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Abstract: Background: Fibromyalgia (FM) and major depression disorder (MDD) frequently co-
occur. Both disorders may share common serotonergic alterations, although there is less evidence
of such alterations in FM. It is also unclear as to whether these alterations are persistent over time
or transient. The objectives of this study were to (i) examine the changes in mRNA expression of
serotonin transporter (SERT) on the surface of peripheral blood mononuclear cells (PBMCs) in FM,
MDD, and the FM + MDD subjects compared to healthy controls, and to (ii) evaluate the effect of
drug treatment on SERT expression. Methods: PBMCs were isolated from FM, MDD, FM + MDD,
and control subjects. SERT expression was analyzed at the mRNA level via quantitative real-time
polymerase chain reaction. Statistical analyses were performed using analyses of variance and linear
mixed-effects models. Results: SERT mRNA expression was significantly reduced in MDD subjects
compared to controls (p < 0.001), but not in FM nor in FM + MDD subjects. Although the drug
treatments improved symptoms in FM, MDD, and FM + MDD subjects, they had no significant
effect on SERT mRNA expression. Conclusions: These results corroborate the role of the SERT in the
pathophysiology of MDD, but not in FM, and show that the decreased mRNA expression of SERT is
a persistent, rather than transient, phenomenon.

Keywords: dopamine transporter; serotonin transporter; major depression; fibromyalgia; quetiapine

1. Introduction

There has been an ongoing interest in identifying biomarkers related to mood and
pain disorders. Despite high comorbidity rates, especially in the case of major depressive
disorder (MDD) and functional pain syndromes, such as fibromyalgia (FM), few studies
have focused on their frequent co-occurrence. Fibromyalgia (FM) affects between 0.2% and
6.6% of the population worldwide [1]. It is a complex disorder defined by widespread pain
and tenderness in up to 19 areas of the body, lasting for at least 3 months [2]. According to

Brain Sci. 2023, 13, 1485. https://doi.org/10.3390/brainsci13101485 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13101485
https://doi.org/10.3390/brainsci13101485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0003-1624-378X
https://orcid.org/0000-0002-4234-5977
https://orcid.org/0000-0001-6452-3378
https://orcid.org/0000-0002-8507-6412
https://doi.org/10.3390/brainsci13101485
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13101485?type=check_update&version=1


Brain Sci. 2023, 13, 1485 2 of 12

the World Health Organization (WHO), MDD affects approximately 280 million people
worldwide, and is one of the leading causes of disability [3]. It is characterised by the
presence, for two or more weeks, of depressive mood and/or anhedonia and at least five
of nine depressive symptoms. The diagnoses of MDD and FM commonly co-occur, with
up to 80% of subjects suffering from FM meeting the diagnostic criteria for MDD [4], and
65% of MDD subjects reporting significant pain symptoms, including FM [5]. The high
co-occurrence of FM and MDD suggests the need to identify biomarkers that are common
and specific to both disorders.

The serotonin (5-HT) hypothesis, which states that the risk of developing depression
is associated with a reduction in 5-HT levels, remains a prominent theory and a focus
of research to develop more effective MDD treatments [6]. The main medication classes
prescribed for the treatment of MDD, the selective serotonin reuptake inhibitors (SSRIs)
and serotonin and norepinephrine reuptake inhibitors (SNRIs), directly bind to and modu-
late [7] the serotonin transporter (SERT). One aspect of the serotonin hypothesis proposes
that SERT expression is elevated in MDD, leading to a reduction in 5-HT concentrations
available in the synapse [8]. By blocking the SERT, SSRIs and SNRIs reduce 5-HT reuptake
via synaptic cells, rapidly restoring the levels of 5-HT in the synapse and, over several
weeks, various serotonin receptors respond to the heightened 5-TH level, leading to a range
of downstream biochemical effects. Several studies have shown associations between func-
tional polymorphisms of the promoter region of the SERT gene and the risk of developing
depression [9].

While the serotonin hypothesis has been quite influential, unequivocally demonstrat-
ing its validity has posed a significant challenge. Several positron emission tomography
(PET) studies have found that subjects with MDD have reduced SERT binding; although,
a few of them did find an increase [10–12]. This lower SERT binding, compared to con-
trols, has been interpreted as a compensatory response to decreased synaptic 5-HT levels
associated with MDD. It must be noted, however, that the reduction in SERT binding was
generally small and inconsistent across these studies, and it is unclear if these results are
primary or secondary to antidepressant intake [13]. Likewise, genetic studies have failed to
show an association between SERT genetic variants and MDD [14]. This lack of association
has led some investigators to emphasize the importance of studying gene–environment
interactions (e.g., epigenetics) [15]. Notably, the SERT is not only present in the brain but
also in the peripheral blood, particularly on the surface of peripheral blood mononuclear
cells (PBMCs), monocytes, and lymphocytes, where it has a broad role [16,17]. For example,
various 5-HT receptors are expressed on the surface of T- and B-lymphocytes, and on
antigen-presenting cells; their stimulation can contribute to inflammation, phagocytosis,
migration, and cytokine production, as demonstrated in various human and animal mod-
els [18–22]. In recent years, a growing number of studies have examined the expression of
the SERT on blood immune cells in MDD. Most studies detected a reduction in its expres-
sion in lymphocytes of MDD both at the mRNA [23] and protein levels [24–27], although
increases in mRNA expression have also been observed in PBMCs [28]. The impact of drug
treatment on these results remains to be determined, as well as the impact of important
comorbid conditions, such as chronic pain.

Serotonin is also known to play a key role in the neurobiology of pain. It has been well
established that 5-HT release from neurons in the rostro-ventral medulla dampen nocicep-
tive afferents at the dorsal horn level of the spinal cord [29], producing diffuse analgesic
effects. The involvement of 5-HT in pain modulation is of clear interest in the case of FM,
considering that it is a chronic pain condition characterized by diffuse pain symptoms
likely arising from deficient inhibitory conditioned pain modulation mechanisms [30]. So
far, genetic studies that have examined the 5-HT1A receptor and 5-HT2A receptor gene
polymorphisms, as well as studies measuring 5-HT blood levels, have produced mixed
results [31–33]. In the case of the SERT, two genetic studies (one PET study and one study
on gene expression) have also produced mixed results [34,35].
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As compared to the treatment of MDD, SSRIs have shown only small benefits in
FM [36], establishing the need to find other treatment alternatives. Several randomized-
controlled trials have demonstrated that quetiapine, a second-generation antipsychotic,
effectively treats mood symptoms in MDD [37]. Although this is less well established, there
is growing evidence that quetiapine may be beneficial for the treatment of FM [30], as well
as the treatment of subjects with co-morbid MDD and FM [38]. This drug increases 5-HT
levels in the brain through its modulation of post-synaptic 5-HT1A receptors and inhibition
of 5-HT2A receptors [39]. However, it is important to note that quetiapine has no direct
effect on the SERT [40]. To date, there are no studies looking at the SERT mRNA expression
in the population with a co-morbid of MDD and FM. Moreover, we are not aware of any
available research regarding the effect of quetiapine on the mRNA expression of the SERT
in the peripheral blood.

In view of the current state of knowledge, the main objectives of our work were as
follows: (1) to measure the levels of mRNA expression in the PBMCs of the SERT in subjects
affected by MDD or FM and those with both conditions, and (2) to evaluate the effect of
quetiapine on the mRNA expression of the SERT in FM and FM + MDD, as well as the
effect of various antidepressants in MDD. For exploratory purposes, we also measured
the mRNA expression of the dopamine transporter (DAT) in all groups, as dopamine is a
likely mediator of the cardinal symptoms of anhedonia in MDD. Additionally, dopamine
may play a complex, and yet poorly understood, role in the pathophysiology of FM [41,42].
Based on the available literature, we expected to observe a reduction in the SERT mRNA
expression levels in PBMCs in MDD, FM, and FM + MDD subjects.

2. Materials and Methods
2.1. Participants

Three study groups of patients were recruited, based on the three diagnostic categories:
MDD with no chronic pain (n = 50), FM subjects (n = 55), and subjects with MDD and
FM (n = 120). DSM-IV criteria were used for MDD selection and the American College of
Rheumatology 1990 criteria for FM. Subjects in the FM + MDD group were washed out
from their previous antidepressant treatment. In the FM group, subjects were allowed to
continue their previous medication. In the MDD group, subjects were excluded if they
met the criteria for any DSM-IV axis I disorder other than MDD. Across groups (FM,
FM + MDD, and MDD), other exclusion criteria included: subjects currently prescribed an
antipsychotic, pregnancy, female of childbearing potential without adequate contraception,
current risk of suicide, neurologic disorders, substance use disorders, any unstable physical
illness, and diabetes mellitus. A group of healthy subjects (n = 62) was also included, with
no chronic pain and no history of a severe psychiatric disorder. In particular, the patient
health questionnaire-9 (PHQ-9) was used to rule out any presence of depression.

In the 3 subject groups, blood was taken on the first and last visit at the clinic and
at different times according to studies (12 weeks for the FM study group, 8 weeks for
the FM + MDD group, and 8 weeks for the MDD group). The subjects in the FM and
FM + MDD arms were randomized in a double-blind, placebo-controlled fashion. In
contrast, the MDD study was an open trial with no placebo. For the FM subjects, quetiapine
was progressively introduced, as an add-on to previous analgesic medication, with a final
flexible dose between 50 mg and 300 mg. For the FM + MDD subjects, a final dose of either
150 mg or 300 mg of quetiapine was gradually instituted. For the MDD group, treatments
were heterogenous and prescribed at flexible doses, and included antidepressants like SSRIs
(citalopram: daily dose range: 20–40 mg, and fluoxetine: daily dose range: 20–80 mg),
venlafaxine (daily dose range: 75–225 mg), mirtazapine (daily dose range: 15–45 mg),
or bupropion XL (daily dose range: 150–450 mg). For more information, please refer to
published articles; for FM, Potvin et al. (2012) [30], and for FM + MDD, McIntyre (2014) [38].



Brain Sci. 2023, 13, 1485 4 of 12

2.2. Clinical Assessments

In all 3 study groups, depressive and anxiety symptoms were evaluated with the
Hamilton depression rating scale (HAM-D) and the Hamilton anxiety rating scale (HAM-A),
respectively [43,44]. The HAM-D and HAM-A were administered before and after pharma-
cological treatment in all 3 study groups (e.g., MDD, FM, and FM + MDD). FM symptoms
were evaluated with the Fibromyalgia Impact Questionnaire (FIQ) [45]. The FIQ was
administered before and after treatment in the FM + MDD and FM groups.

2.3. PBMC Isolation and qPCR

Blood samples were processed within 24 h of being collected in EDTA tubes. PBMCs
were isolated via gradient centrifugation at 1850 g on Ficoll Paque (GE Healthcare, Mis-
sissauga, Canada). PBMC purity was determined with a cell counter (Coulter Ac T diff 2,
Beckman Coulter, Montreal, Canada). Cells were stored at −80 ◦C in Trizol (Invitrogen,
Burlington, Canada) until RNA extraction. Aliquots of one to two micrograms of the RNA
samples were utilized for qPCR. After DNAse digestion (DNase I amplification grade,
Invitrogen), inverse transcription was performed with an inverse transcriptase (iScript
cDNA Synthesis Kit, Biorad, Saint-Laurent, Canada) for 5 min at 25 ◦C, 30 min at 42 ◦C, and
5 min at 85 ◦C. Complementary DNA (cDNA) was generated in the presence of different
forward and reverse primers for the genes of interest: SERT and DAT, or primers for the
housekeeping gene β2-microglobulin (β2). All primers were obtained from IDT, and their
sequences are depicted in Table 1. The threshold cycle (CT) values obtained for the SERT
or DAT were subtracted by the corresponding CT values of β2 to obtain the ∆CT values
of the SERT or DAT. Relative SERT mRNA expression was calculated with the aid of the
2−∆∆CT method [46], using the clinical groups as the targets, and the healthy control group
as a reference.

Table 1. Oligonucleotides of primers of the SERT, DAT, and β2-microglobulin.

Species Sense Antisense Amplicon

SERT
(NM_001045.6)

GTGGCCAAAGACGCAGGTC
(1494–1512)

CTCATCCAGCACAGCCGTGATC
(1664–1643) 171 bp

DAT
(NM_001044.5)

CTGCGAGGCGTCTGTTTGGATTG
(1053–1075)

GTGGTGACAATCGCGTCCCTGTAG
(1187–1164) 135 bp

β2-microglobulin
(NM_004048.4)

CACGTCATCCAGCAGAGAATGG
(122–143)

GATGCTGCTTACATGTCTCGATCC
(398–375) 277 bp

2.4. Statistical Analyses

All analyses were performed using R version 4.2.2 [47], using the package lmer [48]
for mixed-effects analysis. The statistical threshold for significance was set at p < 0.05.
First, we tested for a mean difference in the SERT mRNA expression level between the
control group and the clinical groups (FM, MDD, and FM + MDD) using an analysis of
variance. Given that there were significant differences, pairwise contrasts were performed
between the groups using Tukey’s adjustment on the p-values. Second, for the FM and
FM + MDD groups, we examined whether there was a mean change difference in the
re-SERT for the subjects on the placebo compared to those receiving quetiapine using a
linear mixed-effects model with a random effect on the intercept. For the MDD group
(taking various antidepressants), we also used a linear mixed-effects model. Using the same
model, scales measuring symptoms (pain, depression, anxiety, and global mental health)
were compared from pre- to post-treatment to verify whether the symptoms improvements
were greater in the quetiapine group as compared to the placebo group. Finally, in the case
of the DAT mRNA expression level, it could not be detected in several participants. Hence,
DAT mRNA expression was considered as a dichotomic variable, as it was either detected
or not detected. In the case of the DAT mRNA expression level, logistic regression analyses
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were performed to examine potential between-group differences. Pairwise contrasts were
performed between the groups using Tukey’s adjustment on the p-values.

3. Results

This section is divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Clinical Findings
3.1.1. Sociodemographic Differences

At baseline, there were significant differences in age between groups (FM, N = 55:
49.6 years ± 10.3; FM + MDD, N = 120: 50.7 years ± 9.5; MDD, N = 50: 44.6 years ± 12.2;
and controls, N = 62: 38.0 years ±12.8; p < 0.001). The sex ratio was also significantly
different between groups (FM: 100% of females; FM + MDD: 97.2% of females; MDD: 48.8%
of females; and controls: 25.8% of females; p < 0.001).

3.1.2. Pre- and Post-Treatment Effects

In the FM group, 25 subjects received quetiapine, while 61 subjects received quetiapine
in the FM + MDD group. As illustrated in Supplementary Table S1, we observed a reduction
in FM-related and depressive symptoms after treatment with quetiapine, relative to placebo,
across the FM and FM + MDD groups (FIQ: p = 0.002; HAM-D: p = 0.003). There was a
similar trend in the case of anxiety symptoms, which failed to achieve significance (p = 0.08).
Regardless of drug status (quetiapine vs. placebo), there was a significant effect of time on
FM, depressive, and anxiety symptoms across the FM and FM + MDD groups (all p < 0.001).
For more information, please refer to Potvin et al. (2012) [30] and McIntyre et al. (2014) [38].
As illustrated in Supplementary Table S1 and Supplementary Figure S1, for MDD subjects,
we observed significant improvements in depressive and anxiety symptoms after treatment
(HAM-D: p < 0.001; HAM-A: p < 0.001).

3.2. Differences in SERT mRNA Expression between Groups before Treatment

We observed a minor reduction in SERT mRNA expression in FM subjects relative
to healthy subjects, but this potential difference failed to reach statistical significance
(p = 0.061) (Figure 1). There was a significant reduction in the SERT mRNA expression level
in the MDD group compared to the control group (p < 0.001) (Figure 1). This reduction had
a magnitude of −2.249 ± 0.415 amplification cycles via PCR. Assuming a doubling of the
amplicon per amplification cycle, this result indicates that the SERT gene expression level
was about five times less expressed in the MDD subjects compared to healthy controls. We
also observed a significant decrease in the SERT gene expression level in the MDD group
when contrasted to the two other subject groups: FM by a factor of −1.279 ± 0.380 cycles
(p < 0.01), and −1.768 ± 0.342 for FM + MDD (n = 117) (p < 0.001), respectively. This
indicates that the SERT was two and three times less expressed in MDD than in FM and
FM + MDD, respectively. Finally, there was no difference noted between the FM + MDD
group and the control group (p = 0.514) (Figure 1). Of note, these results remained significant
after controlling for age differences (MDD vs controls: p < 0.001; MDD vs. FM: p < 0.01;
MDD vs. FM + MDD: p < 0.001) using an analysis of covariance.

Considering that there were significant differences in the sex ratio between these
groups, we performed secondary analyses restricted to only female participants. As in
the primary analysis, differences were found between the MDD subjects and the controls
(p = 0.0001), as well as between the MDD and FM subjects (p = 0.002) (Supplementary
Figure S2).
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Figure 1. Relative expression of the SERT mRNA level by groups at baseline, using the 2−∆∆CT

method and the control group as a reference. Error bars represent one standard error. ** p < 0.01, and
*** p < 0.001.

3.3. Changes in the SERT mRNA Expression Level after Treatment

In the FM group, SERT mRNA expression levels were analyzed in 20 subjects receiving
placebo versus 18 receiving quetiapine after 12 weeks of treatment. In the FM + MDD group,
SERT mRNA expression levels were analyzed in 43 subjects taking placebo and 51 taking
quetiapine after 8 weeks of treatment. Across both groups, no significant difference was
observed in the SERT mRNA expression level between subjects taking the placebo and
those receiving quetiapine after treatment (p > 0.05) (Figure 2). Regardless of drug status
(quetiapine vs. placebo), there was a no effect of time on the SERT mRNA expression level
across the FM and FM + MDD groups (p > 0.05) Due to loss to follow-up and missing blood
samples, the SERT mRNA expression level was only analyzed in 16 MDD subjects after
8 weeks of treatment. The comparison of SERT mRNA expression of MDD subjects before
and after treatment showed no significant difference after treatment (p > 0.05).
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3.4. Differences in the DAT mRNA Expression Level

We used a categorical analysis to evaluate DAT mRNA expression. At baseline,
DAT mRNA expression was detectable in 37.3% of controls, 55.6% of FM subjects, 62.5%
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of FM/MDD subjects, and 69.0% of MDD subjects. DAT mRNA expression was more
frequently detected in the MDD subjects relative to controls (p = 0.002), and more frequently
detected in the FM + MDD subjects relative to controls (p = 0.01) (Figure 3). We observed that
DAT mRNA expression was detected in a higher percentage of FM subjects as compared to
the controls; however, this result was non-significant (p = 0.18) (Figure 3). Similar group
differences were observed in DAT mRNA expression levels after drug treatment.
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Considering that there were significant differences in the sex ratio between groups,
we performed secondary analyses restricted to only female participants. As in the pri-
mary analysis, differences were found between the MDD subjects and controls (p = 0.01)
(Supplementary Figure S3).

4. Discussion

The main aim of the present study was to measure serotonin transporter (SERT)
and dopamine transporter (DAT) mRNA expression levels in PBMCs in MDD, FM, and
subjects with both conditions. As a secondary objective, we sought to determine the impact
of different antidepressants (mainly quetiapine) on SERT and DAT mRNA expression
levels. Our results showed a decrease in SERT mRNA expression in the MDD subjects,
but not in the FM subjects. No change over time was detected after treatment, even
though significant clinical improvements were observed in all three study groups for both
depressive and/or FM symptoms. In comparison, the expression of DAT mRNA was
difficult to detect in several participants. Nevertheless, we were able to observe an increase
in DAT mRNA expression in the MDD subjects, with smaller effects being observed in the
FM + MDD subjects.

The main finding of the present study was the observation of a decrease in SERT
mRNA expression in the MDD subjects. This result is consistent with the most accepted
serotonergic model of depression and with the findings of previous studies in the field.
Indeed, in most cases, these studies have shown that there is a decrease, rather than an
increase, in SERT expression in MDD using blood lymphocytes as a cell source, both at
the mRNA [23] and protein levels [24–27,49]. This may seem counterintuitive, given that
a decrease in SERT mRNA expression would normally result in an increased availability
of 5-HT in the peripheral blood. However, in previous studies with similar results, the
authors interpreted this finding by considering the alterations in SERT mRNA expression
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as not primary, but rather as secondary, to the abnormal amounts of 5-HT available in the
peripheral blood in MDD subjects [25]. In this light, the decrease in SERT mRNA expression
would represent a neuroimmune adaptive response to the presence of a reduced amount of
5-HT in the peripheral blood in MDD [50]. While previous studies in this field have been
cross-sectional [23–27,49], the present study stands out for its longitudinal design. Our
results showed no change in SERT mRNA expression in any of the three study groups,
including the MDD group, where the SERT mRNA expression was abnormal at baseline.
In contrast with the other two groups, which were treated with a medication which had
no affinity for SERT (e.g., quetiapine) [51], the MDD group was primarily treated with
antidepressants (e.g., SSRIs and venlafaxine) known to inhibit the SERT. The fact that no
normalization of SERT mRNA expression was observed in the MDD subjects over time
suggests that the reduction in SERT mRNA expression represents a stable, rather than a
transient, effect. This interpretation is reinforced by the fact that no change in SERT mRNA
expression was observed in the MDD group before or after treatment, even though the
anxiety and depressive symptoms of these subjects improved over time.

Regarding the lack of association between SERT mRNA expression and FM, this
result must be considered in light of previous studies evaluating the role of 5-HT in FM,
which have produced conflicting results [52]. For instance, our research team previously
studied blood 5-HT levels in FM and the serotonin transporter promoter region (5-HTTLPR)
polymorphism and found no associations with FM in both cases [30,53,54]. Serotonin
does not exhibit simple effects on pain. Indeed, the preclinical literature has shown that
brainstem 5-HT is involved in both pain inhibition and pain facilitation [55], as 5-HT
produces different effects on pain depending on the receptors to which it binds. While
5-HT1A receptor agonists produce pain relief, 5-HT2A and 5-HT3 receptor agonists promote
pain [56]. The SERT regulates the amount of 5-HT available in the synaptic cleft, but
as the 5-HT receptors have opposing effects on pain, the measurement of SERT mRNA
expression may lack the specificity required to demonstrate the involvement of 5-HT in the
pathophysiology of chronic pain conditions, such as FM.

Since the expression of the DAT mRNA was undetectable in many participants, even
after 50 cycles of amplification in the qPCR reactions, the results regarding DAT mRNA
expression must be cautiously interpreted. Nevertheless, our results indirectly suggest
that DAT mRNA expression levels are increased in MDD. One of the cardinal symptoms
of MDD is anhedonia. In the past, it has been proposed that anhedonia might result from
reduced dopamine release in the brain reward system [57]. In support of this model, several
animal studies have revealed that the administration of dopamine D2 receptor antagonists
in the striatum attenuates the reinforcing effects of various psychoactive substances [58].
In humans, several functional neuroimaging studies have shown that striatal activity is
reduced in MDD subjects when they anticipate or receive a reward [59].

Despite a few negative findings, genome wide association studies and meta-analyses
have shown an association between MDD and certain dopamine-related gene variants [60,61].
Although these results are heterogeneous, several PET studies have shown alterations in
striatal DAT availability in MDD [62]. Finally, randomized controlled trials have shown
that bupropion (a weak DAT inhibitor) and several D2 receptor partial agonists (e.g., arip-
iprazole) are effective in treating MDD [63]. In theory, the increased DAT mRNA expression
level could result in reduced amounts of dopamine in the synaptic cleft, including in the
brain reward system, which could explain the symptoms of anhedonia experienced by
subjects with MDD. However, in the current study, DAT mRNA expression was measured
in PBMCs; thus, our results may not necessarily reflect changes occurring in the brain. As
for the increased DAT mRNA expression levels found in the FM + MDD subjects, this
result was barely significant, suggesting that the observed effect is rather small. It must be
considered that the role of dopamine in pain is complex and remains to be clarified [64],
and that the dopaminergic alterations that have been described in FM remain preliminary
and need to be confirmed [65].
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The current study has several strengths, namely the inclusion of a relatively large
sample of subjects (total N = 225) with MDD, FM and FM + MDD. Subjects in all three
groups were assessed before and after antidepressant treatment. Finally, two out of the
three groups were assessed in a randomized, placebo-controlled manner. Despite these
strengths, the study has some limitations that must be acknowledged. First, there were
significant differences in the age and sex ratio between groups. Considering that age and
sex may influence the serotoninergic system [66,67], the between-group difference in socio-
demographic variables may explain the reduced SERT mRNA expression levels that were
observed in the MDD subjects relative to controls. However, this possibility seems unlikely,
as we performed sub-analyses controlling for the effects of age and sex, which showed that
the decrease in SERT mRNA expression remained significant in MDD despite the addition
of these covariates. Another limitation of the current study is related to the fact that the FM
and FM + MDD groups were not treated with the same antidepressant (e.g., quetiapine) as
the MDD group, which received an assortment of antidepressants (including the SSRIs).
Although quetiapine exhibits affinities for several 5-HT receptors [39], the fact that this
drug has no known affinity for the SERT may explain the lack of change in the SERT mRNA
expression level during treatment in the FM and FM + MDD groups. However, the MDD
subjects were treated with antidepressants having affinities for SERT, and no change in
SERT mRNA expression was detected in this group. Finally, it must be acknowledged that
SERT mRNA was only measured in 16 MDD subjects after the 8-week treatment. Thus, we
may have statistical power to detect changes in SERT mRNA expression before and after
antidepressant treatment.

5. Conclusions

Consistent with the serotonergic model of depression, the results of the present study
showed a decrease in SERT mRNA expression and no effect of quetiapine on this outcome,
suggesting that the increase in SERT mRNA expression represents a trait, rather than a state
effect. On the other hand, we did not observe any alteration of SERT mRNA expression
in FM. In a preliminary manner, we also observed an increase in DAT mRNA expression
in MDD (and possibly in FM); however, this result was not robust, due to the difficulty
in detecting the DAT in many participants. Future investigations are required to measure
the mRNA expression levels of several 5-HT and dopamine receptors, before and after the
administration of different types of antidepressants, while paying attention to the potential
confounding effects of age and sex differences.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci13101485/s1. Table S1. Mean (sd) of the symptom scale
pre and post by group for the placebo and drug group. The measured symptoms were taken
from Fibromyalgia Impact Questionnaire Total (FIQ-Total), the Hamilton Depression (HAM-D),
and Anxiety (HAM-A). Supplementary Figure S1. Changes in clinical symptoms from pre- to post-
treatment for the MDD group. Thin lines in the background represent individual changes and the
solid thick lines represent the means from a linear mixed-effect model. Error bars represent one
standard error (SE). The measured symptoms were taken from the Hamilton Depression (HAM-D)
and Anxiety (HAM-A). Supplementary Figure S2. Relative expression of the SERT mRNA by groups
at baseline, using the 2−∆∆CT method and the control group as reference. This analysis was restricted
only to female participants across groups. Error bars represent one standard error. *** p < 0.001.
Supplementary Figure S3. Boxplot of the expression of the DAT mRNA by groups at baseline, using
a categorical approach. This analysis restricted only to female participants across groups. The Y axis
represents the level of the DAT gene detection. The more frequently the mRNA is detected, the more
it is considered expressed, and vice-versa. * p < 0.05.
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