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Abstract: Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with
cognitive dysfunction and behavioral impairment. We aimed to use principal components factor
analysis to explore the association between gait domains and AD under single and dual-task gait
assessments. Methods: A total of 41 AD participants and 41 healthy control (HC) participants
were enrolled in our study. Gait parameters were measured using the JiBuEn® gait analysis system.
The principal component method was used to conduct an orthogonal maximum variance rotation
factor analysis of quantitative gait parameters. Multiple logistic regression was used to adjust for
potential confounding or risk factors. Results: Based on the factor analysis, three domains of gait
performance were identified both in the free walk and counting backward assessments: “rhythm”
domain, “pace” domain and “variability” domain. Compared with HC, we found that the pace
factor was independently associated with AD in two gait assessments; the variability factor was
independently associated with AD only in the counting backwards assessment; and a statistical
difference still remained after adjusting for age, sex and education levels. Conclusions: Our findings
indicate that gait domains may be used as an auxiliary diagnostic index for Alzheimer’s disease.

Keywords: Alzheimer’s disease; gait domain; principal components factor analysis; dual-task gait
assessments

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with cognitive
dysfunction and behavioral impairment. It is estimated that as of 2019, there were approx-
imately 50 million people with dementia worldwide, which may increase to 152 million
by 2050 [1]. AD is the most common cause of dementia and accounts for 60–80% of all de-
mentia cases. The diagnostic criteria of AD incorporate AD biomarkers based on magnetic
resonance imaging (MRI), positron emission tomography (PET) imaging and cerebrospinal
fluid (CSF) assays [2]. However, the AD biomarker tests based on PET neuroimaging
and CSF assays are invasive, expensive and inconvenient to use. Meanwhile, the amount
of commonly used AD drugs is limited, and these drugs temporarily relieve symptoms,
slow down the disease progression and cannot reverse the course of the disease [3]. The
prevalence of AD has imposed a huge economic burden on families and society [4]. Hence,
early diagnosis of AD is critical for its treatment, management and prognosis.

Gait is a complex motor task; normal gait is regulated by multiple systems, such as
the nervous system, musculoskeletal system and cardiorespiratory systems [5]. Unlike
cognitive tests, gait assessment is a common component of physical examinations across
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a variety of disciplines. Diseases affecting each of these systems which are involved in
gait may cause gait impairment. Meanwhile, aging and neuropathological changes have a
detrimental effect on postural control and lead to gait disturbance. Compared with young
people, reduced gait velocity and step length and an increased double stance time are
observed in aging individuals due to structural and functional brain changes and muscle
atrophy as previously reported [6,7]. In addition, gait disturbances are common findings
in Parkinson’s disease (PD), manifesting as reduced speed, shorter step length, increased
stride-to-stride variability, reduced automaticity, increased gait asymmetry and freezing
of gait (FOG) [8,9]. Additionally, Al-Yahya et al. found that damage to the prefrontal
cortex due to stroke is related to gait impairment, especially dual-task walking [10]. In
recent years, accumulating evidence suggests that gait disturbance is associated with
cognitive impairment [11–14]. Cognitive functions, especially executive function and
working memory, play an important role in the regulation of gait. A previous study found
that declines in executive functions and working memory were associated with a decline in
gait velocity in older adults with mild cognitive impairment (MCI) [11]. Furthermore, high
stride-to-stride variability of stride time (STV) at a fast-pace walking speed was proven to
be a specific gait disturbance of MCI patients [12]. The dual-task paradigm, performing
different cognitive tasks while walking, has been used to assess the interactions between
gait and cognition [13,14]. The dual-task paradigm affords the opportunity to manipulate
attention demands. Thus, the dual-task paradigm may reflect the relationship between
cognition and gait more sensitively compared with the single-task paradigm.

Artificial intelligence (AI) has led to numerous technical innovations in medicine and
revolutionized the conventional mode of medicine, especially neurological diseases. For
example, using the method of human–computer interaction for early warning and ancillary
diagnosis of nervous system diseases [15]. The brain—computer interface (BCI) is the
linkage of the brain to computers through scalp, subdural or intracortical electrodes to
improve control of movement disorders and memory enhancement [16]. Sensor technol-
ogy is the most basic accessory of artificial intelligence. Wearable intelligent sensors are
inexpensive, convenient and efficient, which has made them one of the most popular types
of electrochemical sensors. Meanwhile as a clinical tool applied in the rehabilitation and
diagnosis of medical conditions and sport activities, gait analysis using wearable sensors
shows great prospects [17]. By means of this technology, several studies have demonstrated
that a daily poor gait performance is associated with the risk of falls [18], Parkinson’s
disease [8] and AD [19].

However, gait parameters are closely correlated with each other, and gait parameters
alone may not fully explain the gait performance. Recently, the concept of gait domains
is widely used in gait performance of different diseases or life stages. In 2011, Hollman
et al. identified five gait domains including rhythm, phases, variability, pace and base of
support in old people, based on 22 individual gait parameters [20]. A prospective cohort
study of 427 old people found that the pace factor could predict the risk of cognitive decline
and developing vascular dementia in the early stage [21]. Attentional control and pace
factors were found to heavily influence the relationship of cognitive function and gait in
early PD [22]. Considering the effects of levodopa on PD, a previous study explored the
gait domains in the OFF and ON levodopa states and found that the variability factor was
greater in the OFF medication state [23].

Given that the gait parameters are closely correlated with each other, and gait parame-
ters alone may not fully explain the gait performance, we used a factor analysis to identify
independent gait domains derived from quantitative assessments to address this issue. A
principal components factor analysis organizes multiple observations into communalities
that correlate with a lesser number of unobserved thematic constructs, thus allowing an
investigator to partition a large number of parameters into a lesser number that characterize
distinct domains of the parameters being measured [24].

Therefore, the purpose of this study was twofold. Firstly, the main purpose of this
study is to explore the association between gait parameters and AD. Second, we sought to
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contribute to finding a new, objective and simple gait domain to recognize the AD patients
from healthy old people in clinical practice. The gait domains could help clinicians to
fully comprehend the gait performance in AD patients and help clinicians to choose the
appropriate combination of gait parameters to monitor the disease and its progression.

2. Materials and Methods
2.1. Subjects

This study was a case–control study of AD participants and healthy control (HC)
participants and was carried out at the Neurology Department of First Affiliated Hospital
of Wenzhou Medical University. Collection of the data was continued from October 2019
to November 2021. This study was approved by the Ethics Committee of First Affiliated
Hospital of Wenzhou Medical University (approval code: KY2021-153.) and all participants
signed written informed consent prior to participation in accordance with the Declaration
of Helsinki.

AD participants and HC participants were enrolled from the Memory Clinic of Neu-
rology Department and the Health Examination Center of First Affiliated Hospital of
Wenzhou Medical University, respectively. The inclusion criteria were as follows: (a) able
to walk ten meters safely without assistance or auxiliary equipment; and (b) able to under-
stand walking test instructions and complete them. The exclusion criteria were as follows:
(a) dyskinesia or leg problems, such as knee replacements or hip replacements; (b) major
central nervous system disease, such as stroke, Parkinson’s disease, Huntington’s disease
or myasthenia gravis; (c) major psychiatric disorders which may impair cognition and gait,
such as schizophrenia, bipolar affective disorder or alcohol abuse; (d) severely impaired
cognitive function or unable to understand and complete the three prescribed walking
tests; and (e) unwilling to sign the informed consent. A total of 41 AD participants and 41
normal cognitive HC participants were enrolled in our study according to our inclusion
and exclusion criteria.

Diagnosis of AD was according to the National Institute on Aging-Alzheimer’s As-
sociation (NIA-AA) [25,26] and Statistical Manual of Mental Disorders V (DSM-V) [27].
In the current study, AD patients had a duration range of 3–6 years, and all magnetic
resonance imaging (MRI) results were documented. Based on clinical symptoms, MMSE
scores and MRI, AD patients were diagnosed by a trained neurologist who was a specialist
in dementia. HC participants were enrolled by the above inclusion and exclusion criteria.
HC participants had intact cognitive function, and did not meet the criteria of dementia or
MCI. MCI is a clinical diagnosis based on subjective cognitive decline, objective cognitive
impairment and relative preservation of activities of daily living, which was diagnosed
based on the criteria defined by Petersen et al. [28].

2.2. Demographic and Clinical Data Collection

We collected the participants’ demographic and clinical data such as age, gender,
body mass index (BMI), educational information and medications. All participants un-
derwent the Mini-Mental Status Examination (MMSE) to assess their cognitive functions
on admission. MMSE was carried out in Chinese and by a trained neurologist who was
blinded to the gait performances of the participants. Participants were considered to have
cognitive impairment according to their education levels: when they were illiterate, MMSE
scores ≤ 19 points; when they had primary school education, MMSE scores ≤ 22 points;
when they had middle school education or and higher, MMSE scores ≤ 26 points [29].
Meanwhile, we assessed the use of medication to treat AD (aricept and/or memantine), de-
pressive disorders (sertraline) and psychotic disorders (olanzapine, risperidone, quetiapine
and cozapine), because these medications affect gait function [30].

2.3. Gait Assessment

Gait performance was measured using the JiBuEn® gait analysis system (Hangzhou
Zhihui Health Management Co., Ltd., Hangzhou, China) consisting of 5 inertial sensors
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and a pair of shoes with gyroscope and 32 pressure sensors [31]. Five inertial sensors are
placed on the subject’s waist, thighs and calves using nylon straps. Signals from the sensors
are sampled and transferred through Bluetooth and received by a receiver connected
to a computer. JiBuEn® system is one of the portable wearable devices that have been
developed and used in measuring gait with low cost, simple implementation and even
instant reporting [32]. The detailed experimental design, algorithm for gait parameters and
validated method were reported in a previous study [33], and systematically evaluated
the validity of JiBuEn® [34]. The high-order low-pass filter and hexahedral calibration
technique were employed in data pre-processing, which reduces high-frequency noise
interference and installation errors produced by sensor devices. Moreover, accumulative
errors were also corrected based on the zero-correction algorithm. The final gait parameters
were obtained by fusing acceleration data and posture, which is calculated using quaternary
complementary filtering technique. This gait system could record the detailed data of the
walking process in a multi-dimensional manner and automatically calculate gait parameters
in real time, such as gait velocity, length, stride time and gait variability. The gait cycle was
defined as the process of walking with the same foot stepping off the ground from the heel
to landing on the heel again (Figure 1).
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Figure 1. Diagram of the gait cycle.

Gait assessments were held in a quiet well-lit environment and participants were well
protected. Participants were asked to walk 10 m with different instructions in a fixed place
where stop and start points had been marked on the floor. In our study, all participants
performed two walk trials including free walk and counting backwards. The free walk
was performed as follows: participants walked in their normal and daily walking state.
The counting backwards was performed as follows: participants were asked to walk while
counting aloud backward from 100 to 0 [35].

2.4. Statistical Analyses

For continuous variables, mean ± SD or medians (quartiles) were used for statistical
descriptions; the Student’s t-test or the Mann–Whitney test was used to compare the
intergroup differences. For categorical variables, relative frequencies and percentages (%)
were used for statistical descriptions; the Chi-square test or Fisher’s exact test was used to
compare the intergroup differences.



Brain Sci. 2023, 13, 1599 5 of 12

Gait parameters were closely correlated with each other, and independent effects
were hard to distinguish. In order to derive independent factors named gait domains,
the principal component method was used to conduct an orthogonal maximum variance
rotation factor analysis of quantitative gait parameters [24]. The initial factors were then
subjected to an orthogonal varimax rotation to reduce the larger number of highly correlated
variables to a smaller number of uncorrelated independent predictors to be used in the final
analysis. Principal components factor analysis with varimax rotation was used to examine
factors with eigenvalues exceeding 1.0 that characterized gait performance. Parameters
with correlation loadings of 0.5 or higher were interpreted as being significant contributors
to the factor. To assess the association between AD and gait domain for two gait assessments,
the multivariate logistic regression model with a stepwise backward selection process was
applied to adjust potential confounding or risk factors based on age, gender and education
level [36]. Meanwhile, a forest plot has been developed to show the results of logistic
regression. All statistical analyses were carried out using IBM SPSS Statistics for Windows,
version 26.0 (IBM Corp, Armonk, NY, USA) and R software (https://www.r-project.org/,
accessed on 1 December 2021 version 4.3.1). Two-tailed p-values less than 0.05 (p < 0.05)
were considered statistically significant.

3. Results
3.1. Baseline Demographic and Clinical Characteristics

A total of 82 participants (41 AD and 41 HC) were enrolled in our study. The baseline
demographics and clinical characteristics of the study are presented in Table 1. There
was no significant difference in sex and BMI between the two groups. The mean age
was 68.2 ± 8.1 years in the AD group; 26 (63.4%) participants were female; 12 (29.3%)
participants were illiterate, 14 (34.1%) participants had a primary school education, 15
(36.6%) had a middle school education and higher; and MMSE scores were 13.0 (7.0–19.0).
For clinical reasons, the elderly HCs were difficult to enroll. After adjusting for age, the
MMSE scores of AD participants were still lower than for HCs (p = 0.002).

Table 1. Demographic and gait characteristics of AD participants and HC participants.

AD (n = 41) HC (n = 41) p-Value

Demographic characteristics

Age (years), mean ± SD 68.2 ± 8.1 62.1 ± 8.3 <0.001
Sex, female, n (%) 26 (63.4%) 20 (48.8%) 0.182

BMI (kg/m2), mean ± SD 23.2 ± 2.8 23.5 ± 3.3 0.655
Education levels, n (%) 0.010

Illiteracy 12 (29.3%) 4 (9.8%)
Primary school 14 (34.1%) 27 (65.8%)

Middle school and higher 15 (36.6%) 10 (24.4%)
MMSE score, median (IQR) 13.0 (7.0–19.0) 25.0 (25.0–28.0) <0.001

Medications, n (%) <0.001

Aricept 38 (92.7%) 0 (0.0%)
Memantine 25 (61.0%) 0 (0.0%)

SSRI (sertraline) 5 (12.2%) 0 (0.0%)
Antipsychotics

Olanzapine 5 (12.2%) 0 (0.0%)

Risperidone 2 (4.9%) 0 (0.0%)
Quetiapine 1 (2.4%) 0 (0.0%)
Cozapine 1 (2.4%) 0 (0.0%)

https://www.r-project.org/
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Table 1. Cont.

AD (n = 41) HC (n = 41) p-Value

Gait parameters

Free walk
Stride length (m), mean ± SD 0.94 ± 0.19 1.11 ± 0.17 <0.001

Gait velocity (m/s), mean ± SD 0.78 ± 0.20 0.93 ± 0.19 0.001
Gait frequency (steps/min),

mean ± SD 98.50 ± 12.48 100.25 ± 10.26 0.489

Stance phase (%), mean ± SD 66.55 ± 3.18 64.57 ± 2.01 0.001
Swing phase (%), mean ± SD 33.45 ± 3.18 35.43 ± 2.02 0.001
Stride time (s), median (IQR) 1.19 (1.12–1.29) 1.17 (1.11–1.30) 0.633
Swing time (s), median (IQR) 0.78 (0.73–0.85) 0.75 (0.70–0.85) 0.294
Stride time variability (CV),

median (IQR) 0.03 (0.02–0.04) 0.03 (0.02–0.04) 0.466

Swing phase variability (CV),
median (IQR) 0.04 (0.03–0.05) 0.03 (0.03–0.04) 0.537

Count backward

Stride length (m), mean ± SD 0.90 ± 0.18 1.10 ± 0.20 <0.001
Gait velocity (m/s), mean ± SD 0.63 ± 0.20 0.82 ± 0.20 <0.001

Gait frequency (steps/min),
mean ± SD 82.98 ±17.16 89.56 ± 14.81 0.068

Stance phase (%), mean ± SD 68.93 ± 4.67 65.66 ± 2.76 <0.001
Swing phase (%), mean ± SD 31.07 ±4.67 34.34 ± 2.76 <0.001

Stride time (s), mean ± SD 1.52 ± 0.39 1.38 ± 0.26 0.058
Swing time (s), mean ± SD 0.46 ± 0.05 0.47 ± 0.06 0.399
Stride time variability (CV),

median (IQR) 0.06 (0.03–0.11) 0.04 (0.03–0.06) 0.023

Swing phase variability (CV),
median (IQR) 0.05 (0.04–0.08) 0.04 (0.03–0.05) 0.004

Note: AD, Alzheimer’s disease; HC, healthy controls; BMI, body mass index; MMSE, Mini-mental State Examina-
tion; CV, coefficient of variation.

3.2. Gait Parameters

The gait parameters of the free walk and counting backwards are presented in Table 1.
Compared with HCs, AD participants had a shorter stride length (free walk: p < 0.001,
counting backwards: p < 0.001; Table 1), slower gait velocity (free walk: p = 0.001, counting
backwards: p < 0.001; Table 1) and bigger proportion of the stance phase (free walk:
p = 0.001, counting backwards: p < 0.001; Table 1), which were found in both the free walk
and counting backwards. However, AD participants had a larger variability in stride time
(p = 0.023; Table 1) and the swing phase (p = 0.004; Table 1), which were only found in
counting backwards. Considering the influence of age, we repeated the multiple logistic
regression to adjust for gender, age and education. Consistent with the above results,
a shorter stride length (free walk: p = 0.006, counting backwards: p = 0.003; Table 2),
slower gait velocity (free walk: p = 0.016, counting backwards: p = 0.007; Table 2) and
bigger proportion of the stance phase (free walk: p = 0.024, counting backwards: p = 0.014;
Table 2) were significantly associated with AD, which were found in both the free walk and
counting backwards. A larger variability in stride time (p = 0.031; Table 2) and the swing
phase (p = 0.040; Table 2) were significantly associated with AD, which were only found in
counting backwards.
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Table 2. Multiple logistic regression of gait features and AD.

Gait Parameters OR 95% CI p-Value

Free walk

Stride length (m) 0.012 0.001–0.277 0.006
Gait velocity (m/s) 0.034 0.002–0.536 0.016

Gait frequency
(steps/min) 0.980 0.938–1.024 0.375

Stance phase (%) 1.272 1.032–1.568 0.024
Swing phase (%) 0.786 0.638–0.969 0.024

Stride time (s) 6.166 0.368–103.435 0.206
Swing time (s) 8.363 0.399–175.135 0.171

Stride time variability
(CV) 1.027 0.909–1.159 0.670

Swing phase
variability (CV) 1.029 0.911–1.162 0.646

Count backward

Stride length (m) 0.009 0.000–0.199 0.003
Gait velocity (m/s) 0.019 0.001–0.333 0.007

Gait frequency
(steps/min) 0.984 0.952–1.016 0.327

Stance phase (%) 1.244 1.045–1.480 0.014
Swing phase (%) 0.804 0.676–0.957 0.014

Stride time (s) 2.421 0.435–13.480 0.313
Swing time (s) 0.021 0.000–136.087 0.389

Stride time variability
(CV) 1.146 1.012–1.298 0.031

Swing phase
variability (CV) 1.156 1.007–1.327 0.040

Notes: OR values were adjusted for gender, age and education. AD, Alzheimer’s disease; OR, odds ratio; CI,
confidence interval; CV, coefficient of variation.

3.3. Gait Domains

Consistent with the previous research, the identified gait domains were derived from
similar gait parameters [15]. In two gait assessments, the components of three gait domains
were the same. The first factor was named the rhythm factor, loading heavily on the gait
frequency, stance phase and swing phase. The second factor was named the pace factor,
loading heavily on the stride length and gait velocity. The third factor was named the
variability factor, loading heavily on the stride time variability and swing phase variability.
The free walk yielded the gait domains as follows: rhythm factor (34.98%), pace factor
(31.13%) and variability factor (28.46%). Counting backwards yielded the gait domains as
follows: rhythm factor (40.23%), pace factor (27.86%) and variability factor (26.73%). The
components and loadings mentioned above are presented in Table 3.

The multivariate regression analysis showed that the pace factor was an independent
variable for recognizing AD in the two gait assessments (free walk: odds ratio [OR] = 0.324,
95% confidence interval [CI] = 0.180–0.583, p < 0.001; counting backwards: OR = 0.285, 95%
CI = 0.151–0.540, p < 0.001; Figure 2); the variability factor was an independent variable
for recognizing AD in counting backwards (OR = 2.575, 95% CI = 1.097–6.041, p = 0.030;
Figure 2). After adjusting for age, sex and education levels, the multivariate regression
analysis showed that the pace factor (OR = 0.405, 95% CI = 0.215–0.763, p = 0.005; Figure 2)
was independently associated with AD in the free walk. For counting backwards, the
pace factor (OR = 0.337, 95% CI = 0.169–0.674, p = 0.002; Figure 2) and variability factor
(OR = 2.750, 95% CI = 1.115–6.781, p = 0.028; Figure 2) were significantly associated with
AD.
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Table 3. Factor loading of seven quantitative variables on three independent gait factors rotated and
extracted via factor analysis.

Gait Parameters
Gait Domains

Rhythm Factor Pace Factor Variability Factor

Free walk

Stride length (m) 0.148 0.984 −0.055
Gait velocity (m/s) 0.539 0.812 −0.083

Gait frequency
(steps/min) 0.934 0.114 −0.18

Stance phase (%) −0.763 −0.512 0.285
Swing phase (%) 0.763 0.512 −0.285

Stride time variability
(CV) −0.124 −0.055 0.971

Swing phase
variability (CV) −0.29 −0.108 0.919

Variance explained, % 34.98 31.13 28.46

Count backward

Stride length (m) 0.179 0.981 −0.027
Gait velocity (m/s) 0.632 0.710 −0.190

Gait frequency
(steps/min) 0.903 0.046 −0.339

Stance phase (%) −0.823 −0.466 0.249
Swing phase (%) 0.823 0.466 −0.249

Stride time variability
(CV) −0.168 0.003 0.960

Swing phase
variability (CV) −0.432 −0.218 0.821

Variance explained, % 40.23 27.86 26.73
Notes: The highest loading features are shown in bold. CV, coefficient of variation.
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Figure 2. The forest plot of regression between AD and gait domain for two gait assessments.
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4. Discussion

To the best of our knowledge, this is the first study to explore the association between
gait domains and AD participants. Compared with HC, we found that AD participants had
a shorter stride length, slower gait velocity and bigger proportion of the stance phase both
in the free walk and counting backwards; there was a larger variability in the stride time
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and swing phase only in counting backwards, compared with HC. In two gait assessments,
the components of three gait domains (rhythm, pace and variability domains) were found
to be the same. The rhythm factor loaded heavily on the gait frequency, stance phase and
swing phase; the pace factor loaded heavily on the stride length and gait velocity; and the
variability factor loaded heavily on the stride time variability and swing phase variability.
We found that the pace factor was independently associated with AD both in the free walk
and counting backwards assessments; the variability factor was independently associated
with AD only in the counting backwards assessment; and the statistical difference still
remained after adjusting for age, sex and education levels. Gait domains could help
clinicians to better understand the gait performance of AD participants and the relationships
between several gait parameters, which would be helpful for selecting the appropriate gait
domains for monitoring under single and dual-task walking conditions in AD participants.
Therefore, gait domains (pace and variability domains) may be helpful for detecting AD in
clinical practice.

Our study indicated that the pace domain was highly associated with AD both in
the single- and dual-task conditions. After adjusting for age, sex and education levels, a
1-point decline in the pace factor (free walk, by 59.5%; counting backwards, by 66.3%) was
associated with the risk of developing AD. Cullen et al. conducted research on subjective
cognitive impairment (SCI), MCI and dementia patients and found that dementia patients
showed a slower gait speed than the other two groups, but there were no differences
between the SCI and MCI groups [37]. Previous research suggested that reduced executive
function and working memory performances were associated with slow gait velocity [11].
It is well established that cerebral structure and function are altered in AD. Patients with
AD show a reduced basal forebrain volume and hippocampus atrophy compared with the
healthy controls [38]. Thus, the significant reduction in performance in the pace domain
may be because of the structural and functional brain changes associated with pathological
processes in AD.

The variability domain was significantly associated with AD only in the dual-task
condition. After adjusting for age, sex and education levels, a 1-point increase in the
variability factor (counting backwards, by 175%) was associated with the risk of developing
AD. In this study, the difference in outcomes between the dual-task and the single-task, in
part, may be due to differences in the nature of these two tasks. The dual-task paradigm
reflects the relationship between cognition and gait more sensitively when compared
with the single-task paradigm [11]. Originally, Lundin-Olsson et al. noticed that some
frail elderly patients stopped walking when they started a conversation with a walking
companion, and he proposed that the inability to maintain a conversation while walking is
a marker for future falls in older adults [39]. After that, observing people walking while
they perform a secondary task (“dual-task paradigm”) has become a common way to assess
the interaction between cognition and gait. The dual-task paradigm affords the opportunity
to manipulate attention demands. There is a conflict between tasks during the performance
of a dual task, as the two tasks interfere with each other and compete for the same brain
resources [35]. Furthermore, a study suggested that the variability domain characterized by
stride length variability may be a more sensitive predictor for identifying future cognitive
decline than other gait domains [12]. The increase in gait parameters’ variability was
found to be a loss of automaticity, and these people were more likely to fall [15]. Healthy
people can walk smoothly while executing the dual-task, while people with AD are not
capable of fluid movement when focusing on both tasks simultaneously. This may be due
to the fact that paying attention to cognitive tasks can generate a greater cognitive load
for participants with AD, which can interfere with the automaticity of walking movement.
Thus, the increase in the variability domain was significantly associated with AD when all
participants were asked to walk while counting backward.

There are unique signatures of gait impairments in different dementia disease subtypes,
such as AD, Lewy body disease (LBD) and Vascular dementia (VD). The LBD group
demonstrated greater impairments in asymmetry and variability compared with AD; both
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groups were more impaired in pace and variability domains than controls [40]. When
compared to subjects with AD, subjects with vascular dementia walked more slowly and
had a reduced step length [41]. In this study, the Tinetti scale was used, and 79 percent
of patients with vascular dementia exhibited gait and balance disorders, compared with
25 percent of patients with AD. The rate of decline in mobility also differs, depending on
the dementia subtype and rate of progression. Therefore, in addition to indicating the
presence of dementia, gait analysis may have potential to distinguish disease subtypes.

We should admit that this cross-sectional study is preliminary and has some limitations.
Firstly, this study was a cross-sectional study; therefore, we cannot evaluate the dynamic
associations between gait domains and disease progression of AD. Secondly, the diagnosis
of AD in our study was based on MRI, clinical symptoms and MMSE scores. And the
majority of AD participants did not undergo the PET neuroimaging or CSF assays to make
a definite diagnosis. Thirdly, the associations between the specific sub-items of MMSE
and gait domains were not included in our study due to the limited study sample size.
Fourthly, in our study, upper limb movements were not assessed, and it was impossible
to determine the effect of upper limb movements on gait parameters. Finally, most of the
participants with AD had taken medications, including antidepressants and antipsychotics,
etc. In contrast, the HC population had not taken medication. As a result, the two groups
were incomparable. Due to the unbalanced data, it is not possible to eliminate the influence
of medication history on the gait of participants with AD. Consequently, further work is
required to enhance the sample size and refine the selection criteria for participation, as
well as the study methodology, to bolster the reliability of the results.

Despite these limitations, there are some strengths in our study. Our study explored
the association between gait domains and AD under single and dual-task gait assessments,
as well as to find a new, objective and simple gait domain to recognize the AD patients
from healthy old people in clinical practice. In two gait assessments, the components of
three gait domains (rhythm, pace and variability domains) were found to be the same. And
our study found that the pace factor was independently associated with AD both in the free
walk and counting backwards assessments and the variability factor was independently
associated with AD only in the counting backwards assessment. Gait domains could help
clinicians to fully comprehend the gait performance in AD patients and help clinicians
to choose the appropriate combination of gait parameters to monitor the disease and its
progression. Therefore, the pace and variability domains could be objective and simple
markers for recognizing AD in clinical practice.

5. Conclusions

Our study found that the pace factor was independently associated with AD both
in single- and dual-task gait assessments and the variability factor was independently
associated with AD only in the dual-task gait assessment. Gait domains, objective and
simple markers, could help clinicians fully comprehend the gait performance in AD patients
and choose the appropriate combination of gait parameters to monitor the disease and its
progression.
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