Requires skillful users.

Metaheuristic and
machine learning [50–55]

• Optimizes separation features.
• Provides automatic parameter

idealization.
• Improves response-to-noise ratio.
• Prevents local minimum to produce

optimal results.

• Poor performance for local
optimization.

• High system complexity.

Deep learning and
clustering or classification

[56–65]

• High performance for intra-tumor
segmentation.

• Encodes spatial information to
obtain the further structured output.

• Requires high computational time
and resources.

• Needs a post-processing step.
• Not for real-time applications.
• Requires a large amount of labeled

datasets.

4. Discussion

In general, brain image segmentation methods are categorized as intensity-based,
machine learning and hybrid, as summarized in Table 3. These approaches have both
collective and progressive manners. The collective aim is to segment: (i) healthy brain
tissues, (ii) brain sub-structures, and (iii) tumor and intra-tumor regions. The progressive
manner is that the complexity of the method increases. Overall, the findings of this
review can be classified into four main areas: (i) the main challenges in segmenting brain
structures, (ii) segmentation method trends, (iii) types of brain structures that have been
segmented, and (iv) the computation time of brain structure segmentation. Despite recent
developments in brain image segmentation methods, several challenges do exist.

4.1. Main Challenges in Segmenting Brain Structures

This section illustrates some challenges related to brain structure segmentation, espe-
cially tumor segmentation, which is the most challenging in MR modalities. The challenges
are generally associated with the nature of brain tissue topology and the data acquisition
procedure, as illustrated in Figure 3.
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Table 3. Summary of brain segmentation approaches (NA denotes Not Available).

Approaches Employed Objectives Image
Modality

Dataset
Information

Performance
Measure

(Accuracy)

Computation
Time Ref

Thresholding Complete tumor
segmentation MR Cancer Imaging

Archive, 2017 95% (Accuracy) NA [5]

Thresholding-based
segmentation

PART for grade-wise
identification

Complete tumor
segmentation
Grade-wise

classification

MR Self-collected
MRI images 95% (Precision) 0.02 s [6]

PSO and thresholding
LBP and deep features

extraction
GA

ANN

Grade-wise
classification NA RIDER

BRATS 2018 99% (Accuracy) 24.90334 s [7]

ALDE Healthy brain tissue
segmentation T2

Autism Brain
Imaging Data

Exchange
NA 1.2202 s [8]

LSHADE with multilevel
thresholding

Complete tumor
segmentation FLAIR BRATS 2015 0.9172 (Accuracy) NA [9]

WCMFO
Otsu

Healthy brain tissue
segmentation T2 Harvard

medical images 55.834 (PSNR) 2.3496 s [10]

LACM-BIC
k-means

Hierarchical centroid
shape descriptor

Complete tumor
segmentation

T2
T1c BRATS 2012 91%

(DSC) 15.8150 s [11]

FBB
Geodesic level set

methods

Complete tumor
segmentation

T2
FLAIR BRATS 2017

89.01% FLAIR
81.59% T2 (True

positive rate)
5 min [12]

Point set registration
Level set function

Hippocampus
segmentation T1 OASIS-

MICCAI
80.50%
(DSC) NA [13]

Prior knowledge-based
registration

Level set function

Hippocampus
segmentation 3TMR ADNI-HarP

84.75% left
Hippocampus
73.55% right

Hippocampus

NA [14]

Modified level set Complete tumor
segmentation T1 BRATS 2015 99% (Average

accuracy of 5 images) NA [15]

SLIC algorithm
RF

Multimodal supervoxel

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2012
BRATS 2013

0.89 whole tumor
0.80 tumor core

(Dice Score)
2200 ms [16]

Multiple classifiers-based
collaborative training

Feature extraction along
with clinical constraints

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2012
BRATS 2013

0.88 whole tumor
0.81 tumor core

0.74 enhancing tumor
(DSC)

NA [17]

Dominant grey
level-based k-means

Healthy brain tissue
segmentation MR Clinical dataset Qualitative results NA [18]

Multimodal supervoxel
Feature selection

(ERT) classification
Planner voting

Complete tumor
segmentation

FLAIR
T1c
T2

BRATS 2013 0.88
(DSC)

3.5 min
prediction
time per
subject

[19]



Brain Sci. 2021, 11, 1055 20 of 31

Table 3. Cont.

Approaches Employed Objectives Image
Modality

Dataset
Information

Performance
Measure

(Accuracy)

Computation
Time Ref

Cascade RFs
Dense CRF

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2015
BRATS 2018
ISLES 2015

0.86 whole tumor
0.79 tumor core

0.75 enhancing tumor
(DSC)

8 h training
3–4 min

inference
[20]

Parallel 2D deep CNN
architecture

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2013
BRATS 2015

88% whole
83% core

77% enhancing
tumor
(DSC)

8 min
testing [21]

Two-CNN pathway
architecture

Cascade CNN
architecture

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2013

88% whole tumor
79% tumor core
73% enhancing

tumor
(DSC)

3 min per
epoch

training
25 s per

slice
inference

[22]

Multi-scale CNN WMH

T1
FLAIR
T1IR

T2

MRBrainS13

0.87 WM, 0.85 cGM,
0.82 BGT, 0.93 CB,
0.92 BS, 0.93 lvCSF,

0.76 pCSF (DSC)

3–4 min
inference [23]

Dense-Res-Inception Net
(DRINet)

Intra-tumor
segmentation

CSF segmentation in
CT images

Multi-organ
segmentation of
abdominal CT

images

T1
FLAIR

T1c
T2
CT

BRATS 2017
Two clinical

datasets

83.47% whole tumor
73.21% tumor core
64.98% enhancing

tumor
83.42% pancreas
95.96% kidneys

96.57% liver
95.64% spleen

(DSC)

21.37 h
training
44.46 s

inference

[24]

Three modified versions
of SEGNET

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2015

0.87 whole tumor
0.86 tumor core

0.79 enhancing tumor
(DSC)

75 ms
inference [25]

Deep cascade neural
network

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2015

89% whole tumor
77% tumor core
77.2% enhancing

tumor
(DSC)

1.54 s
inference

[26]

Combined the symmetric
masks in several layers

of DCNN

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2015

85.2% whole tumor
68.1% tumor core
58.1% enhancing

tumor
(DSC)

9.7 s
inference [27]

Modified cascade 2D
U-Net structure

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2015
BRATS 2017

0.876 whole tumor
0.763 tumor core
0.642 enhancing

tumor
(DSC)

10 h
training

2 min
inference

[28]
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Table 3. Cont.

Approaches Employed Objectives Image
Modality

Dataset
Information

Performance
Measure

(Accuracy)

Computation
Time Ref

Deep CNN
Cross-modality fusion

Complete tumor
segmentation

PET
CT
T1
T2

Soft-tissue
sarcoma (STS)

85% fusing at the
feature level

85% fusing at the
classifier level

84% fusing at the
decision-making

level

740 s per
epoch

training
[29]

Combined two- and
three-path CNNs

Morphological operation

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2013

0.86 whole tumor
0.86 tumor core

0.88 enhancing tumor
(DSC)

5–7 min
inference [30]

Attention gate residual
U-Net model

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2017
BRATS 2018
BRATS 2019

0.872 whole tumor
0. 808 tumor core

0.80 enhancing tumor
(DSC)

NA [31]

Attention residual U-Net
Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2017
BRATS 2018

87.6% WT, 81.0 TC,
77.3% ET BRATS

2018
NA [32]

Patch-wise U-net Healthy brain tissue
segmentation T1 OASIS

IBSR

93% in average for
CSF, GM, WM OASIS

(DSC)

4 h training
and

inference
[33]

Three-stage cascade FCN
Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

0.8858 whole tumor
0.8297 tumor core
0.7900 enhancing

tumor
(DSC)

NA [34]

MRANet
Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS2015

0.78 whole tumor
0. 68 tumor core

0.60 enhancing tumor
(DSC)

2 s inference [35]

FCNN
A battery augmentation

Complete tumor
segmentation FLAIR

MAGNETOM
Prisma 3T
Siemens

85% average
(DSC)

27 ms
inference [36]

R-CNN
Chan-Vese level set

Tumor classification
and segmentation T1 Clinical dataset 0.92 (DSC) NA [37]

Encoder-decoder based
CNN architecture

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2018

0.8839 whole tumor
0.8154 tumor core
0.7664 enhancing

tumor
(DSC)

2 days
training [38]

RescueNet
Unpaired GAN-based

feature learning
Scale-invariant

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2015
BRATS 2017

94.63% whole tumor
85.6% tumor core
93.54% enhancing

tumor
(DSC)

48 h
training

60 s
Inference

[39]
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Table 3. Cont.

Approaches Employed Objectives Image
Modality

Dataset
Information

Performance
Measure

(Accuracy)

Computation
Time Ref

3D U-Net architecture
Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2018
Local hospital

dataset

0.85 whole tumor
0.77 tumor core

0.67 enhancing tumor
(DSC)

NA [40]

Dense connectivity
DCNNs

Atrous convolutional
feature pyramid

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2015
BRATS 2017
BRATS 2018

0.8642 whole tumor
0.7738 tumor core
0.7525 enhancing

tumor
(DSC)

10.616 s
inference

[41]

Multi-pathway 3D FCN
Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2018
BRATS 2019

89% whole tumor
78% tumor core 76%

enhancing
tumor
(DSC)

979 s epoch
training

86.1s
inference

[42]

3D CNN, Dilated
convolution

Healthy brain tissue
segmentation

T1
FLAIR

T1c
T2

ADNI
MRBrain18

MICCAI 2012

87.2%, WM, 87.2%
GM, 89.6% CSF

(DSC)
NA [43]

CNNs test-time
augmentation

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2017
BRATS 2018

87.4% whole tumor
77.5% tumor core
8.3% enhancing

tumor
(DSC)

NA [45]

RFs (ccRFs)
mpAC

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

TCGA-GBM
TCGA-LGG

90% whole tumor
80% tumor core
73% enhancing

tumor
(DSC)

7 h training
5 m

inference

[46]

Random walks algorithm
Weighted averaging

algorithm
ITRS

Complete tumor
segmentation

T1c
T2 BRATS 2015 70% HG

70% LG
0.72 s

inference [47]

Otsu
k-means

Tumor and
intra-tumor

segmentation

T2
FLAIR BRATS 2013

0.8450 enhancing
tumor

0.8450 necrotic
0.7834 edema

NA [48]

Dragonfly algorithm
k-Means
Level set

Whole tumor

T1
FLAIR

T1c
T2

BRATS 2017 85.67 (Accuracy) 40–45 s [49]

PSO-KFECSB Healthy brain tissue
segmentation T1 IBSR 90.19% (Jaccard

Index)
300 s

inference [50]

MOPSO-KFECSB Healthy brain tissue
segmentation T1 Brain web

IBSR

98% CSF
94% GM
96% WM

(DSC)
0.9560 (Sensitivity)

4.76 ± 0.15 s
per iteration [51]
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Table 3. Cont.

Approaches Employed Objectives Image
Modality

Dataset
Information

Performance
Measure

(Accuracy)

Computation
Time Ref

Hybrid FCM
Particle swarm
optimization

Level set

Complete tumor
segmentation

T1
FLAIR

T1c
T2

BRATS 2013

93.1% low-grade
glioma

89.6% high-grade
glioma
(DSC)

NA [52]

MFBAFCM Healthy brain tissue
segmentation T1 Brainweb

0.9580 CSF
0.9886 GM
0.9833 WM

(DSC)

NA [53]

Type-2 FCM Healthy brain tissue
segmentation

T1
T2 IBSR

0.8381 CSF
0.8381 GM
0.8381 WM

(DSC)

9.36 s
inference [54]

HMRF
Hybridized of CS and

PSO

Healthy brain tissue
segmentation T1 MRBrainS18

0.9374 CSF
0.8744 GM
0.9200 WM

(DSC)

900 s
inference [55]

CNN
CRF

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1
T2

BRATS 2015
ISLES 2015

0.90 whole tumor
0.75 tumor core
0.73 enhancing

Tumor
(DSC)

NA [56]

FCNNs
CRF-RNN

Tumor and
intra-tumor

segmentation

FLAIR
T1c
T2

BRATS 2013
BRATS 2015
BRATS 2016

0.84 whole tumor
0.73tumor core
0.62 enhancing

tumor
(DSC)

BRATS 2016

~12 d
training
2–4 m

inference

[57]

Multi-cascaded
convolution neural

network
Fully connected CRFs

Tumor and
intra-tumor

segmentation

FLAIR
T1c
T2

BRATS 2013
BRATS 2015
BRATS 2018

88.24% whole tumor
74.81% tumor core
0.7178 enhancing

tumor
(DSC)

BRATS 2018

3 d training
1.5–3 m per

image
inference

[58]

SK-TPCNN
RF classifier

Morphological operation

Tumor and
intra-tumor

segmentation

T1
FLAIR

T1c
T2

BRATS 2015

0.89 whole tumor
0.80 tumor core
0.87 enhancing

Tumor
(DSC)

NA [59]

DNN model using
expectation

maximization (EM)
algorithm

Complete tumor
segmentation T1 IBSR

Marmoset
94% (Mean Dice

Coefficient)

~65 h
training

30 s
inference

[60]

SVM
Three path CNN

Intra-tumor
segmentation

T1
FLAIR

T1c
T2

BRATS 2015

81% whole tumor,
76% tumor core,
73% enhancing

tumor (DSC) BRATS
2013

NA [61]
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Table 3. Cont.

Approaches Employed Objectives Image
Modality

Dataset
Information

Performance
Measure

(Accuracy)

Computation
Time Ref

3D fully CNN based on
U-net
CRF

Intra-tumor and
hippocampus
segmentation

T1
FLAIR

T1c
T2

BRATS 2017
MNI-HISUB25

88.9% whole tumor
81.3% tumor core
73.49% enhancing

tumor (DSC)
BRATS2015
90.82 CA1-3

86.65 CA4-DG
95.88% whole
MNI-HISUB25

NA [62]

DCNN
3D atrous
3D CRF

Complete tumor
segmentation

T1
FLAIR

T1c
T2

BRATS 2013
BRATS 2015
BRATS 2018

86% whole tumor
73% tumor core
68% enhancing

tumor (DSC)
BRATS 2013

7.21 s
inference [63]

PSO
FJODCNN

Severity levels of
glioma

T1
FLAIR

T1c
T2

BRATS 2012
BRATS 2018 0.95 (Accuracy) 5.5 s

inference [64]

HCNN
CRF-RRNN

Intra-tumor
segmentation

T1
FLAIR

T1c
T2

BRATS 2013
BRATS 2015 96.5 (Precision) NA [65]

These challenges can be summarized as follows:

• Variation in brain tumor shapes: Brain tumors may occur anywhere in the brain
tissue and could assume any shape and intensity. This poses difficulty in applying a
model based on a shape without prior knowledge or a statistical model to estimate
the tumor with a small variance. Besides, the tumor mass affects the arrangement of
the surrounding normal tissues, which increases the intensity due to overlap between
tumor regions and edema with healthy tissue.

• Intensity inhomogeneity: This is due to the intensity of non-homogeneity of homo-
geneous tissues during contrast injection and the variations of spatial intensity over
each dimension.

• Bias field: The bias field is another challenge faced during the process of brain seg-
mentation in MR images, which is caused by the defects in the acquisition sequences
or radiofrequency coil imperfections. The various biases associated with MR images
include shading, noise, artifacts, and partial volume effects.

• Non-standardized intensity: The intensity of MR modalities depends on the magnetic
fields and radio wave parameters, which are, in turn, influenced by the MR system
hardware requirements.

• Data scarcity: Data scarcity is the main weakness of supervised segmentation methods
of medical images that leads to overfitting. This implies the model has a good result
on the training data but fails to perform well on new data. Mostly, training labels are
not available for brain medical image analysis as it requires specialists in this field to
label MR images manually, which is a time-consuming process, subjective, and often
vulnerable to error.

• Data imbalance: Imbalanced MR image training datasets are one of the main chal-
lenges in supervised-based segmentation, especially in the field of brain tumor seg-
mentation or in lesions of the white matter. This is due to the fact that the healthy brain
region is greater in region size than the abnormal region. In this case, the training
model with imbalanced training datasets often results in an unreliable segmentation
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biased towards the dominant class with a larger region. For instance, in multimodal
MR images, the region of normal brain tissues is larger in size than the abnormal
regions that include brain intra-tumor regions. Generally, background and normal
brain tissue regions occupy 98.46% of the whole image pixels, while approximately
1.54% of image pixels only belong to the tumor sub-regions. As a solution to tackle
this data imbalance issue, several researchers have investigated the data resampling
technique. Recently, GAN has been used to synthesize surrogates for the training
dataset. This approach provides oversampling of the training dataset with synthetic
samples [66,67]. In this work, GAN incorporates structural information of the original
dataset to mitigate training data imbalance and scarcity issues. However, these ap-
proaches may add redundant data or remove some important details from the original
sample. Besides that, a patch-wise sampling approach by Kamnitsas et al. [56] has
been adapted to alleviate the data imbalance issue by randomly selecting patches
of the normal and abnormal regions from the training datasets. However, this ap-
proach suffers the difficulty of determining the right patch size to generate the relevant
training data samplings.
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Figure 3. Several challenges (noise, blur effects, and INU artifacts) related to brain segmentation using MR modalities:
(a) original blur, noisy, and INU slice; (b) the resultant slice after the enhancement process; (c) original blue line-bounded
and magnified region; (d) the resultant blue-bounded and magnified region after enhancement process; (e) original yellow
line-bounded and magnified region; (f) the resultant yellow-bounded and magnified region after enhancement process.

4.2. Trends in the Segmentation Methods

Various trends in brain structure segmentation approaches using MR images in a semi-
automatic and fully automatic mode could be classified into four main classes, namely
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(i) intensity-based (thresholding and region), (ii) machine learning (SVM, RF, Fuzzy C-
mean, CRF, EM, and deep learning), and (iii) hybrid. Intensity-based methods are based
on the hypothesis that pixels lying within a specific range belong to one class, despite
the simplicity and wide application in the field of brain imaging. The main challenges of
traditional intensity-based methods include intensity non-homogeneity and sensitivity
to noise for the thresholding-based methods. Meanwhile, the difficulty of incorporating
appropriate automated prior knowledge into the energy function to guide the contour
evolution is the main constraint of the region-based methods.

The approaches under the machine learning sub-class depend on manually extracted
features such as texture, symmetry, and intensity as input to classifiers for decision making.
The segmentation produced by the machine learning approaches suffers from overfitting
and loss of contextual information due to the individual classification of each pixel. These
approaches are therefore unsuitable for critical applications such as for multi-class brain
tumor segmentation as most of the information about a pixel label resides in the neighbor-
hood. Another challenge of handmade features includes significant inter-and intra-user
variability during the feature extraction. For instance, the frequently used SVM algorithm
is usually adopted for binary classification when the task of tumor segmentation requires
the classification of pixels into multiple categories. In contrast, the approaches under
clustering-based methods such as FCM and k-means are widely used due to simplicity and
applicability. However, being trapped in a local minimum, sensitivity to noise, and INU
artifacts are the common drawbacks of these methods.

Recently, the approaches under the deep learning method, especially CNNs, have
outperformed the manually designed features. The segmentation produced by this method
can be classified into patch-based and semantic-based methods. In patch-based methods, a
small spatial or volumetric patch of an image is selected and subjected to a network. This
method partially solves the issue of the imbalanced class label in MR images. However, the
approaches under the patch-based model suffer from the time-consuming disadvantage for
training and difficulty in determining the patch size. Instead of modeling powerful analysis
architecture to categorize numerous image patches, a more elegant network named FCN
can be used for semantic-based segmentation using the whole image as an input to the
network and trained end-to-end for pixel-wise predictions. The FCN approaches achieved
a promising result in the field of brain image segmentation. However, during the process
of down-sampling, the U-Net constantly reduces the dimension of the image due to the
presence of a pooling layer resulting in poor segmentation accuracy for small tumors that
have an overlapping boundary. Furthermore, up-sampling is performed in the original
design of the FCN to maintain a low level of spatial features and produce resultant images,
which are consistent with the original input size for better image context understanding.
However, the up-sampling process cannot completely retrieve the lost information as the
U-Net directly connects low-level features to the high-level ones to recover lost information
during the down-sampling process, which caused a semantic gap between two layers at
the same level. Therefore, the DLA technique was proposed to solve the semantic gap
issue using multi-feature refinement and fusion at several levels. The main challenge for
implementing CNN-based segmentation is designing an effective network architecture
and training strategy. The application of a 2D CNN in a slice-by-slice manner on 3D
MR images has a relatively low memory requirement but fails to detect some important
spatial information. To address this issue, 3D CNNs with convolutional layers consisting
of 3D filters were used to better exploit 3D features. However, this method requires high
computational resources. Similar to the 2D CNNs-based segmentation approaches, the 3D
CNN architectures were categorized into cascade and UNet. Another group of networks is
the 2.5D network, which was generated by subjecting the 2D networks into three orthogonal
views. The 2.5D DCNNs approaches achieve a tradeoff between model complexity, memory
consumption, and receptive field for 3D DCNN-based methods. Additionally, the 2.5D
DCNNs exploit the 2D inter-slice features and have a lower memory consumption than
their 3D counterparts. The main issue noted for most of the machine learning and deep
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learning methods is pixel classification that was conducted without considering the local
label dependency of ground truth with the appearance and spatial consistency being
ignored. To overcome this issue, the authors integrated deep learning approaches with
structuring methods such as CRF; however, the inference can be computationally expensive.
Otherwise, cascade architecture can be used to model label dependency by considering
the pixel-wise probability outputs where the initial CNN serves as an additional input
to subsequent CNNs. These methods can be computationally effective compared to CRF
since convolutions are efficient operations.

Hybrid-based segmentation approaches that integrate two or more different methods
within a single system were found to have wide applications in brain image segmenta-
tion and demonstrated promising results. Nevertheless, the approach is computationally
intensive when running an assemblage of models for both training and inference, which
is inappropriate for real-time applications. Specifically, the hybridized approaches with
optimization algorithms exhibited an efficient performance in addressing the segmentation
challenges and showed promising results in medical image segmentation. Nevertheless,
the approach suffers from complexity in setting the optimum value of parameters for
computing the fitness function and requires a long computational time. Improved seg-
mentation performance and robust results can be produced with optimization techniques
specifically for the hybrid category. Table 3 presents an overview of recent approaches
based on different algorithms used for brain tissue segmentation via MR images. A compar-
ative analysis was performed considering the approaches employed, types of segmented
tissue, and the type of implementation level. Table 3 also presents a quantitative analysis
of various approaches based on different evaluation parameters such as Dice score, Jaccard,
accuracy, and precision for brain segmentation. Overall, most of the recent studies focused
on multi-class brain tumor segmentation.

According to Deng et al. [65], the segmentation performance of hybridized deep learn-
ing and machine learning methods demonstrated better precision and sensitivity for the
BRATS benchmark. Meanwhile, Nema et al. [40] reported better performance using hybrid
deep learning-based segmentation for the Dice score. For healthy brain tissue segmenta-
tion, the performance of hybrid metaheuristic MOPSO and fuzzy clustering region-based
active contours was found to be better than that of the others for both Dice score and
sensitivity, as stated by Pham et al. [51]. Boulanouar and Lamiche [53] reported that good
results were obtained for both GM and WM segmentation using the Brainweb dataset. For
segmentation of the hippocampus structure in the brain, the performance of hybridized
deep learning based on 3D U-net with CRF was found to be better than that of the other
methods as measured using the Dice score by Jiang and Guo [62]. Nevertheless, increasing
the model complexity requires a longer computational time and a larger labeled dataset.
In contrast, the combination of the point set registration approach and level set method
resulted in a promising result as measured using Dice score as studied by Achuthan and
Rajeswari [11]. A reasonable computational time and the use of a labeled dataset without a
specific requirement were noted. For grade-wise classification, Khan et al. [6] reported good
results when thresholding for segmentation and PART for grade identification were used.
However, better performance was observed when metaheuristic (PSO) and thresholding
for segmentation and ANN for grade identification were used, as found by Sharif et al. [7].
To the best of our knowledge, there is no approach reported in the literature that could
provide the best results for all the parameters being evaluated. Therefore, this review
which demonstrates the application of recent segmentation methods, and the pros and
cons, will be valuable in guiding future researchers on promising outcomes.

4.3. Types of Brain Structure Segmentation

Commonly used image modalities for brain segmentation methods include T1, T2,
T1c, FLAIR, CT, 3TMR, and 7TMR modalities. Some of the segmentation methods showed
good performance when applied to a single modality, such as brain tissue sub-cortical
segmentation, hippocampus, and complete tumor segmentation. However, in the intra-
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tumor segmentation, multimodality-based approaches performed better. Most of the
studies used similar public datasets that are available online such as Brain Multimodal
Tumor Image Segmentation Benchmark (BRATS), Brain web, Internet Brain Segmentation
Repository (IBSR), and Marmoset, as exhibited in Table 3. The BRATS dataset is widely
used in most studies.

4.4. Computation Time of Brain Structure Segmentation

Table 3 includes the reported computation time for each of the segmentation ap-
proaches. From this review, it is worth noting that the deep learning models that report the
longest running time include the training and testing phases. This is due to many factors,
such as the level of convolutional layers in the model, spatial size of the filter, number of
filters, and other CNN hyperparameters. The run-time of the training phase per subject
is approximately three times the computation time of the inference phase. As shown in
Table 3, Zhao et al. [57] reported the longest training time among all the reviewed ap-
proaches, which took ~12 days for model training. Another work by Ito et al. [60], in which
they adapted CRF in the post-processing stage, presented a negative impact on the model
training, with a computational time of ~65 h. On the other hand, the longest inference time
was reported by Sergio Pereira et al. [21], which took 8 min for the inference phase. In
recent years, the rapid development of computer hardware and inference networks with
GPU clusters has promoted the application of deep learning-based methods in medical seg-
mentation. However, the extensive hyperparameters settings involved during the network
design are still a major bottleneck for clinical application and experimental research.

5. Conclusions

This paper presents a critical review of the trending approaches to brain segmentation.
The main objective of this review is to provide a better understanding for novice researchers
on existing challenges and areas of improvement in brain imaging. The quantitative
assessment of the segmentation methods using different evaluation metrics among the
various state-of-the-art approaches allows both clinicians and readers to develop new
research directions for the accurate diagnosis of brain lesions. The present review suggests
that deep learning-based and hybrid-based metaheuristic methods are more efficient for
the reliable segmentation of brain tumors. Future recommendations include similar critical
reviews for other body organs, such as the knee, stomach, and liver, which can assist
researchers in proposing a computer-aided diagnostic framework that will be beneficial for
timely cancer diagnosis.
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