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Abstract: Although disturbed functional connectivity is known to be a factor influencing cognitive
impairment, the neuropathological mechanisms underlying the cognitive impairment caused by
type 2 diabetes mellitus (T2DM) remain unclear. To characterize the neural mechanisms underlying
T2DM-related brain damage, we explored the altered functional architecture patterns in different
cognitive states in T2DM patients. Thirty-seven T2DM patients with normal cognitive function
(DMCN), 40 T2DM patients with mild cognitive impairment (MCI) (DMCI), and 40 healthy controls
underwent neuropsychological assessments and resting-state functional MRI examinations. Func-
tional connectivity density (FCD) analysis was performed, and the relationship between abnormal
FCD and clinical/cognitive variables was assessed. The regions showing abnormal FCD in T2DM
patients were mainly located in the temporal lobe and cerebellum, but the abnormal functional
architecture was more extensive in DMCI patients. Moreover, in comparison with the DMCN group,
DMCI patients showed reduced long-range FCD in the left superior temporal gyrus (STG), which was
correlated with the Rey auditory verbal learning test score in all T2DM patients. Thus, DMCI patients
show functional architecture abnormalities in more brain regions involved in higher-level cognitive
function (executive function and auditory memory function), and the left STG may be involved in the
neuropathology of auditory memory in T2DM patients. These findings provide some new insights
into understanding the neural mechanisms underlying T2DM-related cognitive impairment.

Keywords: type 2 diabetes mellitus; functional connectivity density; resting-state functional magnetic
resonance imaging; neuroimaging

1. Introduction

Type 2 diabetes mellitus (T2DM) is a heterogeneous metabolic disorder characterized
by reduced insulin sensitivity and relative insulin deficiency. The number of patients with
T2DM worldwide is approximately 445 million, and the incidence of this disease is increas-
ing [1]. In addition to causing impairments in various cognitive domains, such as visual
space, attention, also memory and executive function [1,2], T2DM also increases the risk
of mild cognitive impairment (MCI) and conversion from MCI to dementia [3]. Cognitive
function impairment can severely affect patients’ self-management ability and reduce their
quality of life, imposing a substantial economic burden to the society and the patients’
families [4]. Cognitive scales are often used to assess cognitive impairment in clinical
practice; however, assessments based on these scales are relatively subjective and cannot
easily reveal early changes in cognitive impairment. Thus, the identification of the poten-
tial imaging features of early cognitive impairment in T2DM patients, understanding the
processes underlying the changes leading to cognitive impairment, and the administration
of effective interventions may delay or avoid the occurrence and development of cognitive
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impairment in T2DM patients [5,6]. Since abnormal changes in brain structure and function,
especially the functional disconnection of brain hub nodes, are the neural basis of cognitive
impairment [7], the exploration of the change patterns in brain function in T2DM patients
with different cognitive states can help reveal the neural mechanisms underlying cognitive
impairment in T2DM patients. Although multiple teams have previously used resting-state
electroencephalography (EEG) [8], transcranial magnetic stimulation (TMS) [9], positron
emission tomography (PET) [10], and other methods to explore the neural mechanisms
underlying cognitive impairment in T2DM, the vast majority of studies assessing structural
and functional changes in the brain during different cognitive states in T2DM patients used
magnetic resonance imaging (MRI) techniques. Multiple studies [11–15] have shown no
significant differences or only mild changes in the white matter (WM) fiber tract integrity
and WM network between T2DM patients with normal cognitive function (DMCN) and
healthy controls (HCs), while T2DM patients with MCI (DMCI) showed extensive WM tract
generation and the severe impairment of small-world network properties. Moreover, the
WM integrity of the major interlobar pathways of the temporal lobe (right inferior frontal-
occipital and inferior longitudinal fasciculus) has been shown to be significantly associated
with impaired episodic memory and attentional function [11]. A voxel-based morphometry
analysis [16] showed gray matter volume (GMV) atrophy in multiple brain regions, includ-
ing the superior/middle temporal gyrus (STH/MTG), fusiform, and cingulate gyrus in
T2DM patients but also observed that these changes were more extensive in DMCI patients.
Structural studies have shown that the WM microstructure and GMV damage gradually
worsen along with cognitive impairment in T2DM patients, indicating that the underlying
anatomical changes may be closely related to the process of silent progression from normal
cognition to MCI in T2DM patients. However, functional studies have suggested that
the altered brain functions in T2DM patients under different cognitive states are more
complex and diverse. Yang et al. [17] evaluated brain network connectivity and found more
extensive impairments in intra-network and inter-network connectivity in DMCI patients
relative to DMCN patients and HCs. A recent study [18] suggested that DMCN patients
mainly show compensatory enhanced neuronal activity and increased nodal characteristics
in multiple brain regions, while DMCI patients show a coexisting brain function construc-
tion pattern of compensation and impairment but mainly impairment. Furthermore, Zhang
et al. [19] found that changes in the salience network functional connectivity and GMV
were non-linear and complex in T2DM patients with cognitive impairment. Despite these
findings, however, the pattern of whole-brain functional connectivity changes in T2DM
patients under different cognitive states remains unclear. As a voxel-wise, data-driven
method, functional connectivity density (FCD) mapping is widely used to examine the
density distribution of whole-brain resting functional connectivity. The global functional
connectivity density (gFCD) reflects the brain’s information communication capability to a
large extent, and brain regions with high gFCD are thought to be hubs connecting different
functional specialization systems [20]. In addition, brain regions with short-range and
long-range FCD are often specialized for modular information processing and integrative
information processing, respectively [21]. Several studies [22,23] have confirmed that the
balance of short-range and long-range FCD disorders is closely related to cognitive impair-
ment. The T2DM-induced impairments in glucose homeostasis may disrupt the established
balance of short- and long-range FCD [24]. Since the brain shows high energy consumption,
it is vulnerable to fluctuations in plasma glucose levels. Therefore, the exploration of the
altered patterns of FCD in T2DM patients under different cognitive states may better reflect
the functional abnormalities caused by long-term abnormal glucose homeostasis.

A previous study [25] showed that T2DM patients exhibit increased short-range
FCD and decreased long-range FCD, which may indicate a trade-off between energy-cost
and network efficiency at the expense of losing cognitive function. However, multiple
studies have shown that the features of T2DM-associated cognitive dysfunction differ
depending on the stage of diabetes [26,27] and that the cognitive impairment caused
by hyperglycemia may involve a complex process [28]. Therefore, this study aimed to
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use FCD evaluations to explore the functional architecture of the abnormal hub nodes
in T2DM patients in different cognitive states, which will provide some clues for the
identification of neuroimaging markers for the early assessment of T2DM-related cognitive
impairment. We speculated that the patterns of FCD alterations are not the same in T2DM
patients with different cognitive states and that abnormalities in brain regions may be more
extensive in DMCI patients. Furthermore, these abnormal FCD alterations may correlate
with clinical/cognitive variables.

2. Materials and Methods
2.1. Participants

This study adopted a cross-sectional design. Eighty participants with T2DM (39
DMCN and 41 DMCI patients; age, 42–68 years) were recruited from the Department of
Endocrinology of Shaanxi Provincial People’s Hospital, and 40 euglycemic individuals
(44–65 years of age; fasting glucose level, <6.1 mmol/L; HbA1c < 6.0%; no family history of
diabetes) who underwent health examinations at our hospital during the same period were
also enrolled as HCs. All of the participants were right-handed and had received at least
9 years of education. The patients met the 2014 American Diabetes Association diagnostic
criteria [29] and were receiving stable treatment. The exclusion criteria for both groups
were as follows: (1) age-related WM change (ARWMC) scale score of >2; (2) contraindicated
for MRI examination or unable to cooperate with MRI examination; (3) any neurological
or psychiatric diseases, such as Parkinson disease or major depression; (4) organic lesions
of the brain, such as tumors, hemorrhage, or vascular malformation, and surgical history
of neurological trauma; (5) presence of other endocrine or systemic organic diseases; and
(6) alcohol dependence and other psychotropic substance abuse. The inclusion criteria for
the DMCI group were as follows: (1) complaints of memory decline that could affect the
maintenance of normal daily activities; (2) Mini-Mental State Examination (MMSE) score of
>24 and Montreal Cognitive Assessment (MoCA) score of <26; and (3) a lack of any other
physical or mental disorders that could lead to abnormal cognition.

On the day of the scan, all patients were routinely prescribed medication in accordance
with the clinical treatment protocol to control blood glucose levels. They arrived at the MRI
department between 6:30 and 7:00 p.m. after dinner. Only one patient was scheduled to
undergo examinations each day to ensure that everyone underwent MRI scans for the same
period and with a relatively stable blood glucose level. The testing procedure and scanning
time of HCs were the same as those of T2DM patients. During the scan, all participants
kept their eyes closed and remained calm and reported no discomfort. The study was
approved by the ethics committee of Shaanxi Provincial People’s Hospital. The study
protocol was explained in detail to all participants, and all participants provided written
informed consent prior to participation.

2.2. Clinical and Neuropsychological Data

We obtained the medical history and clinical data of the patients from the medical
records and questionnaires, and the clinical data of HCs from the outpatient medical
examination center. Blood pressure was averaged over three measurements taken on
the same day. The participants maintained a fasting state for 8–12 h, and their elbow
venous blood was collected for laboratory tests, such as the measurement of the glycated
hemoglobin (HbA1c), fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC),
and low-density lipoprotein cholesterol (LDL-C) concentrations. In addition, postprandial
blood glucose (PBG) data for T2DM patients were collected in accordance with the standard
procedures. All participants underwent the following neuropsychological examinations:
MMSE, the preferred scale to exclude dementia, and MoCA, a rapid screening assessment
for MCI, were both used to assess general cognitive function; information processing speed
and attention were tested by the Trail-Making Test A (TMT-A); executive function and
visuospatial skills were evaluated by the Clock-Drawing Test (CDT); memory function
was estimated by using the Rey Auditory Verbal Learning Test (RAVLT) and analyzing the
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total immediate recall and delayed recall scores. All participants completed the MMSE,
MoCA, TMT-A, and CDT assessments. The RAVLT was not administered to the HCs,
and only a subset of the T2DM patients (24 DMCN and 36 DMCI) completed the RAVLT.
The neuropsychological tests were conducted by clinical neuropsychologists with at least
5 years of experience.

2.3. Resting-State fMRI Data Acquisition

MRI data were obtained using a 3.0 T scanner (Ingenia, Philips Healthcare, Best, The
Netherlands) with a 16-channel phased-array head coil. Before scanning, the participants
were instructed to lie supine, secure their heads with a sponge pad, wear earplugs to
reduce noise effects, close their eyes, and keep their heads still. First, routine T2WI and
T2-FLAIR sequences were obtained to exclude individuals with excessive WM changes
and organic brain lesions. Then, the participants were instructed to keep their eyes closed
and to remain awake and quiet. Resting-state functional blood oxygen-level-dependent
(BOLD) images were obtained using a gradient-echo planar sequence with the follow-
ing parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle
(FA) = 90◦, no. of volumes = 200, thickness = 4 mm (no gap), no. of slices = 34, field
of view (FOV) = 230 mm × 230 mm, and matrix = 128 × 128. Sagittal 3-dimensional T1-
weighted imaging (T1WI) was performed using a fast spoiled gradient-echo sequence with
the following parameters: TR = 7.5 ms, TE = 3.5 ms, FA = 8◦, slice thickness = 0.55 mm (no
gap), 328 sagittal slices, FOV = 250 × 250 mm, and matrix = 256 × 256.

2.4. Resting-State fMRI Data Analysis

Functional data were preprocessed using DPARSF_V4.3 (http://www.restfmri.net/
forum/DPARSF (accessed on 18 August 2021)) on the basis of MATLAB R2014b (Math-
Works, Natick, MA, USA) with the following steps: (1) The first ten time frames were
discarded to ensure that the signal reached equilibrium and showed saturation effects;
(2) slice-timing correction was performed for interleaved acquisitions to correct the time
delay between slices; (3) 3D head motion correction was performed, and patients with large
head movement were excluded (head motion > 1.5 mm and/or translation > 1.5◦ of rotation
in any direction); (4) the images were spatially normalized into a standard stereotaxic space
at 3 × 3 × 3 mm, based on the Montreal Neurological Institute (MNI) EPI template; (5) the
nuisance variables, including the cerebrospinal fluid and white matter signals, 24 head
motion parameters, and the linear trend signals were regressed out from further analysis.
Then, typical temporal band-pass filtering (0.01–0.08 Hz) was used to reduce the effect of
very low-frequency drift and high-frequency physiological noise (Figure 1).

Subsequently, based on a previous study by Tomasi and Volkow [30], we used custom-
written software in the Neuroscience Information Toolbox (NIT) to evaluate FCD mapping.
Specifically, voxel-wise functional correlation analysis was conducted for each voxel using
Pearson correlation analyses within the gray matter mask. Two voxels with a correlation
coefficient of R > 0.6 were considered to be significantly connected [22]. The global FCD
was computed by counting the number of functional connections between the given voxel
and the whole-brain voxels. The short-range FCD calculated the correlation coefficient
between a given voxel and its immediate neighbors. The voxel with an over-threshold
connection for the given voxel was added to its neighboring cluster. Next, the same
calculation was performed for each voxel in the neighboring cluster to expand the size of
the neighboring cluster until no additional voxels were added. Then, the number of voxels
in the final neighboring cluster were used to map the short-range FCD, which were defined
on the basis of a neighborhood strategy and represents the intraregional connectivity. The
long-range FCD was obtained by subtracting the short-range FCD from the global FCD,
which represented interregional connectivity [31]. Finally, the resting-state FCD maps were
spatially smoothed using a 6 × 6 × 6 mm full-width at half maximum (FWHM) Gaussian
kernel and converted into Z-score maps for further statistical analyses.

http://www.restfmri.net/forum/DPARSF
http://www.restfmri.net/forum/DPARSF
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2.5. Statistical Analysis

Analyses of demographic and clinical data among the three groups were performed
with SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). The Chi-squared (χ2) test was used
to analyze sex-based differences; one-way analysis of variance (ANOVA) was performed
with other data in the three groups; the least significant difference (LSD) was evaluated
to perform post-hoc comparisons. PBG, RAVLT immediate and recall scores, and disease
duration were assessed by independent two-sample t-tests in the two T2DM groups.
p < 0.05 was considered statistically significant.

For the FCD maps, ANOVA and random-effect two-sample t-tests were performed in
DPABI to depict the between-group differences in short-range FCD and long-range FCD
with education level as covariates (GRF corrected p < 0.005, cluster level p < 0.05). Mean
Z-scores for FCD were extracted from brain regions showing differences between groups
to explore the relationships with clinical/cognitive scores after controlling for education
(Bonferroni correction, p < 0.05).

3. Results
3.1. Comparison of Clinical and Neuropsychological Data

Three participants were excluded due to head motion (two patients with DMCN) and
small-vessel disease (one patient with DMCI). Finally, a total of 77 patients with T2DM
(37 DMCN patients and 40 DMCI patients) and 40 HCs were enrolled in the study (Figure 2).
The demographic, clinical, and neuropsychological data of the patients with T2DM and
the HCs are summarized in Table 1. All three groups showed no significant differences in
sex, age, education, blood pressure, body mass index (BMI), CDT scores, or TG, TC, and
LDL-C levels (p > 0.05), while the two groups of diabetic patients also showed no significant
differences in the diabetes duration and PBG levels (p > 0.05). In comparison with HCs, the
two T2DM groups showed higher FBG and HbA1c levels, and the DMCI group showed
fewer years of education. The DMCI group also showed poorer MMSE and MoCA scores
and higher TMT-A scores than the DMCN group and HCs and poorer RAVLT immediate
and delay recall scores than the DMCN group.
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Table 1. Demographic, clinical, and neuropsychological data of T2DM patients and healthy controls.

HC (n = 40) DMCN
(n = 37)

DMCI
(n = 40) F/χ2 p

Age (years) 54.80 ± 5.35 54.03 ± 5.86 55.33 ± 6.60 0.460 0.633
Sex (male/female) 27/13 26/11 24/16 0.978 0.613 #

Duration (years) - 9.05 ± 5.60 9.48 ± 5.44 - 0.739 &

Education (years) 14.35 ± 2.82 14.08 ± 2.20 13.18 ± 2.71 a 2.229 0.112
BMI (kg/m2) 24.41 ± 2.93 25.05 ± 2.67 24.75 ± 2.77 0.456 0.635
Systolic blood
pressure (mmHg)

124.62 ±
12.27

126.14 ±
18.77

127.28 ±
16.82 0.175 0.840

Diastolic blood
pressure (mmHg) 85.47 ± 9.40 81.38 ± 9.92 80.68 ± 13.79 0.944 0.393

FBG (mmol/L) 5.19 ± 0.81 8.78 ± 2.85 a 8.21 ± 2.825 a 19.977 <0.001 *
PBG (mmol/L)2 - 12.76 ± 3.20 12.14 ± 3.78 - 0.498 &

HbA1c (%) 5.62 ± 0.51 8.26 ± 1.66 a 7.90 ± 2.37 a 25.336 <0.001 *
TG (mmol/L) 1.83 ± 1.25 2.55 ± 4.46 1.86 ± 0.86 0.858 0.427
TC (mmol/L) 4.87 ± 0.95 4.65 ± 1.56 4.52 ± 1.20 0.741 0.479
LDL-C (mmol/L) 2.74 ± 0.77 2.57 ± 0.66 2.42 ± 0.88 1.491 0.230

MMSE score 28.69 ± 1.49 28.68 ± 1.73 27.65 ± 1.42
a,b 5.834 0.004 *

MoCA score 26.90 ± 1.92 27.43 ± 1.06 22.95 ± 1.92
a,b 81.722 <0.001*

CDT score 22.56 ± 6.58 22.50 ± 7.66 21.46 ± 8.12 0.260 0.772

TMT-A score 68.11 ± 26.93 74.68 ± 31.92 88.10 ± 28.85
a,b 4.745 0.011 *

RAVLT
immediate score - 46.29 ± 6.86 40.03 ± 6.59 - 0.001 &

RAVLT delay score - 9.71 ± 1.94 8.11 ± 2.10 - 0.004 &

Data are presented as mean ± standard deviation or number (%) unless otherwise indicated. BMI, body mass
index; FBG, fasting blood glucose; PBG, postprandial blood glucose; HbA1c, glycated hemoglobin; TG, triglyceride;
TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; MMSE, Mini-Mental State Examination; MoCA,
Montreal Cognitive Assessment; CDT, Clock-Drawing Test; TMT-A, Trail-Making Test A; RAVLT, Rey Auditory
Verbal Learning Test. # The p-value was obtained using the χ2 test. & The p-value was obtained using the
independent two-sample t-test. a post hoc paired comparisons show significant differences compared with HCs;
b post hoc paired comparisons show significant differences compared with DMCN patients; * p < 0.05.
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3.2. FCD Analysis

The regions showing differences in the long-range FCD among the three groups were
the left cerebellar lobule VIII/Crus II, left inferior temporal gyrus(ITG)/fusiform gyrus(FG),
right inferior frontal gyrus (IFG), and left superior temporal gyrus (STG). In comparison
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with the HCs, the DMCN group showed lower long-range FCDs in the right MTG/ITG and
left cerebellar lobule VIII/Crus I/II, while the DMCI group showed lower long-range FCDs
in the left ITG, right IFG, and left cerebellar lobule VIII. The DMCI group also showed
a lower long-range FCD in the left STG than the DMCN (Table 2, Figure 3). The regions
showing differences in the short-range FCD among the three groups were the right MTG/
ITG, right MTG/ITG/FG /cerebellar lobule VI, right IFG, and left STG. In comparison with
HCs, the DMCN group showed lower short-range FCDs in the left MTG/ITG and higher
short-range FCDs in the bilateral middle cingulate gyrus (MCC)/right precuneus, while the
DMCI group showed lower short-range FCDs in the right IFG, right MTG/ITG, and right
ITG/FG/cerebellar lobule VI. The short-range FCDs showed no significant differences
between the two T2DM groups (Table 3, Figure 4).

Table 2. Regions of abnormal long-range FCD among the three groups.

Brain Regions BA Voxels
(mm3)

Peak MNI Coordinates
f/t-value

X Y Z

ANOVA
L_cerebellar lobule VIII/Crus
II - 104 −24 −54 −48 13.916

L_ITG/FG 37 109 −39 −51 −6 12.070
R_IFG 47 217 51 33 −12 13.389
L_STG 13/41 116 −36 −30 9 12.689
DMCN vs. HC
L_cerebellar lobule VIII/Crus
I/II - 159 −48 −72 −33 −4.836

R_ MTG/ITG 38/21 175 51 12 −30 −4.089
DMCI vs. HC
L_cerebellar lobule VIII - 125 −15 −63 −48 −5.304
L_MTG/ITG/FG 37 245 −45 −60 0 −4.382
R_IFG 47 253 51 33 −15 −4.695
DMCI vs. DMCN
L_STG 41 124 −30 −30 9 −3.784

MTG, middle temporal gyrus; ITG, inferior temporal gyrus; STG, superior temporal gyrus; IFG, inferior frontal
gyrus; MCC, mid-cingulate cortex; FG, fusiform gyru; BA, Brodmann’s area; MNI, Montreal Neurological Institute;
L, left; R, right. Group differences in functional connectivity were evaluated by two-sample t-tests (p < 0.05,
Gaussian random field-corrected).

Table 3. Regions of abnormal short-range FCDs among the three groups.

Brain Regions BA Voxels
(mm3)

Peak MNI Coordinates
f/t-value

X Y Z

ANOVA
R_MTG/ITG 21/38 194 51 9 −39 10.514
R_MTG/ITG/FG/cerebellar
lobule VI 37/20 187 54 −48 −18 11.278

L_ITG 21 155 −60 −21 −15 10.434
R_IFG 47 206 51 33 −15 12.651
DMCN vs. HC
L_MTG/ITG 21 188 −66 −24 −15 −3.975
B_MCC/R_precuneus 24 188 15 −24 42 3.665
DMCI vs. HC
R_MTG/ITG 21/38 185 51 12 −45 −4.018
R_MTG/FG/cerebellar
lobule VI 37/20 299 39 −24 −18 −3.908

R_IFG 47 229 48 30 −12 −4.243
MTG, middle temporal gyrus; ITG, inferior temporal gyrus; IFG, inferior frontal gyrus; MCC, mid-cingulate cortex;
FG, fusiform gyru; BA, Brodmann’s area; MNI, Montreal Neurological Institute; L, left; R, right. Group differences
in functional connectivity were evaluated by two-sample t-tests (p < 0.05, Gaussian random field-corrected).
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Figure 4. Comparison of short-range FCDs among groups (GRF corrected p < 0.005, cluster level
p < 0.05). (a) Significant difference in short-range FCDs among three groups. (b) Significant difference
in short-range FCDs between the DMCI and HC groups. (c) Significant difference in short-range
FCDs between the DMCN and HC groups. The color scale denotes the t-value. L, left; R, right.
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3.3. Correlation Analysis

After controlling for education, the long-range FCDs in the left STG and the RAVLT
immediate (r = 0.356, p = 0.005) and delayed recall (r = 0.335, p = 0.009) scores showed
significant positive correlations in all T2DM groups (Figure 5). Abnormally altered FCDs
and other clinical/cognitive variables did not show significant correlations.
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Figure 5. The correlations between RAVLT scores and long-range FCD in the left superior temporal
gyrus. (a) Correlation between Z-scores of FCDs in the left superior temporal gyrus and the RAVLT
immediate scores (r = 0.356, p = 0.005); (b) Correlation between Z-scores of FCDs in the left superior
temporal gyrus and the RAVLT delayed recall scores (r = 0.335, p = 0.009). The asterisk (*) indicates
coordinate values, controlling for effects of years of education.

4. Discussion

The results of our study indicated that the patterns of functional architecture in T2DM
patients with different cognitive statuses were somewhat similar but not completely consis-
tent. Abnormal functional connectivity in T2DM patients mainly occurred in the temporal
lobe and cerebellum, but the abnormal functional architecture in DMCI patients was more
extensive. These findings were not consistent with those reported by Zhou et al. [32], who
found that the global and local efficiency and multiple nodal centrality were significantly
higher in DMCI patients relative to HC, whereas the whole-brain network topological
properties were not significantly abnormal in DMCN patients. These differences between
the studies may be attributable to the small number of participants or the inadequate
sensitivity of global topological measurements to detecting minor changes in the early
disease stage.

In this study, both long- and short-range FCD were bilaterally reduced in the MTG/ITG
of patients with T2DM, indicating the impaired functional connectivity of these regions
in both whole-brain functional integration and local modular information processing.
Although the decreased short-range and long-range FCDs of the MTG/ITG in both T2DM
groups were not on the ipsilateral cerebral hemisphere, studies [33,34] have confirmed
that the bilateral hemispheric functions in these regions do not differ much. The MTG
has been identified as a network hub of semantic processing and mainly contributes to
controlled semantic retrieval processes [35,36]. The MTG shows increased neural activity
during semantically demanding tasks [37,38]. Furthermore, the application of inhibitory
repetitive TMS to the MTG has been shown to affect semantic control function, including
performance on thematic and taxonomic tasks [39]. Although behavioral studies [40,41]
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have shown that T2DM patients have semantic cognitive deficits, the neural mechanisms
underlying these deficits have not yet been elucidated. Our results may provide some clues
for the further exploration of semantic cognitive dysfunction in T2DM patients. Several
previous neuroimaging studies [18,42,43] have demonstrated functional impairments of
the occipital primary visual cortex in T2DM patients. The regions of cerebellar lobule
VI, FG, ITG are engaged in visual cognitive processes [44–46]. The ITG is an important
part of the ventral visual pathway, and information from the primary visual cortex is
transmitted to the ITG through the ventral visual pathway, culminating in high-level visual
representations [47,48]. Patients with lesions in the ITG often exhibit deficits in object,
face, color, or scene vision [49,50]. Our results for disordered ITG functional connectivity
may indicate abnormal visual cognition in T2DM patients, consistent with the findings of
previous studies by Xiong et al. [18].

Cerebellar lobule VIII and crus I/II belong to the posterior cerebellum, which are
closely related to sensorimotor tasks, and several studies [51,52] have confirmed that the
posterior cerebellum is susceptible to diabetes-related disruptions. Movement impairments
in individuals with diabetes have historically been attributed to diabetic peripheral neuropa-
thy (DPN). Our study included 46 T2DM patients with DPN, which may be the reason for
the aberrant FCDs in the cerebellum. To confirm this hypothesis, patients with DPN were
selected and compared with HCs, and the findings showed more extensive cerebellar sen-
sorimotor region abnormalities in the T2DM patients with DPN (Supplementary Figure S1).
Furthermore, previous study has demonstrated abnormalities in cerebellar–cerebral circuits,
including the motor pathways, and their associations with cognitive impairment [53]. How-
ever, motor impairments, including poor balance [54], altered gait [55], and compromised
grip control [56], also occur in individuals with diabetes without DPN. Therefore, future
studies should focus on the presence of the abnormal central regulation of sensorimotor
function in patients without DPN, which may contribute to the understanding the neural
mechanisms underlying diabetes-related sensorimotor impairment.

The precuneus and MCC are the two core regions of the parietal memory network
(PMN) [57]. Numerous studies [58–63] have demonstrated that these regions exhibit robust
retrieval success effects across diverse memory tasks. One study [64] reported increased
neuronal activity in the precuneus and selective improvement in episodic memory after
rMTS treatment in AD patients. Moreover, the findings obtained in AD patients with
different cognitive states showed that the memory network and functional resilience ensues
in posterior regions (precuneus and MCC) and the cerebellum and that preclinical AD
patients without cognitive impairment showed increased compensatory functional coupling
between the precuneus and MCC [65]. Therefore, we hypothesized that the increased short-
range FCDs in the MCC and right precuneus in DMCN patients may be compensatory
changes to memory impairment. A previous study [18] has also described the possibility
of multiple compensatory mechanisms in altered brain function and reported increased
precuneus node properties in DMCN patients.

Executive function is a common cognitive impairment domain in T2DM patients [66].
The right IFG is a central region for executive control [67] and is involved in a variety of
higher cognitive functions such as working memory and attention [68–70]. A random-
ized controlled trial in patients with traumatic brain injury revealed that music-based
rehabilitation enhances executive functioning in conjunction with the increase of GMV
specifically in the right IFG [71]. Previous studies [72–74] have also suggested decreased
GMV and aberrant neuronal activity in the IFG in T2DM patients, indicating that the IFG
was a region susceptible to T2DM-related brain damage. One recent study [15] further
confirmed executive dysfunction impairment correlated with nodal efficiency in the right
IFG in DMCI patients. Therefore, we hypothesized that the reduced gFCD of the right
IFG in this study may indicate abnormal executive function in DMCI patients. Moreover,
the DMCI patients in the present study showed worse psychomotor speed and attention,
which is consistent with the findings of previous studies [75,76] reporting that MCI patients
often show impairment in multiple cognitive domains.
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The left STG is a shared substrate for auditory short-term memory and speech com-
prehension, and the structural integrity of the STG and sulcus has been shown to predict
auditory short-term memory capacity [77]. A recent meta-analysis [78] with a large sample
size demonstrated that the STG is a robust brain region with reduced resting-state brain
activity and may serve as a biomarker for the early diagnosis of MCI. Structural studies
have shown that the average thickness of the left STG and bilateral entorhinal cortex plays
a key role in the memory domain decline in MCI patients [79]. In functional studies, MCI
patients showed the hyperactivation of the left STG and insula during executive func-
tioning tasks of working memory, which may indicate compensatory responses to AD
pathology [80,81]. The DMCI group showed decreased long-range FCDs in the left STG in
comparison with the DMCN group, which may indicate the impaired cognitive function of
auditory memory in DMCI patients. In addition, the z-scores of long-range FCDs in the left
STG were positively correlated with the RAVLT immediate recall and long-term delayed
recall scores, which further confirms our speculation.

Our study had several notable limitations. First, it was a cross-sectional study with
a small sample size, which may have influenced the statistical power to some extent.
Second, the treatment regimens of T2DM patients were not consistent, and although this
inconsistency was unavoidable, it may have introduced some bias in the results. Third,
the fields covered by our cognitive scale were not comprehensive enough, and future
studies should aim to include more comprehensive and effective cognition-related scales
to evaluate the visual and semantic functions of the participants. Fourth, the results of
resting-state fMRI may lack specificity, and the use of task-state MRI for specific cognitive
functions could validate our speculations.

5. Conclusions

To our knowledge, the present study is the first to explore the pattern of altered whole-
brain FCD in T2DM patients with different cognitive states. The results showed that the
FCD change characteristics in T2DM patients differed according to their cognitive state. The
functional architecture disorders in DMCI patients were more extensive and included more
abnormalities in brain regions corresponding to higher-level cognitive function (executive
function and auditory memory function). In addition, the left STG may be involved in the
neuropathology of auditory memory in T2DM patients, providing some new insights into
the neural mechanisms underlying T2DM-related cognitive impairment.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/brainsci13010144/s1, Figure S1: Comparison of short- and long-range FCDs
between patients with diabetic peripheral neuropathy (DPN) and HCs (two-sample t-test: GRF corrected
p < 0.005, cluster level p < 0.05). The color scale denotes the t-value. L, left; R, right.
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