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Abstract: Combined antiretroviral therapy (cART) has greatly reduced the severity of HIV-associated
neurocognitive disorders in people living with HIV (PLWH); however, PLWH are more likely than the
general population to use drugs and suffer from substance use disorders (SUDs) and to exhibit risky
behaviors that promote HIV transmission and other infections. Dopamine-boosting psychostimulants
such as cocaine and methamphetamine are some of the most widely used substances among PLWH.
Chronic use of these substances disrupts brain function, structure, and cognition. PLWH with SUD
have poor health outcomes driven by complex interactions between biological, neurocognitive, and
social factors. Here we review the effects of comorbid HIV and psychostimulant use disorders by
discussing the distinct and common effects of HIV and chronic cocaine and methamphetamine use
on behavioral and neurological impairments using evidence from rodent models of HIV-associated
neurocognitive impairments (Tat or gp120 protein expression) and clinical studies. We also provide a
biopsychosocial perspective by discussing behavioral impairment in differentially impacted social
groups and proposing interventions at both patient and population levels.
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1. Introduction

The implementation of combined antiretroviral therapy (cART) in the global healthcare
system has improved health-related quality of life for people living with HIV (PLWH).
Historically, HIV was considered a terminal condition and has been recharacterized as a
manageable chronic condition based on cART’s ability to reduce comorbidities and prolong
survival [1,2]. Before the introduction of cART, PLWH exhibited severe HIV-associated
neurocognitive disorders (HANDs) and accelerated brain aging, with more prominence
during the late phases of HIV progression [3]. Currently, in the cART era, the prevalence of
HAND remains high, albeit with reduced severity [3,4].

Over 80% of PLWH exhibit a lifetime history of trying an illicit drug, compared to
50% in the general population [5]. Additionally, PLWH exhibit a four times higher SUD
prevalence than uninfected individuals [5]. Compared to other psychiatric disorders (i.e.,
depression, anxiety), SUDs are the most common comorbid conditions among PLWH
(40–74% vs. <50%) [6]. Cocaine and methamphetamine (meth) use disorders (CUDs
and MUDs, respectively) are associated with risky sexual behavior and needle sharing,
increasing the likelihood of HIV transmission [7–10]. Additionally, a higher frequency
of psychostimulant use has a greater negative impact on neurocognitive functioning in
PLWH than in people living without HIV, pointing to the importance of addressing this
dual diagnosis [11].
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Non-Hispanic Black people (NHB) and men who have sex with men (MSM) are
disproportionately affected by comorbid HIV and psychostimulant use disorders [5,10,12];
however, patterns of use tend to differ based on demographics. For instance, NHB PLWH
exhibit a higher prevalence of cocaine use than meth use [13]. Meanwhile, MSM tend to use
meth more than cocaine [14]. Therefore, we will discuss the differential outcomes of NHB
PLWH who use cocaine and MSM living with HIV who use meth. This is consistent with
Dr. Wakim-Takaki’s biopsychosocial model of comorbid HIV and CUD (HIV+/CUD+),
which documents complex relationships between biological, neurocognitive, and social
mechanisms underlying poor outcomes in HIV+/CUD+ patients [15]. In the present review,
we generalize this model to CUD and MUD since they have similar complex relationships
with cellular, neurocognitive, and social mechanisms [7–10,16–20]. We will add to this
model by reviewing evidence within the past 10 years with a central focus on studies that
investigated dopamine dysregulation, applied neuroimaging methods, and differentially
affected groups.

HIV and chronic psychostimulant misuse independently disrupt brain structure, func-
tion, and cognition [21–26]. The additive effects of HIV and chronic illicit psychostimulant
use may be attributed in part to dysregulation of the dopamine system. Acute exposure to
addictive substances transiently increases brain dopamine to supraphysiological levels, but
chronic exposure attenuates dopamine signaling long-term, contributing to impairments in
impulse control, learning, and memory [27]. Similarly, HIV significantly reduces dopamine
synthesis, exacerbating HAND and disease progression [28–30].

In this review, we will address the neuropathological, behavioral, neurological, and
social effects of comorbid HIV and psychostimulant use disorders (HIV+/CUD+ and
HIV+/MUD+) using Dr. Wakim-Takaki’s biopsychosocial model to provide insights into
the comprehensive interventions needed to address HIV+/CUD+ and HIV+/MUD+ [15].
We will first outline the neuropathogenesis of HIV and its implications for dysregulation of
the dopamine reward system. We will then characterize the behavioral and biological effects
of chronic psychostimulant exposure and HIV using pre-clinical and clinical evidence. In
reviewing clinical evidence, we will discuss the social determinants of HIV+/CUD+ in
NHB and HIV+/MUD+ in MSM, as these populations are differentially impacted by these
corresponding conditions [13,14]. Finally, we will propose individual and population-level
interventions per Dr. Wakim-Takaki’s biopsychosocial model [15]. To our knowledge, this
is the first review within the past ten years that provides a biopsychosocial characterization
and interventions for comorbid psychostimulant use disorders and HIV. It is crucial to
review the literature in the context of current HIV and SUD treatments, as there are
ongoing investigations and implementation of novel interventions [31,32]. This review may
guide researchers, clinicians, and health policy makers in investigating and mitigating the
complex effects of HIV+/CUD+ and HIV+/MUD+ through more holistic and culturally
informed approaches.

2. Methods

Since treatment and prevention interventions for HIV have rapidly advanced over the
past ten years, we searched only for studies from 2013 onward. In June 2023, we reviewed
original research articles using the database PubMed and the search engine Google Scholar.
Additional references were identified from previous knowledge and recursive reference
searching. For the pre-clinical studies reviewed, we only included studies that model HIV-1
using Tat or gp120 protein expression in mice and rats, as these proteins are involved
in HAND and HIV-induced neurotoxicity in humans [33]. For clinical studies, we only
included those that had 100% of their HIV sample on antiretroviral therapy to ensure the
evidence is harmonious with current medical treatments, except when discussing the effects
observed in MSM HIV+/MUD+, because we identified relatively few studies that had 100%
of their HIV sample on antiretroviral therapy. Meth use in this population is often a coping
mechanism for psychological distress due to experiences of stigma or trauma, presenting
psychosocial barriers to maintaining antiretroviral therapy [34–36].
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3. Neuropathological Alterations in HIV and Evidence for Dopaminergic Dysfunction

The mechanism by which substance use contributes to HIV neuropathogenesis is not
fully understood. HIV invades the central nervous system (CNS) within 1–2 weeks after the
initial infection [37] through the transmigration of infected mature CD14+CD16+ monocytes
across the blood-brain barrier (BBB) [38–42]. These cells can differentiate into long-lived
macrophages and establish a viral reservoir within the CNS, infecting and activating
myeloid cells, including microglia and macrophages, even with effective cART [43–49]. The
infected and activated myeloid cells produce inflammatory cytokines and chemokines [50],
leading to the recruitment and activation of additional myeloid populations and immune
cells and damage to the BBB, resulting in chronic neuroinflammation [51]. Additionally,
neurotoxic viral proteins such as Tat or gp120 that exacerbate the neurotoxic environment
may also be released [52]. Studies also demonstrate that a small population of astrocytes
harbor HIV DNA [53,54], but whether they are also viral reservoirs remains debated due
to their low infectivity and replication rates [48,55–57]. A recent study demonstrated that
although these reservoirs are low in number, HIV-infected astrocytes allow HIV to egress
into the periphery, where they can repopulate the virus [58]. T-cells may also become
infected and produce viruses in the CSF, which can circulate through the body and serve as
a possible latent reservoir [59]. While neurons are poor viral reservoirs due to their lack
of CD4 receptors, they are vulnerable to damage from chemokines, neurotoxins, and viral
proteins such as Tat and gp120 [60]. Neurodegeneration is a hallmark feature of HAND,
and both Tat and gp120 contribute to neurotoxicity through various mechanisms.

Tat, trans-activator of transcription, is the first viral protein to be transcribed and
translated from the integrated HIV-1 provirus and is responsible for the recruitment of
positive host transcription factor P-TEFb and recognition of the 5′TAR element in HIV-1
RNA, drastically increasing the rate of viral transcription [61–63]. Despite cART therapy,
low levels of Tat expression can result in chronic glial activation, cytokine expression, and
reductions in neuronal and synaptic density [64]. Exposure of primary microglial cells
to Tat results in mitochondrial dysfunction and initiates mitophagy, activating microglia
and neuroinflammation [65]. Injection of Tat into the caudate putamen of rats significantly
increased levels of malondialdehyde (MDA), indicating oxidative damage and induction
of neuronal apoptosis [66]. It has also been shown that Tat exposure can induce autophagy,
resulting in a Tat-mediated downregulation of tight junction proteins and consequently
increasing vascular permeability in an in vitro model of the BBB [67]. Tat also induces
a presynaptic loss in rat hippocampal neurons associated with excessive Ca2+ influx via
NMDAR [68].

Gp120, HIV envelope glycoprotein, progresses the pathogenesis of HAND by bind-
ing to co-receptors CCR5 and CXCR4 and allowing the virus to enter host cells [69].
Gp120 evokes synaptic and behavioral deficits in vivo that mirror significant features
of HAND [70]. In vitro studies have also demonstrated gp120′s role in neurotoxicity. Ex-
posure of primary rat cortical neurons to gp120 in vitro impairs mitochondrial function
by decreasing the respiratory capacity of mitochondria and disrupting mitochondrial dis-
tribution [71]. Alterations in tight junction expression, morphological changes in brain
microvascular endothelial cells, and increased stress fiber formation increase BBB perme-
ability with gp120 exposure [72]. In human monocytes, gp120 induces the production
of the cytokines TNF-a and IL-10, two proteins implicated in the immunopathology of
HIV-1 [73]. An increase in NMDAR-mediated excitatory postsynaptic currents measured
through whole-cell patch clamp recordings on hippocampal rat brain slices may involve a
molecular mechanism for gp120-induced neuronal injury [74].

Despite the success of cART, the CNS continues to serve as a viral reservoir for toxins
and cytokines. Tat and gp120 proteins are expressed in transgenic rodents to investigate
the neurocognitive deficits observed in HAND [70,75,76]. In non-infectious HIV-1 trans-
genic rats, 7 of the 9 HIV proteins (env, Tat, rev, vif, vpr, vpu, and nef) are constitutively
and systemically expressed and resemble HIV-1 seropositive individuals on cART [77].
Transgenic mice with gp120 expression constitutively express gp120 in astrocytes under



Brain Sci. 2023, 13, 1480 4 of 22

the control of the promoter of glial fibrillary acidic protein (GFAP) [70]. Tat and gp120
expression in transgenic rodents have been used to study the combined effects of HIV-1
and psychostimulant drug exposure. Expressing these viral proteins in transgenic rodents
can help elucidate mechanisms behind the altered dopaminergic systems observed in these
comorbid conditions [78–80]. However, since these models only express some HIV-1 viral
proteins, results from these models may miss the interactive and additive effects among
these proteins.

Dopamine dysfunction has also been associated with HIV infection, and research has
revealed selective damage to brain regions to which dopamine cells project, including
the striatum [29,81]. While cART diminishes damage to these regions, PLWH on cART
still shows striatal dysfunction, increased microglial activation, and inflammation, leading
to neuronal damage [82–86]. Dopamine signaling has immunomodulatory effects by
regulating the activation of myeloid and T-cells, the production of cytokines, transmigration,
and phagocytosis [87–90], which could influence the development of HIV infection in
the CNS and neurocognitive function. CD14+CD16+ monocytes, key mediators of HIV
neuropathogenesis, express mRNA for all five dopamine receptors [88]. Dopamine and D1-
like receptor agonists increased CD14+CD16+ cell motility, adhesion, and transmigration
across the BBB in an in vitro model, suggesting that elevated extracellular dopamine in
the CNS of PLWH with SUD contributes to HIV neuropathogenesis by increasing the
accumulation of monocytes in dopamine-rich regions [87,88]. Elevated dopamine increases
the susceptibility of macrophages to HIV [29] and spurs the production of inflammatory
cytokines [91]. These effects of dopamine on immune function may promote the spread
of viral infection, viral reservoirs, neuroinflammation, and neurotoxicity. Substance use is
associated with increased HIV neuropathogenesis and neurocognitive decline in PLWH
in the cART era [92–95], suggesting increased extracellular dopamine from substance use
may play a role in the neurotoxic effects of HIV even when viral titers are very low.

Emerging evidence from pre-clinical studies suggests an HIV-mediated potentiation of
drug reward [17,75,79,96,97]. These effects are theorized to be mediated by viral proteins,
specifically Tat, which continues to be produced under viral suppression. Recent studies
suggest that Tat may affect dopamine homeostasis by inhibiting dopamine transporter
function allosterically, potentially elevating extracellular dopamine [98–100]. Psychostimu-
lants, such as cocaine and meth, have complex interactions with Tat. Intravenous cocaine
self-administration increased striatal DAT binding and showed an increased sensitivity to
cocaine’s reinforcing effects in transgenic rats with Tat expression through a leftward shift
in the dose-response curve [97]. Tat induces conformational changes in DAT that increase
the affinity of cocaine for the transporter protein [101]. The similar and distinct effects
of chronic cocaine administration and HIV-1 infection appear to enhance neurotoxicity,
as evidenced by the overexcitation of mPFC pyramidal neurons in transgenic rats with
Tat expression [102]. HIV-Tat and cocaine combined exposure in human and rat primary
hippocampal neurons caused a significant depolarization of the mitochondrial membrane
potential, indicative of mitochondrial damage. In contrast, Tat alone or cocaine alone only
caused a slight effect on mitochondrial membrane potential [103].

Expression of Tat in transgenic mice augments methamphetamine-induced sensiti-
zation, as shown by increased locomotor activity and decreased expression of dopamine
receptors demonstrated with RT-PCR and immunohistochemistry [79]. Like the mechanism
of meth, Tat alters DA homeostasis by inhibiting DAT, and the combination of Tat and
meth decreases DAT function more than either condition alone [104]. Increasing doses of
meth resulted in impaired working and spatial memory in Tat transgenic mice compared to
non-Tat or non-meth-treated mice, suggesting cooperative effects between Tat and meth on
neurocognition [105]. Tat also increases microglial activation, indicating neuroinflamma-
tion [79]. Combined exposure to Tat and meth increased cellular ROS production, leading
to neuronal injury [106]. In sum, these studies find that HIV infection enhances the effects
of psychostimulants on dopaminergic pathways in the brain, including the reward pathway.
This raises the possibility that PLWH have a greater risk of developing SUDs than those
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without HIV. Future studies examining compounds that can specifically block Tat binding
site(s) in DAT and new forms of cART that do not affect normal DAT function, may provide
an early intervention for mitigating the negative effects of HAND in PLWH with SUD.

The effects of gp120 on the dopaminergic system and drug reward are not as well char-
acterized as those of Tat. Hu et al. 2009 were the first to report that human dopaminergic
neurons exposed to gp120 decreased DA uptake significantly, caused a loss of dopaminergic
neurons, and induced oxidative damage. Thus, gp120′s disruption of DAT function may
further exacerbate the effects of cocaine and meth. There are limited studies investigat-
ing the combined exposure of gp120 and cocaine or meth, which we highlighted in the
sections below.

4. Behavioral and Neurological Characterization of Comorbid HIV and
Cocaine/Methamphetamine Exposure in Tat or gp120 Transgenic Rodent Models
of HIV-1
4.1. Tat/Cocaine

Pre-clinical studies that model HAND using Tat expression in transgenic mice and rats
show synergistic and interactive effects of Tat and cocaine or meth exposure on behavior
and brain structure and function. In the following section, we will review the behavioral
and neurological deficits associated with combined Tat expression and cocaine or meth
exposure and the sex differences between these deficits. The reviewed literature includes
different drug conditioning paradigms. Thus, we will review the literature in the context of
the experimental designs.

Studies that evaluated the effects of cocaine in transgenic rodents with Tat expression
(Tat+/Cocaine+) provide evidence for the additive effects of cocaine exposure and Tat
expression on behavioral impairments. Few studies have evaluated the effects of cocaine
self-administration on behavior in rodents with Tat expression within the past ten years.
One study revealed that Tat+ mice self-administered more cocaine at escalating doses than
Tat- mice [97]. This evidence suggests that Tat exacerbates sensitivity to the rewarding
effects of cocaine; however, further investigations using this drug administration paradigm
are required. Consistent with this, studies that used a cocaine-condition place preference
paradigm (cocaine-CPP) showed synergistic effects of Tat expression and cocaine exposure.
Cocaine-CPP is used to measure the motivational effects of cocaine by exposing rodents to
cocaine in an established environmental preference and then measuring place preference
without cocaine exposure [107]. A study that used cocaine-CPP showed that Tat+ mice
exhibited more cocaine-CPP and locomotor activity than Tat- mice [17]. To further in-
vestigate how Tat expression changes cocaine-CPP, researchers induced Tat expression
in mice that exhibited cocaine-CPP. After Tat induction, there was a 3.1-fold increase in
cocaine-CPP compared to previous place preferences [17]. Together, this evidence shows
that Tat expression exacerbates cocaine-induced sensitization, conditioning, and motivation.
This points to the importance of addressing CUD in people diagnosed with HAND, as they
could exhibit a greater severity of CUD than someone with CUD alone.

A study using a chronic drug regimen of cocaine found interactive effects of combined
Tat expression and cocaine exposure on cognition. Researchers employed behavioral tasks
measuring a range of cognitive functions and observed that only Tat+ mice exposed to
cocaine exhibited greater impairments in working memory than drug-naive controls [108].
There were no other significant interactive effects for behavioral tasks that tested for
balance, coordination, or locomotor activity [108]. This suggests that working memory is
a relatively unique deficit associated with chronic cocaine exposure in HAND; however,
further investigations using other drug administration paradigms and more comprehensive
behavioral testing are needed to determine the specificity of these findings more definitively.

The exacerbated effects of Tat expression and cocaine exposure on reward, condition-
ing, motivation, drug sensitization, and working memory in transgenic rodents may be
explained by electrophysiological dysregulation and structural abnormalities in the pre-
frontal cortex (PFC), striatum, and hippocampus. The neuropathological effects of HAND
and CUD affect the PFC, striatum, and hippocampus [30,82,109–112]. Thus, it is important
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to highlight the impact of combined Tat expression and cocaine exposure on these regions
to determine future directions in investigating pharmacological interventions. A study
that employed a cocaine self-administration paradigm and induced Tat expression in vivo
found that Tat+/Cocaine+ and Tat-/Cocaine+ rats both exhibited increased excitation of
medial PFC (mPFC) pyramidal neurons; however, Tat+/Cocaine+ rats showed the great-
est excitation [20]. Interestingly, a study that employed cocaine self-administration and
exposed mPFC tissue to Tat in vitro showed rats exposed and not exposed to cocaine exhib-
ited increased excitation of mPFC pyramidal neurons, with cocaine-exposed rats showing
the greatest increase [19]. Combined, these results suggest the non-temporal-specific syn-
ergistic effects of combined cocaine exposure and HAND on the hyperexcitability of the
mPFC. In the striatum, combined Tat expression and cocaine self-administration reduced
affinity and increased abundance of low-affinity dopamine reuptake transporters (DATs)
compared to Tat+/Cocaine- rats [97]. This may be a compensatory mechanism for cocaine
exposure and HIV-induced inhibition of DAT [78,113]. Dysregulation of the dopamine
reuptake mechanism (through DAT) may be an underlying mechanism for the effects of
Tat+/cocaine+ on reward, conditioning, motivation, and drug sensitization; however, more
comprehensive studies that evaluate the relationships between DAT binding and reward
functioning are needed before characterizing DAT as a therapeutic target for addressing
these behavioral impairments.

Structural abnormalities in neuroimmune cells in the hippocampus may explain the
interactive effects of Tat+/Cocaine+ on impaired working memory. A study that used a
chronic cocaine administration regimen observed that only Tat+/Cocaine+ mice exhibited
reduced branch lengths of microglia and dendritic swelling in the hippocampus [108].
These morphological deficits may be due to the effects of combined cocaine exposure and
Tat expression on neuroinflammation through enhanced microglia activity [114,115].

Despite limited studies on sex differences in behavior and neurological functioning
among Tat+/Cocaine+ rodents, evidence suggests estrogen may be a neuromodulator of
these deficits. A study that employed the cocaine-CPP paradigm in female mice in the
diestrus (low-hormone) and proestrus (high-hormone) phases of the estrogen cycle showed
that diestrus mice with Tat expression exhibited greater cocaine-CPP than proestrus mice
with Tat expression. Before cocaine sensitization was established, only female mice in the
diestrus phase with Tat expression exhibited lower cocaine-induced locomotor activity than
Tat- mice or Tat+ proestrus mice [116]. These results suggest that the acute effects of cocaine
are greater in the diestrus phase than in the proestrus phase and that the estrogen cycle
exerts less influence on the effects of chronic cocaine exposure. Thus, the estrous cycle may
be a therapeutic target for women living with HAND at high risk for CUD, which merits
investigation. Research that evaluates if cyclical sex hormone fluctuations in Tat+/Cocaine+
male rodents is needed to determine if males living with HAND require more sex-specific
pharmacological therapies.

4.2. Tat/Meth

Tat+/Meth+ rodents exhibit poorer working memory and greater drug sensitization
than Tat+/Meth- or Tat-/Meth+ rodents. Tat+ mice sensitized to meth through a chronic
administration regimen exhibited greater locomotor activity than Tat- mice during the meth
challenge, suggesting synergistic effects of Tat expression and chronic meth exposure on
drug sensitization [79,117]. A study that employed a binge meth regimen in transgenic
mice with and without Tat expression observed that only Tat+/meth+ mice exhibited
poorer working memory than controls [105]. Researchers also found that Tat+/Meth+ and
Tat+/Meth- mice similarly exhibited poorer spatial memory than controls [105]. These
results are consistent with evidence showing that working memory impairments are specific
to Tat+/Cocaine+ rather than Tat+/Cocaine- or Tat-/Cocaine+ [108]. Combined, these
findings may point to working memory as a therapeutic target for comorbid HAND
and psychostimulant use disorders. Future studies should directly compare working
memory impairments between Tat+/Cocaine+ and Tat+/Meth+ mice to determine the
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generalizability of these results. Tat expression also increases the rewarding effects of meth,
as measured through intracranial self-stimulation (ICSS). The ICSS procedure is an operant
paradigm that pairs a lever press with an electrical shock to the medial forebrain bundle to
evaluate the neurocircuitry underlying the reinforcing effects of addictive substances [118].
A study using ICSS in Tat+ and Tat- mice after administration of the binge-meth regimen
observed that Tat+ mice exhibited a lower reward threshold than Tat- mice [119]. This
indicates Tat+ mice showed greater sensitivity to the reinforcing effects of meth compared
to Tat- mice [119]. A study that compared ICSS in Tat+ mice during withdrawal from
chronic or binge meth administration regimens demonstrated that mice from both regimens
exhibited higher reward thresholds than Tat-, indicating more reward deficits or anhedonia
regardless of pattern of use [120]. Combined, these results provide comprehensive evidence
in support of the exacerbated effects of combined Tat expression and meth exposure on the
neurocircuitry underlying reward.

The deficits in working memory and exacerbated meth sensitization observed in
Tat+/Meth+ transgenic rodents may be due to neurological deficits in the striatum, PFC, and
hippocampus. Neurological deficits in Tat+/Meth+ transgenic rodents are observed on a
molecular level, such as through dysregulation of dopamine receptor expression, autophagy
markers, and growth factors. Studies that used a chronic meth administration regimen
in transgenic rodents observed that Tat potentiates the neuropathological mechanism
of meth exposure. A study that evaluated dopamine receptor density in Tat+/Meth+,
Tat+/Meth-, Tat-/Meth+, and Tat-/Meth- mice showed Tat+/Meth+ exhibited the lowest
dopamine receptor D2 (DRD2) protein expression in the caudate putamen compared to
all groups [79]. These results provide evidence on the additive effects of Tat expression
and chronic meth exposure on the dopamine meso-striatal system. The downregulation
of DRD2 in the caudate putamen may explain the exacerbated locomotor activity in Tat+
mice chronically exposed to meth, as striatal DRD2 pathways contribute to controlling
meth-induced locomotion [121,122].

Rats with Tat expression chronically exposed to meth exhibited higher autophagy
markers in striatal dopamine-receptor-expressing neurons than Tat+/meth- and Tat-/meth+
rats [106]. This evidence suggests that chronic meth exposure enhances HIV neuropatho-
genesis. Autophagy may play a role in oxidative stress, as the administration of reactive
oxygen species (ROS) scavenger N-acetylcysteine amide lowered the expression of au-
tophagy markers in Tat+/Meth+ rats [106]. This suggests ROS scavengers may effectively
reduce neuropathogenesis from HIV in people who use meth chronically. The impairments
in working memory observed in transgenic mice with Tat expression administered meth
binge regimen may be due to reduced brain-derived neurotrophic factor (BDNF) gene
in memory-related brain regions (i.e., hippocampus, parietal cortex, PFC). A study that
administered a binge meth or saline regimen to transgenic mice with and without Tat
expression observed that Tat+/Meth+ mice exhibited reduced levels of BDNF in the pari-
etal cortex, hippocampus, PFC, and cerebellum. In contrast, reduction in BDNF was only
observed in the parietal cortex and PFC in Tat+/Meth- and Tat-/Meth+ mice [105]. This
shows that Tat expression and binge meth exposure have more pervasive adverse effects
on the brain. Reduction in BDNF is often associated with working memory impairments in
rodent models of psychiatric conditions such as depression and schizophrenia [123–125].
Recent evidence shows that aerobic exercise increases BDNF levels and improves working
memory in rodents [126,127]. This suggests that lifestyle interventions may help mitigate
working memory impairments in people living with comorbid HAND and MUD.

Estrogen may play a role in the oxidative stress mechanism of Tat protein expression
and binge meth administration in transgenic mice. When researchers administered ROS
scavenger N-acetylcysteine amide to male and female mice with and without Tat expression
following a meth challenge, they only observed attenuation of meth-induced locomotion
and increases in DRD2 expression in Tat- females and males and in Tat+ males, but not in
Tat+ females [117]. The blunted response to the ROS scavenger in Tat+ females is likely
due to changes in estrogen levels in the brain, which alters redox homeostasis [128]. Also,
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Tat expression and chronic meth exposure exacerbate the reduction in protein expression
responsible for redox balance compared to Tat+/Meth- and Tat-/Meth+ [106]. In humans,
when estrogen levels decrease, especially in adult females, there is a decrease in energy
production and an increase in brain ROS levels [128]. Future directions should evaluate the
interactive effects of age and estrogen levels in Tat+/Meth+ female rodents to investigate
more sex-specific pharmaceutical interventions.

4.3. Gp120/Cocaine

Like Tat, gp120 expression is used to model HAND in transgenic rodent models;
however, it is important to note that the majority of the gp120 studies that met the criteria
for this review primarily focused on the combined effects of gp120 expression and meth
exposure on neuroimmune and behavioral functioning, with limited characterization of
the effects of gp120+/Cocaine+. Below, we review the behavioral, neurological, and sex
differences observed in gp120+/Cocaine+ and gp120+/Meth+ transgenic rodents, with a
primary focus on gp120+/Meth+ studies, as they have predominated the literature within
the past ten years.

Abstinence from chronic cocaine self-administration and gp120 protein expression
decreases responsiveness to pharmacological interventions. MC-25-41, a weak D3R partial
agonist, has been shown to reduce cocaine motivation in rats; however, in a study that
administered MC-25-41 to rats with and without gp120 expression, reduced cue-induced
cocaine seeking occurred only in rats without gp120 expression [80]. This evidence suggests
that HAND may reduce treatment efficacy for cocaine seeking, highlighting the importance
of investigating novel therapeutic interventions for people living with HAND and CUD.

Combined gp120 and cocaine exposure induce neurological dysfunction through
neuroimmune cell energy deficits. An in vitro study using CHME-5 microglial cells and pri-
mary astrocytes transformed from rats showed how combined gp120 expression and cocaine
exposure exacerbated oxidative stress [129,130]. Researchers found that gp120+/Cocaine+
cells exhibited greater ATP utilization than controls, while gp120+/Cocaine- did not. Fur-
ther, gp120+/Cocaine+ and gp120-/Cocaine+ exhibited increased oxygen consumption
than controls, with gp120+/Cocaine+ rats exhibiting the highest oxygen consumption
rates [130]. Additionally, all groups exhibited greater levels of ROS than controls, with
gp120+/Cocaine+ showing the highest levels [130]. This evidence suggests that
gp120+/Cocaine+ exposure exacerbates neurotoxicity compared to gp120 expression and
cocaine exposure alone. Future in vivo studies are needed to determine how cocaine ex-
posure impacts the energy consumption of neuroimmune cells in various brain regions.
Such future investigations will permit researchers to identify region-specific neuroimmune
cell targets.

We did not find studies that investigated sex differences or effects of sex hormones
in behavior or neurological structure and functioning in gp120+/Cocaine+ rodents that
met the criteria for this review. Future studies need to investigate this because of evidence
demonstrating estrogen’s role in behavioral and neurological deficits in Tat+/Cocaine+
mice [116]. Expanding this field to include gp120 would provide insights into similar
and distinct roles of Tat and gp120 protein expression in sex differences of behavior and
brain structure and function. This will inform how scientists will investigate and develop
more symptom- and sex-specific therapies, as Tat and gp120 have similar and different
mechanisms in the neuropathogenesis and neurotoxic effects of HIV [81].

4.4. Gp120/Meth

Rodents with combined gp120 expression and binge meth exposure exhibit deficits in
working memory, learning, and spatial memory. A study used the Barnes Maze test to eval-
uate spatial memory by calculating the time mice spent between the target and other quad-
rants. While gp120+/Meth-, gp120-/Meth+, and gp120+/Meth+ mice exhibited a smaller
time difference between the target and other quadrants than controls, gp120+/Meth+ mice
exhibited the smallest time difference [131]. These results suggest that combined gp120
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protein expression and binge meth exposure worsen working memory impairments. An-
other study that used the Barnes Maze test to measure learning based on the percentage of
errors before finding the target quadrant reported that gp120+/Meth+ mice exhibited lower
scores than gp120+/Meth-, gp120+/Meth-, and controls on the last day of acquisition [132].
This may indicate that gp120+/Meth+ induces more learning impairments than gp120
expression or binge meth administration alone. A study used the attentional-set-shifting
test, which involves researchers presenting textures or odors paired with a food pellet
and introducing an interfering stimulus to test for discrimination learning [133]. Results
showed that gp120+/Meth+ mice exhibited the greatest failure rates in visual discrimi-
nation, suggesting that combined gp120 expression and binge meth exposure exacerbate
learning deficits [133]. Future studies should evaluate learning and memory processes in
meth self-administration and chronic meth exposure paradigms to understand how these
findings translate to people living with comorbid HAND and MUD.

The learning and memory impairments observed in gp120+/Meth+ mice may be
explained by electrophysiological impairments in the hippocampus. A study that acutely
exposed rat hippocampal slices to gp120 and meth independently showed reduced synap-
tic transmission in the CA1 region and reduced long-term potentiation in the CA3-1 re-
gions [134]. Co-treatment of hippocampal slices with gp120 and meth exacerbated these
effects, suggesting synergetic effects of gp120 and acute meth exposure [134]. Combined
binge administration of meth and gp120 expression reduced post-tetanic potentiation in
the hippocampus compared to controls, while gp120+/Meth+ did not exhibit differences
from controls [131]. Together, this evidence suggests that the electrophysiology of the hip-
pocampus may be a therapeutic target for the learning and memory impairments observed
in gp120+/meth+ mice [132,133]. Future studies should examine neurotransmitter receptor
expression to determine the molecular mechanisms underlying electrophysiological dysreg-
ulation of the hippocampus in rodents administered meth in vivo. This will allow clinicians
and scientists to investigate and identify biochemical therapeutic targets in co-occurring
HAND and MUD.

Sex differences in the effects of gp120 expression and meth exposure on the brain and
behavior within the past ten years are limited. Two studies provided evidence for age and
sex interactions in sensorimotor gating as measured by pre-pulse inhibition (PPI), which is a
startle reduction to a strong auditory stimulus preceded by a weak auditory stimulus [135].
One study investigating PPI in mice withdrawn from binge meth exposure did not observe
any differences between gp120+/Meth+ male and female mice [136]. Another study that
measured PPI in male and female mice at 8, 14, and 22 months showed that only aged male
gp120+/Meth+ mice exhibited reduced PPI, providing evidence for impaired sensorimotor
gating [137]. These results suggest that older men with comorbid HAND and MUD may
exhibit impairments in information processing. The result from this study also highlights
the importance of early HIV treatment in men with MUD, as they could suffer from more
severe cognitive impairments. Future studies should investigate the interactions between
gp120, meth exposure, and sex hormones in the brain regions underlying PPI to characterize
the mechanisms underlying these sex differences.

5. Behavioral and Neurological Characterization of Comorbid HIV and Cocaine Use
Disorder/Methamphetamine Use Disorder from Clinical Evidence
5.1. HIV/CUD

Clinical studies have explored the effects of CUD on behavior and brain structure and
function among PLWH through cognitive battery assessments, structural MRI, resting-state
fMRI, task-based fMRI, and PET imaging. Studies that used monetary decision-making
tasks revealed HIV+/CUD+ exhibited more risky decision-making than HIV+/CUD- and
HIV-/CUD+ [94,138]. This impaired decision-making may be related to inhibitory control
deficits associated with HIV+/CUD+ that are persistent through abstinence from chronic
cocaine use. HIV+/CUD+ exhibited lower correct response rates on a Go/No-Go task than
HIV+/CUD- and HIV-/CUD+, indicating impaired response inhibition [139]. Consistent
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with the exacerbated behavioral impairments observed in transgenic rodent models of
HAND with cocaine exposure, HIV+/CUD-, HIV-/CUD+, and HIV+/CUD+ exhibited
poorer decision-making and inhibitory behavior than controls, with HIV+/CUD+ showing
the most impairments [17,94,108,138,139]. This provides evidence that HIV increases
vulnerability to behavioral impairments associated with CUD, pointing to the importance
of addressing this comorbid condition.

Task-based fMRI studies have highlighted the neurocircuitry underlying these be-
havioral impairments. When making decisions about monetary rewards, HIV+/CUD+
exhibited heightened global activation of the PFC during easy choices and lower activation
during hard choices. In contrast, HIV+/CUD- and HIV-/CUD+ only exhibited increased
activation in the PFC during hard choices [138]. Meade et al. further administered an
economic loss aversion fMRI task; HIV+/CUD+ exhibited economic-gain-related activation
in the vmPFC and posterior precuneus and economic loss-related activation in the anterior
cingulate cortex [94].

Studies that used comprehensive neuropsychological batteries in the cART era did not
show differences in cognitive functioning between HIV+/CUD+, HIV+/CUD-, HIV-/CUD+,
and HIV-/CUD- [139–141]; however, other studies revealed differences in activation pat-
terns of brain regions associated with neurocognitive functions, suggesting the effects of
HIV+/CUD+ may affect neurocognitive functioning at subclinical levels. As risk increased
in a probabilistic monetary decision-making fMRI task, HIV+/CUD+ showed heightened
activation of the hippocampus, post-central gyrus, lateral occipital cortex, cerebellum, and
posterior parietal cortex. In contrast, HIV+/CUD-, HIV-/CUD+, and HIV-/CUD- exhib-
ited lower activation [141]. Hyperactivation may be a compensatory mechanism for the
neurodegenerative effects of HIV+/CUD+, similar to that observed in transgenic rodent
models of HAND with cocaine exposure [19,20,142]. Researchers recently evaluated the
effects of HIV+/CUD+ on brain glucose metabolism using PET with an 18F-FDG radio-
tracer. Their results showed that HIV+/CUD+ had the lowest levels of 18F-FDG uptake
globally, while HIV+/CUD-, HIV-/CUD+, and HIV-/CUD- exhibited moderate to high
levels [143]. These results may explain the altered brain activation patterns observed in
the fMRI studies, as glucose metabolism is a primary energy source for neurons [144,145].
Neurological energy deficits are observed in gp120+/Cocaine+ rodent-derived primary
astrocytes through greater ATP utilization than gp120-/Cocaine+ and controls [130]. Future
clinical studies should evaluate energy deficits in neuroimmune cells to determine the
mechanism underlying the low 18F-FDG uptake observed in HIV+/CUD+. There are
comparatively few studies on the effects of HIV+/CUD+ on brain structure. A recent
diffusion tensor imaging study in HIV+/CUD+ people who were abstinent from cocaine
use revealed a main effect of HIV on globally reduced fractional anisotropy, a marker of
white matter integrity; however, they found no significant interaction between HIV+ and
CUD+ [146]. The effects of CUD on brain structure may be too small to detect the combined
effects of HIV and CUD, but further investigations in abstinent and active HIV+/CUD+
groups are needed to corroborate this.

Multi-site epidemiological evidence in the cART era shows men living with HIV are
more likely to exhibit SUDs and poorer adherence to treatment than women living with
HIV [5,147,148]. There are few clinical studies investigating sex differences in neurological
and behavioral function in HIV+/CUD+, though recently some studies have examined sex-
dependent effects associated with HIV and CUD independently. In PLWH, women have
poorer executive functioning, fine motor skills, and psychomotor speed than men [149,150].
Consistent with this, a machine learning study that investigated sex-dependent cognitive
profiles in HIV revealed women living with HIV had poor motor function, learning, and de-
layed recall. In contrast, men living with HIV exhibited strengths in learning and processing
relative to women living with HIV [151]. The sex differences in CUD manifest in differential
symptomology and responses to treatment. Women with CUD are more likely to experience
drug cravings, guilt after drug use, psychiatric comorbidities, and sensitivity to drug cues
than men [152,153]. Randomized clinical trials that tested the efficacy of disulfiram and
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guanfacine, medications that have been studied as possible CUD treatments, revealed
sex-specific outcomes. Disulfiram, a dopamine beta-hydroxylase inhibitor, is more effective
in men than women, with men exhibiting more days of abstinence from cocaine use during
treatment [154,155]. Conversely, guanfacine, a norepinephrine inhibitor, is more effective
in women than men, which may be due to guanfacine’s ability to attenuate the peripheral
sympathetic stress system, targeting sex-specific symptoms observed in women [156–158].
The sex differences independently observed in HIV and CUD suggest they may influence
outcomes in a sex-dependent manner. Consistent with this, pre-clinical evidence suggests
estrogen impacts the acute effects of cocaine, pointing to a target for the risk of CUD in
women living with HIV [116]. Future clinical studies should evaluate HIV+/CUD+ sex
differences in behavior, cognition, neurological function, and the role of sex hormones to
inform clinicians about sex-specific behavioral and pharmaceutical interventions.

Epidemiological evidence shows NHB PLWH are more likely to exhibit severe HAND
symptoms and frequent cocaine use than White PLWH [159–161], which likely reflects
a greater accumulation of adverse social determinants of health among NHB popula-
tions [162]. There are few studies on the ancestry effects of HIV+/CUD+ on neurological
and behavioral function, highlighting the need for more racially diverse samples. Recent
evidence suggests HIV+/CUD+ may differentially impact NHB PLWH due to the social bar-
riers to receiving HIV prevention care and treatment, especially in rural NHB communities.
Rural NHB who use cocaine are less likely to perceive HIV testing as acceptable regardless
of testing site type (i.e., community health center, mobile van, physician) than NHB people
in urban areas who use cocaine [163]. Among rural NHB people who use cocaine, social un-
acceptability was the only barrier to accessing HIV testing, while affordability, geographic
availability, and physical accessibility were not [164]. An evaluation of social determinants
to seeking HIV testing among rural NHB people who use cocaine revealed those who are
women, young adults, or frequently receive testing for sexually transmitted diseases pre-
dicted testing for HIV [165]. This points to specific sub-groups among rural NHB who use
cocaine who are likely not to seek HIV testing. These community-based studies highlight
the need for culturally informed interventions to engage NHB Americans in rural areas in
HIV prevention care to lower the incidence and prevalence of HIV+/CUD+.

5.2. HIV/MUD

Clinical studies have examined the effects of HIV+/MUD+ on neurocognition and
brain structure and function using cognitive batteries, structural MRI, postmortem tissue
analyses, and social genomics. It is unclear how HIV+/MUD+ impacts cognitive function-
ing compared to either condition alone. A recent study observed that HIV+/MUD+ had
greater self-reported emotion dysregulation than HIV+/MUD- [124]. Conversely, studies
that evaluated other cognitive functions such as sustained attention, vigilance, impulsivity,
and emotion recognition did not find additive effects of HIV+/MUD+ [166–168]. This
suggests that emotion regulation represents a possible specific behavioral therapy target
for HIV+/MUD+; however, it remains unclear how specific emotion regulation domains
(i.e., cognitive reappraisal, emotional awareness) are impaired. This evidence may also
point to other aversive mediating effects of HIV+/MUD+ since cognitive impairments
were observed in HIV+/MUD- and HIV-/MUD+ [166–168]. Impairments in emotion reg-
ulation observed in HIV+/MUD+ are consistent with the hypodopaminergia associated
with these comorbid conditions since dopamine plays a key role in cognitive control over
emotions [169,170].

Like HIV+/CUD+, few studies have examined sex differences in the effects of
HIV+/MUD+ on behavior and brain structure and function. As discussed above, women
living with HIV have poorer cognitive functioning than men living with HIV [149–151]. A
study that investigated sex differences in impulsivity and brain structure associated with
MUD revealed that smaller frontal cortical volumes were associated with greater impulsiv-
ity only in women [171]. Also consistent with sex differences in CUD, women with MUD
experience poorer outcomes relative to MUD men. Women in treatment for MUD are more
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likely to exhibit psychological burden, emotion dysregulation, and childhood and sexual
trauma than men in treatment for MUD [172]. This shows the need for more comprehensive
gender-specific biopsychosocial treatments to close this health disparity gap.

There is limited knowledge on the effects of HIV+/MUD+ on brain structure or func-
tion relative to either condition alone. HIV+/MUD+ exhibited larger global cortical areas
and volumes in the precentral and paracentral gyri than HIV+/MUD-, HIV-/MUD+, and
HIV-/MUD-, but these results did not survive correction for multiple comparisons [173]. Re-
searchers suggest that the effects of MUD on the brain among PLWH are too subtle to detect
using current neuroimaging methods. On a molecular level, HIV+/MUD+ exhibit higher
levels of mitochondrial DNA (mtDNA) deletions in gray matter tissue than HIV+/MUD-,
HIV-/MUD+, and HIV-/MUD- [18]. The effects of these mtDNA deletions on the brain
manifest through global impairments of cognitive function in HIV+/MUD+ [18]. The
accumulation of mtDNA deletions contributes to mitochondrial dysfunction and an overall
energy reduction and is typically associated with neurodegeneration [174,175]. These
mtDNA deletions may be explained by the neuropathological mechanism of mitochon-
drial ROS produced in HIV+/MUD+ [176]. Environmental stress worsens the molecular
neuropathological effects of HIV+/MUD+. A postmortem brain study investigated this
by analyzing epigenetic changes associated with HIV+/MUD+. Researchers found that
HIV+/MUD+ exhibited the highest levels of global DNA methylation and expression
of genes related to DNA methylation in the frontal cortex [177]. DNA methylation is
associated with accelerated brain aging in HIV+, and HIV+/MUD+ may exacerbate these
effects [3,178,179].

Over the past ten years, a growing body of literature has demonstrated that HIV+/MUD+
in MSM exhibit poorer health outcomes than heterosexual HIV+/MUD+ [14,180]. Social
adversity may exacerbate the epigenetic changes observed in HIV+/MUD+ MSM. Greater
experience of stress related to being a sexual minority was associated with accelerated
epigenetic aging, evident through telomere shortening and genome-wide DNA methylation
patterns in the brain [16]. These results provide evidence for the molecular manifestations
of the interactive relationships between social and biological mechanisms underlying
HIV+/MUD+, consistent with Dr. Wakim-Takaki’s biopsychosocial model. Treating this
dual diagnosis in MSM is difficult as they exhibit poor adherence to cART and limited
social functioning [34,35]. This points to the importance of population-specific medical and
behavioral treatments for HIV+/MUD+ to improve health equity.

6. Discussion and Conclusions

This review addressed the neuropathogenesis, behavioral, and neurological impair-
ments of comorbid HIV and psychostimulant use disorders (CUD and MUD) per Dr.Wakim-
Takaki’s biopsychosocial model [15]. The evidence reviewed supports the dopaminergic
dysregulation implicated in comorbid HIV and psychostimulant use disorders; however,
the exact mechanisms by which HIV and dopamine interact to contribute to HAND in
PLWH with SUD require further investigation. Future studies should combine results
from various modalities to better understand the impact of drug-induced changes in
dopaminergic systems involved in HIV. Dopamine dysregulation may underlie the drug
hypersensitization and cognitive deficits observed in rodent models of HAND with meth
or cocaine exposure [17,19,20,79,80,105,108,119,120,132,133,181]. There is limited charac-
terization of the cognitive deficits associated with HIV+/CUD+ and HIV+/MUD+. The
majority of the reviewed studies that used comprehensive cognitive batteries did not
find additive or interactive effects of HIV+/CUD+ or HIV+/MUD+ [139–141,166–168].
Results from clinical studies suggest the combined effects of these comorbid conditions
may not manifest on a cognitive level. These results may differ from transgenic rodent
models of HAND because only one HIV protein was expressed, while numerous HIV
proteins are expressed in humans. Alternatively, this evidence may point to the need to
explore more specific cognitive processes. One study reviewed found HIV+/MUD+ to
be associated with emotion dysregulation; however, emotion regulation was not exam-



Brain Sci. 2023, 13, 1480 13 of 22

ined in HIV+/CUD+ [124]. Researchers should explore emotion regulation processes in
HIV+/CUD+ and further in HIV+/MUD+, as it is a plausible transdiagnostic risk factor
for neuropsychiatric conditions [182–184].

While HIV+/CUD+ and HIV+/MUD+ have similar complex relationships between
their biological, behavioral, and social mechanisms, the mechanisms investigated have dif-
fered. Pre-clinical and clinical studies on the combined effects of HIV and cocaine exposure
have focused on impairments in reward function, decision-making, and altered structure
and function in dopaminergic brain regions [17,19,20,80,94,108,138,139,143]. On the other
hand, pre-clinical and clinical evidence on the combined effects of HIV and meth expo-
sure have focused on molecular-based effects, such as dysregulation in the expression of
cellular signaling proteins and mitochondrial dysfunction [18,105,106,131,134,177]. Future
neuroimaging studies should evaluate the effects of HIV+/MUD+ on neurological function
using task-based fMRI and PET imaging to provide a more detailed characterization of the
neurological effects of this comorbid condition.

Pre-clinical evidence demonstrated sex differences in behavioral and neurological
impairments associated with HIV and cocaine or meth exposure [106,116,117,137]; however,
the clinical evidence has only evaluated sex differences in HIV and psychostimulant use
disorders independently, likely due to limitations in sample sizes. Researchers should inves-
tigate sex differences between HIV+/CUD+ and HIV+/MUD+ in a community-based sam-
ple, as social adversity exacerbates their effects in a population-specific manner [16,163–165].
Additionally, researchers should evaluate levels of estrogen in women living with HIV
and a psychostimulant use disorder, as pre-clinical evidence suggests estrogen may be
a biochemical target for mitigating the effects of HIV and psychostimulant exposure on
drug sensitization and responsiveness to ROS scavenger treatment [106,116,117]. One
study found that aged male gp120+/Meth+ had more impairment in sensorimotor gating
compared to all groups, while gp120+/Meth- and gp120-/Meth+ male and female mice
did not exhibit significant differences from controls [137]. This points to the importance of
evaluating interactions between sex and age in people diagnosed with HAND and MUD,
as they could exhibit unique deficits compared to either conditional alone.

HIV+/CUD+ differentially impacts NHB people because of the stigma associated with
HIV testing, especially in NHB rural communities [163–165]. This may be due to deep-
rooted homophobia and medical mistrust within NHB culture [185–187]. Researchers have
introduced faith-based interventions centered around NHB American culture to combat
this. Studies that used these interventions in rural settings found reductions in individual-
level stigma [188,189]. To determine if these results are community- or race-specific, Derose
et al. integrated HIV education workshops, congregation-based HIV testing, and sermons
catered to urban NHB and Latino communities. They found both Latinos and NHB people
exhibited increases in HIV testing; however, there were evident disparities among these
groups, with NHB reporting more medical mistrust and stigma toward HIV testing [190].
Together, these findings suggest that comprehensive church-based interventions catered to
NHB may reduce the social barriers to medical care.

MSM continue to be the largest risk group for HIV infections in the U.S., where
crystal meth misuse heightens the risk for HIV infection through greater engagement in
condomless anal sex [10]. HIV+/MUD+ MSM exhibit epigenetic changes associated with
the social stress of being a sexual minority; however, future studies should investigate this
in other sexual minority groups to determine the specificity of these findings. To combat this
social stress, researchers have used an emotion regulation-focused intervention that targets
trauma related to HIV infection. They found HIV+/MUD+ MSM significantly reduced their
meth use [191]. A study that used behavioral activation, an intervention aimed at targeting
pleasure and goal-directed behaviors in HIV+/MUD+ MSM, found lower engagement in
condomless anal sex and longer abstinences from sex and meth use [192]. Together, these
interventions demonstrate the efficacy of behavioral community-based interventions in
lowering the likelihood of HIV transmission and the persistence of chronic meth use in
MSM. The effects of social adversity and the efficacy of interventions in NHB PLWH and
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MSM living with HIV support Dr. Wakim-Takaki’s biopsychosocial model, suggesting the
need to address this dual diagnosis in a population-centered manner by addressing social,
behavioral, and neurological mechanisms [15]. Machine learning is becoming a useful tool
to identify biological, behavioral, and social determinants of SUD and HIV independently;
however, to our knowledge, it has not been applied to identify predictors of comorbid HIV
and SUD [193–196]. Data-driven models that predict determinants of comorbid HIV and
SUDs will inform researchers and clinicians on developing more comprehensive diagnostic
testing and population- and patient-centered care. More comprehensive pre-clinical and
community-specific investigations and interventions will sustainably improve patients’
quality of life, as people living with these comorbid conditions exhibit unique biological,
psychological, and sociological challenges that need to be addressed holistically.
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