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72260 Busovača, Bosnia and Herzegovina

4 Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
5 Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
6 Department of Surgery, School of Medicine, University of Zenica, Travnička 1,
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Abstract: This systematic review assesses current molecular targeted therapies for glioblastoma mul-
tiforme (GBM), a challenging condition with limited treatment options. Using PRISMA methodology,
166 eligible studies, involving 2526 patients (61.49% male, 38.51% female, with a male-to-female ratio
of 1.59/1), were analyzed. In laboratory studies, 52.52% primarily used human glioblastoma cell
cultures (HCC), and 43.17% employed animal samples (mainly mice). Clinical participants ranged
from 18 to 100 years, with 60.2% using combined therapies and 39.8% monotherapies. Mechanis-
tic categories included Protein Kinase Phosphorylation (41.6%), Cell Cycle-Related Mechanisms
(18.1%), Microenvironmental Targets (19.9%), Immunological Targets (4.2%), and Other Mechanisms
(16.3%). Key molecular targets included Epidermal Growth Factor Receptor (EGFR) (10.8%), Mam-
malian Target of Rapamycin (mTOR) (7.2%), Vascular Endothelial Growth Factor (VEGF) (6.6%), and
Mitogen-Activated Protein Kinase (MEK) (5.4%). This review provides a comprehensive assessment
of molecular therapies for GBM, highlighting their varied efficacy in clinical and laboratory settings,
ultimately impacting overall and progression-free survival in GBM management.

Keywords: target therapy; glioblastoma; central nervous system; molecular biology

1. Introduction

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults,
representing 45.2% of malignant brain and CNS tumors [1–4]. It is classified as a grade
IV diffuse astrocytic glioma by the World Health Organization (WHO) due to its invasive
growth and specific histopathological and immunohistochemical features [5]. Molecular
targeted therapies have emerged as a promising avenue for addressing GBM’s complexity
and limited treatment options [6–11]. Frequent genetic alterations, such as p53 mutations,
EGFR amplification, CDKN2a deletion, and PTEN mutations, offer potential therapeutic
targets [11–21]. Current treatments, including surgery, radiation, and chemotherapy, yield
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a median survival of only 15 months for GBM patients, with frequent aggressive recur-
rences [12]. Patients also contend with significant psychological challenges that impact
their quality of life [14].

This systematic review is driven by the critical need to consolidate and analyze key
advancements in the field of molecular targeted therapies for GBM. Despite ongoing efforts,
the complex nature of GBM and limited treatment options emphasize the significance of
evaluating current research directions. Our primary goal is to offer crucial insights to
the scientific community and healthcare professionals, contributing to the quest for more
effective molecular interventions and improved outcomes for GBM patients.

2. Materials and Methods

A comprehensive systematic analysis was conducted to assess the present status
of molecular targeted treatments for gliomas, aimed at providing valuable insights for
scientific advancement and steering progress in this research domain. The methodology
adhered to the established PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [22]. This systematic review was registered in the Open Science
Framework (OSF) registry under the identifier OSF-REGISTRATIONS-UBGYC-V1.

2.1. Search Strategy

In March 2023, a literature search of English-text articles was conducted using PubMed
and Web of Science. Categories of concepts related to molecular targeted therapy were
explored, focusing on Glioblastoma multiforme (GBM) and excluding other specific types.
The search query used was (Glioblastoma multiforme OR GBM) AND (Molecular targeted
therapy OR Protein Kinase Inhibitors OR Immunotherapy OR Apoptosis) from 2000 to
2022. Details about the search methodology are provided in Appendix A.

2.2. Inclusion and Exclusion Criteria

The screening and analysis process involved multiple authors to ensure rigor and
accuracy. Initially, article titles and abstracts were assessed by four authors. Subsequently,
the remaining articles underwent meticulous examination by a panel of five authors. To
ensure the highest level of precision, the screening process was carried out in multiple
stages. Initially, two authors evaluated article titles and abstracts for relevance, with a focus
on removing any duplicate entries. Following this initial phase, the remaining articles
underwent comprehensive full-text scrutiny by three authors.

The inclusion criteria were rigorously adhered to, encompassing studies that met the
following criteria: (1) clinical studies, (2) laboratory studies, (3) molecular targeted therapies
designed specifically for GBM, (4) studies involving adult participants, and (5) studies
from 2000 to 2022. Exclusion criteria were applied as follows: (1) book or book chapters,
(2) conference papers, (3) narrative and systematic reviews, (4) non-English literature,
(5) studies lacking data of interest (including those related to other glial tumors or studies
without predefined data for extraction), and (6) studies involving pediatric populations
(Figure 1).

2.3. Data Extraction and Processing

In the systematic review, data extraction encompassed several key elements. These
comprised the primary author’s name, year of publication, geographical location, study
design, number of subjects (if applicable), molecular target, associated molecular pathway,
as well as the approach used and principal discoveries. For the purposes of this study,
categorization was performed based on the molecular mechanisms targeted by therapy.
The classification is further detailed in Table 1.
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Table 1. Categorization based on target therapy/pathways.

Group Abbreviation Explanation

Protein kinase pathway group PKP Mechanisms related to protein kinases.

Cell cycle-related mechanisms CCRM Mechanisms associated with cell cycle, apoptosis, and transcription
pathways.

Microenvironmental mechanisms MT Mechanisms in the tumor’s surrounding environment, including
angiogenesis, cell–cell adhesion, and iron/cation regulation.

Immunomodulatory targets IT Targets that modulate the immune response.
Other targets OT Targets not falling into the previous categories.

2.4. Statistical Analysis and Graphical Elements

The statistical analysis was conducted using IBM SPSS Statistics (Version 27.0., Inter-
national Business Machines Corporation, Armonk, NY, USA). The analysis encompassed
the processing of categorical variables, with their presentation in the form of frequen-
cies and percentages. Graphical representations were generated for research purposes in
non-commercial platforms (Google Sheets and Google Drawings). Elements utilized for
depicting molecular pathways were sourced from the non-commercial database, Servier
Medical Art (SMART, Manila, Philippines).

3. Results
3.1. Global Research Trends

A total of 166 studies met the eligibility criteria for the systematic review [23–182]. The
research trends showed that the majority of the studies were conducted in the USA, with
63 studies (38.0%) (Figure 2). China had the second-highest number of studies, with 41
(24.7%), followed by Germany with 10 (6.0%), Italy with 9 (5.4%), and Japan with 8 (4.8%).
Other countries with a significant number of studies include France (5; 3.0%), Canada (6;
3.6%), and Australia (3; 1.8%). The remaining countries had one or two studies each, with
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India, Iran, Korea, Luxembourg, Norway, Romania, Russia, Spain, Switzerland, Taiwan,
Turkey, and the United Kingdom each having one study.
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Figure 2. Geographical distribution of research conduction.

The studies included in the review spanned from 2001 to 2022, with the majority of
the studies conducted between 2013 and 2015, accounting for 11.4% and 12.0% of the total
studies, respectively. The next highest number of studies took place in 2012, with 8.4% of
the total studies. The years with the least number of studies were 2001, 2003, 2004, 2005,
2008, 2009, and 2017, each with only one study (Figure 3).
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3.2. Study Design, Type of Target Therapy, and Molecular Mechanisms

The comprehensive systematic review incorporated a total of 27 studies (constituting
16.3% of the total) focused on clinical applications, and a substantial majority of 139 studies
(making up 83.7%) were conducted within controlled laboratory environments.

Within the domain of therapeutic modalities, a significant proportion of 100 studies
(60.2%) embraced a multifaceted therapeutic approach, while a slightly smaller portion
of 66 studies (39.8%) concentrated on mono-therapeutic strategies. In terms of mech-
anistic classification, 69 studies (41.6%) were categorized under the PKP mechanism,
30 studies (18.1%) were classified under CCRM, 33 studies (19.9%) were designated under
Microenvironmental Targets (MT), 7 studies (4.2%) fell under IT, and 27 studies (16.3%)
were attributed to OM (Figure 4).
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The most frequently encountered molecular target was found to be the Epidermal
Growth Factor Receptor (EGFR), accounting for a substantial 18 instances (10.8%). Fol-
lowing closely were the Mammalian Target of Rapamycin (mTOR) with 12 occurrences
(7.2%), Vascular Endothelial Growth Factor (VEGF) with 11 instances (6.6%), and Mitogen-
Activated Protein Kinase (MEK) with 9 cases (5.4%). Phosphoinositide 3-Kinase (PI3K) and
B-Raf Proto-Oncogene (BRAF) exhibited an equal number of occurrences, each accounting
for 8 cases (or 4.8%), while they were attributed to 5 cases (3.0%), respectively.

VEGF, known as Vascular Endothelial Growth Factor, induces an augmentation in
the vascularization of GBM. Consequently, it is categorized within the Endothelial Targets
(ET) group, despite subsequently activating the Protein Kinase Phosphorylation (PKP)
mechanism, akin to EGFR. With respect to Immunological Targets (IT), it encompasses
molecular targets such as Extracellular Matrix Metalloproteinase Inducer (EMMPRIN),
Autotaxin (ATX), and Lysophosphatidic Acid (LPA), which are associated with the ATX–
LPA pathway. This pathway eventually activates Beta Catenin, emerging as a significant
avenue of interest in the context of targeted therapy for GBM (Figure 5).
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Figure 5. Common molecular pathways associated with target therapy of GBM. Legend: EGF—
Epidermal Growth Factor; VEGF—Vascular Endothelial Growth Factor; JAK—Janus Kinase; STAT—
Signal Transducer and Activator of Transcription; Wnt—Wingless-Related Integration Site; Cyclin—
Regulatory proteins involved in cell cycle progression; β Catenin—Beta-Catenin; RAS—Rat Sarcoma;
GTP—Guanosine Triphosphate; BRAF—B-Raf Proto-Oncogene; MEK—Mitogen-Activated Protein
Kinase Kinase; ERK—Extracellular Signal-Regulated Kinase; PI3K—Phosphatidylinositol 3-Kinase;
Akt—Protein Kinase B; mTOR—Mammalian Target of Rapamycin; HIFa—Hypoxia-Inducible Factor
alpha; CDK—Cyclin-Dependent Kinase; MDM2—Mouse Double Minute 2 Homolog.

3.3. Findings from Clinical Studies

The total number of patients involved in 27 clinical studies is 2526, with three studies
not reporting gender distribution numbers (Table 2). Among the known gender distribution
data for 1244 patients, 764 (61.49%) were male and 480 (38.51%) were female, resulting
in a male-to-female ratio of 1.59/1. The lowest recorded median age was 49 years, while
the highest was 90 years. Upon examining the interquartile ranges, it is observed that the
youngest participant in these studies was 18 years old, while the oldest was 100 years old.
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Table 2. Overview of clinical studies.

Reference Year N Male/Female
Ratio

Years
(Median and

IQR)
Study Design Molecular

Mechanism
Molecular

Target Therapy Success Rate/Outcome Main Findings

Sanai et al.
[141] 2018 20 12/8 59 (28–81) NRCT PKP Wee1K AZD1775 N/A

AZD1775 reaches
therapeutic

concentrations in GBM,
well tolerated.

Wick et al.
[169] 2019 450 N/A N/A NRCT (II) PKP

ALK
CDK4/6
mTOR
MDM2
SHH

Alectinib
Palbociclib

Temsirolimus
Idasanutlin
Vismodegib

N/A

NCT Neuro Master
Match (N2M2) trial uses

GBM molecular
signatures for treatment.

Sauter et al.
[145] 2022 51 36/15

Primary: 63
(35–78);

Recurrent:
52.5 (29–70)

NRCT (II) OM CSF1R, ABL,
cKIT, PDGFR Imatinib

mPFS 2.8 m in arm A and
2.1 m in arm B. mOS was
5.0 (0.8–30) m in arm A

and 6.5 m in arm B.

Imatinib shows no
significant effect on GBM.

Wang et al.
[165] 2014 92 21/5 50 (18–76) Pilot clinical

study MT EGFR Nimotuzumab +
TMZ + RT mOS 15.9 m; mPFS 10 m.

Nimotuzumab, TMZ, and
RT offer similar survival

times.

Hasselbalch
et al. [74] 2010 37 21/16 57.9

(23.8–70.3)
Prospective

study MT EGFR, VEGF,
topoisomerase I

Cetuximab +
bevacizumab +

irinotecan

mPFS in CBI (n = 37)
corresponded to 17 w.

No biomarkers identify
bevacizumab benefits.

Mason et al.
[116] 2012 32 22/10 53 (43–71) RCT (I) PKP mTOR1 Everolimus +

TMZ N/A
Everolimus (5 days) +
TMZ is an appropriate

phase II dose.

Chinnaiyan
et al. [48] 2013 25 14/11 57

(31–73) RCT (I) PKP mTOR Everolimus +
TMZ + RT N/A

Everolimus (10 mg) +
RT/TMZ: tolerable,
acceptable toxicity.

Lassen et al.
[99] 2015 22 32/12 60 (37–72) RCT (I) MT

Placental
growth factor

(PlGF) + VEGF

RO5323441 +
Bevacizumab mPFS 3.5 m, mOS 8.5 m.

RO5323441 plus
bevacizumab toxicity is

manageable.
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Table 2. Cont.

Reference Year N Male/Female
Ratio

Years
(Median and

IQR)
Study Design Molecular

Mechanism
Molecular

Target Therapy Success Rate/Outcome Main Findings

Desjardins
et al. [54] 2012 32 19/13 56

(25–80) RCT (II) MT VEGF Bevacizumab MPFS was 15.8 w.
Combined temozolomide
and bevacizumab show
activity and tolerance.

Vredenburgh
et al. [160] 2012 125 74/51 56.2 (19–80) RCT (II) MT VEGF Bevacizumab +

RT + TMZ Medaian PFS was 13.8 m.
Bevacizumab addition to
TMZ and RT has minimal

toxicity.

Zustovich
et al. [182] 2013 43 18/25 60

(36.1–77.0) RCT (II) PKP Multitarget
kinase Sorafenib

Median
time-to-progression was

3.2 m.

Sorafenib + TMZ is safe
with activity in relapsed

GBM.

Clarke et al.
[50] 2014 59 N/A 90 (60–100) RCT (II) MT VEGF +

tyrosine kinase
Bevacizumab +

Erlotinib OS: 19.8 m, PFS: 13.5 m.

Bevacizumab/erlotinib/
TMZ/radiotherapy

improves
progression-free survival.

Brown et al.
[37] 2016 38 27/11 57.0 (30–71) RCT (II) MT VEGFR + EGFR

Cediranib +
Gefi-

tinib/placebo

PFS (cediranib +
gefitinib): 3.6 m, PFS
(cediranib + placebo):

2.8 m.

Cediranib and gefitinib
combination improves

PFS.

Badruddoja
et al. [29] 2017 30 19/11 55 (18–82) RCT (II) MT VEGF

MGMT
Bevacizumab +

TMZ

Overall response rate
from diagnosis was 51 w,
the PFS-6 was 52%, and
median time to tumor
progression was 5.5 m.

Bevacizumab +
temozolomide is a

salvage regimen for
recurrent GBM.

Lombardi
et al. [109] 2019 119 84/35 54·8

(46·8–61·3) RCT (II) PKP Multitarget
kinase + mTOR regorafenib

Survival 24.8 m with
regorafenib vs. 6.2 m for
patients with progressive

disease.

REGOMA showed
survival benefits with

regorafenib in recurrent
GBM.
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Table 2. Cont.

Reference Year N Male/Female
Ratio

Years
(Median and

IQR)
Study Design Molecular

Mechanism
Molecular

Target Therapy Success Rate/Outcome Main Findings

Nayak et al.
[124] 2021 80 54/26 53 (42–60) RCT (II) IT PD1 + VEGF Pembrolizumab

+ Bevacizumab

PFS-6: 26.0% and OS
8.8 m with bevacizumab.
PFS-6 was 6.7%, mOS was
10.3 m w/o bevacizumab.

Pembrolizumab +/−
bevacizumab is not
effective in therapy.

Weller et al.
[167] 2017 745 N/A N/A RCT (III) MT EGFRvIII TMZ +/−

Rindopepimut N/A
Rindopepimut

monotherapy does not
reduce GBM mortality.

Reardon
et al. [136] 2020 439 235/204 55.5 (22–77) RCT (III) IT PD1 Nivolumab

mOS (nivolumab): 9.8 m;
bevacizumab, 10.0 m;
mOS-12 42% in both

groups.

Nivolumab monotherapy
is as effective as
bevacizumab.

D’Alessandris
et al. [53] 2013 10 19/7 52.5 (29–77) RTC MT VEGF +

EGFRvIII
Bevacizumab +

Erlotinib mPFS 8.0 m; mOS 9.5 m.
Molecular analysis

improves RR and PFS at
6 months.

Butowski
et al. [38] 2010 12 8/4

11 patients >
18 and <65 y
1 patient > 65

y

RTC PKP
Protein kinase

C-beta +
PI3K/Akt

Enzastaurin +
TMZ

Median survival: 14.6 m,
and 1/4 patients > 2 y.

Enzastaurin + RT/TMZ:
Well tolerated.

Hashimoto
et al. [73] 2015 7 4/3 49 (41–60) RTC (I) OM WT1 (Wilms

Tumor 1)

WT1 peptide
vaccination +

TMZ

4 patients remained in an
NR status after GTR, two

showed complete
response.

Combined peptide
vaccination with

temozolomide is safe.

Desjardins
et al. [55] 2011 36 29/7 52 (26–74) RTC (I) OM Farnesyl

transferase SCH 66336 mOS (14.3 m); mPFS
(4.5 m); PFS-6 (41.7%).

SCH 66336 dose specified
for strata.

Geletneky
et al. [65] 2017 18 14/4 57.8 ± 10.6 RTC (I/II) OM Protein NS1

Rat H-1
parvovirus

(H-1PV)

PFS-6: 27%;
mPFS: 111 d.

H-1PV is safe with
favorable PFS.
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Table 2. Cont.

Reference Year N Male/Female
Ratio

Years
(Median and

IQR)
Study Design Molecular

Mechanism
Molecular

Target Therapy Success Rate/Outcome Main Findings

Kanemaru
et al. [90] 2019 1 1/0 N/A Case report PKP BRAF + MEK Dabrafenib +

Trametinib N/A

Dabrafenib and
trametinib + radiation

showed strong response
in epithelioid GBM.

Anghileri
et al. [26] 2021 1 0/1 N/A Case report IT PD1 Nivolumab N/A Nivolumab is useful for

GBM patients.

Johanns et al.
[85] 2018 2 1/1 N/A Case series PKP BRAF + MEK Dabrafenib +

Trametinib N/A

PT1: 11mo therapy
improved function, then
progressed. PT2: 3 mo

therapy allowed
ambulation, but ended

fatally.

Legend: IQR—Interquartile Range; mTOR—Mammalian Target of Rapamycin; MDM2—Mouse Double Minute 2; ALK—Anaplastic Lymphoma Kinase; CDK4/6—Cyclin-Dependent
Kinase 4 and 6; SHH—Sonic Hedgehog; CSF1R—Colony-Stimulating Factor 1 Receptor; ABL—Abelson Tyrosine Kinase; cKIT—Tyrosine-protein kinase Kit; PDGFR—Platelet-
Derived Growth Factor Receptor; EGFR—Epidermal Growth Factor Receptor; VEGF—Vascular Endothelial Growth Factor; VEGFR—Vascular Endothelial Growth Factor Receptor;
TMZ—Temozolomide; N/A—not available or not defined.
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In the context of GBM target therapy treatment, various therapeutic approaches and
drug regimens have been explored, each yielding distinct success rates and outcomes.
Notably, Imatinib exhibited no significant effect on GBM, with a median progression-free
survival (mPFS) of 2.8 months (and control: 2.1 months), showing no statistical significance
between the investigated and control groups [145]. In contrast, Nimotuzumab combined
with temozolomide and radiation therapy resulted in similar survival times, boasting a
median overall survival (mOS) of 15.9 months and a median progression-free survival
(mPFS) of 10 months [165]. In the study by Desjardins et al. [54], the combination of beva-
cizumab with temozolomide showed activity and tolerance, with a median progression-free
survival (mPFS) of 15.8 weeks. In the research conducted by Brown et al. [37], the combina-
tion of Bevacizumab with Cediranib and Gefitinib demonstrated improved progression-
free survival, resulting in a progression-free survival (PFS) of 3.6 months. Additionally,
Badruddoja et al. [29] found that bevacizumab, when combined with temozolomide, served
as a salvage regimen for recurrent GBM, with an overall response rate from diagnosis of
51 weeks, a PFS-6 of 52%, and a median time to tumor progression of 5.5 months. Regorafenib
demonstrated a survival benefit in recurrent GBM, with a survival of 24.8 months [109], while
Pembrolizumab, with or without bevacizumab, proved ineffective in therapy, resulting
in a progression-free survival rate of 26.0% and an overall survival of 8.8 months with
bevacizumab, and a progression-free survival rate of 6.7% and an mOS of 10.3 months
without bevacizumab [124]. These findings highlight the diverse landscape of therapeutic
strategies and their associated outcomes in the management of GBM.

3.4. Findings from Laboratory Studies

Out of a total of 139 laboratory studies, the most common research samples were
human GBM cell lines, specifically human cell cultures (HCC), accounting for 73 studies
(52.52%). Subsequently, there were 60 studies (43.17%) that utilized animal samples, and
6 studies (4.32%) employed a combination of sample sources.

In animal studies, mice were predominantly used as the sample (52 studies), repre-
senting 37.41%.

Various drugs and treatment combinations demonstrated significant anti-glioma ef-
fects, including the inhibition of glioma proliferation, reduced invasion, enhanced apoptosis,
and extended survival. Particular highlights include the effectiveness of O-acetyl GD2 gan-
glioside, Amb4269951, rSLURP-1, ILK inhibition, AAL881, and the combined mTOR1 and
MEK1/2 inhibition in CDK4-dysregulated tumors. Moreover, the exploration of various
molecular targets, such as EGFR, EGFRvIII, miRNAs, MET, and other signaling pathways,
underscores the complex nature of glioma and the potential for targeted therapies.

3.4.1. Overview of In Vitro Laboratory Studies

The total number of in vitro studies included in the systematic review amounted to
42, constituting 25.3% of the overall study count. The GBM cell lines most frequently
encountered in these studies were the U87 cell line (comprising 17 studies, or 40.5%), which
featured prominently across various investigations. Following this, the U251 cell line (noted
in 11 studies, or 26.2%) and the T98G cell line (present in 10 studies, or 23.8%) were also
commonly employed.

Regarding potential drugs for the treatment of GBM, numerous compounds exhibited
promise within the in vitro research. Particularly, Sorafenib, functioning as a multi-kinase
inhibitor, showcased robust anti-glioma activity in both in vitro settings, as emphasized
in the study by Siegelin et al. [132]. Furthermore, the combination of Metformin and
Sorafenib was identified as an effective treatment strategy for TMZ-resistant GBM cells,
as demonstrated in the investigation conducted by Aldea et al. [24]. The research by
Paternot et al. [128] underscored the potential of Rapamycin and PD184352 as a combined
therapeutic approach, effectively inhibiting DNA synthesis and pRb phosphorylation,
especially in CDK4-dysregulated tumors (Table 3).
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Table 3. Overview of in vitro studies.

Reference Year Species/Culture Type Molecular
Mechanism Molecular Target Therapy Success Rate/Outcome Main Study Findings

Blank et al. [36] 2001
HCC (endothelial YPEN-1
(CRL-222), microglial cell

line N9, rat GBM cell line C6)
MT O-acetyl GD2

ganglioside
Anti-GD2
Antibody N/A

O-acetyl GD2 ganglioside
prevents glioma

proliferation.

Koul et al. [95] 2005
ACC (U87, U251, LN229,
SNB-19, U373, and D54
human GBM cell lines)

PKP Integrin-linked
kinase QLT0276 In DMSO

ILK inhibition decreased the
in vitro invasive capability of

glioma cells, concomitant with a
decrease in MMP-2 secretion.

ILK inhibition
down-regulates proliferation

and invasion.

Paternot et al. [128] 2009 HCC (T98G, U-87 MG, and
U-138 MG) PKP mTOR1 + MEK1/2 Rapamycin +

PD184352

Complete inhibition of DNA
synthesis and pRb

phosphorylation requires the
combined inhibition of MEK1/2

and mTOR-raptor pathways.

Combined mTOR1 and
MEK1/2 inhibition in

CDK4-dysregulated tumors.

Premkumar et al.
[151] 2010 HCC (U87, T98G, U373,

LN229 and A172) PKP IGF1R + Src NVP-AEW541 +
Dasatinib

The effect on the induced
formation of Bax homodimers

(42 kDa), homotrimers (63 kDa),
and homotetramers (84 kDa)
was significantly reduced by
transfection with Bcl-2 and

Myr-Akt.

Dual IGF1R and Src
inhibition increases

apoptosis in glioma cells.

Siegelin et al. [132] 2010 HCC PKP BRAF Sorafenib N/A
Sorafenib has potent in vivo

and in vitro anti-glioma
activity.

Cloninger et al. [51] 2011 HCC (U87 and LN229
parental lines) PKP SAPK2/p38 +

mTORC1
SB203580 +
Rapamycin

Significant inhibition of tumor
growth rate 76% (at end of
dosing period) and tumor
growth delay, 16.5 days.

SAPK2/p38 + mTORC1
inhibitors for synergistic

response.

Liu et al. [106] 2011 HCC (U251) PKP bFGF Anti-bFGF siRNA

Cytochrome C, Caspase3, and
Bax were markedly higher in the
Ad-bFGF-siRNA group than in

the control group.

bFGF siRNA is a potential
glioma treatment.



Brain Sci. 2023, 13, 1602 13 of 41

Table 3. Cont.

Reference Year Species/Culture Type Molecular
Mechanism Molecular Target Therapy Success Rate/Outcome Main Study Findings

Zhang et al. [180] 2011 HCC (T98G and LN-229) CCRM ID2 Anti ID2 siRNA

The viability of cultured glioma
cells was reduced in eEF-2
kinase knock-down when

compared with control cells.

ID2 upregulation decreases
glioma apoptosis; targeting

increases sensitivity.

Ishiwata et al. [80] 2011 HCC and ACC/ A172 OM hnRNP A1/B2 B-Asarone
The growth rate and motility of
Nes cells were higher than those

of the mock cells

β-Asarone inhibits EMT and
invasion.

Du et al. [58] 2012 HCC (BT325 and U251) PKP Raf/MEK/ERK
signaling pathway

Sorafenib +
Vitamin K (VK1)

The combination of
low-concentration sorafenib (2.5
µM) and VK1 (50 µM) exhibited

strong synergistic action by
inhibiting protein expression of

Bcl-2 and Mcl-1, leading to
induction of cell apoptosis.

Sorafenib + VK1 induces
apoptosis through protein

regulation.

Lee et al. [101] 2012 HCC CCRM Wee1K Mk-1775

The median survival time of the
patients under 50 years old is 34

months, almost three times
longer than the 12-month

median survival time of the
patients > 50.

Wee1K phosphorylation is
an effective anti-tumor

target.

Golubovskaya et al.
[30] 2013 HCC PKP FAK Y15 N/A

FAK autophosphorylation
blockade with Y15 is a
potential GBM therapy.

Jin et al. [83] 2013 HCC (U251, U87) PKP Akt + NOTCH MRK003 +
MK-2206

Combination treatment was
superior to monotherapy in both

U251 and U87 cells.

Akt and NOTCH inhibition
decreases glioma

proliferation.

Pezuk et al. [131] 2013
HCC (U251, U138, U87,

T98G, U343, MO59K, LN319,
SF188)

PKP PLK1 Bi2536 + Tmz
PLK1 possible therapeutic target;
BI 2536 inhibited tumor growth

in vivo.

PLK1 inhibition + TMZ are
effective in vitro.

Kaneta et al. [91] 2013 HCC (U1242) CCRM BMI-1 Ptc-209
The inhibition of NEK9

suggested as a novel anticancer
therapeutic strategy.

Tumor growth is attenuated
by PTC-2009; potential

BMI-1 inhibitor.
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Table 3. Cont.

Reference Year Species/Culture Type Molecular
Mechanism Molecular Target Therapy Success Rate/Outcome Main Study Findings

Lian et al. [104] 2013 HCC CCRM EGFR AZD9291
miR-23a might be employed as a
novel prognostic marker and a
therapeutic target for glioma.

AZD9291 is efficient in GBM
preclinical models.

Mao et al. [115] 2013 HCC (U87, SF268, A172 and
U118) CCRM MDM2/4 +

α5β1/αvβ3 Compound 9

Targeting STK17A may lead to
the development of new

therapies for GBM and sensitize
cancers to existing therapies.

Compound 9 inhibits p53,
shows anti-glioma potential.

Ji et al. [82] 2013 HCC MT VEGFR Axitinib

High expression levels of Nrf2
and HIF-1alpha correlated with

low 1-year survival rate.
median OS 13 mo.

Axitinib exhibits
antiangiogenic activity and

prolongs survival.

Aldea et al. [24] 2014 HCC PKP mTOR + RAF Metformin +
Sorafenib

Metformin + sorafenib could be
combined into an efficient

in vitro treatment strategy and
this association is superior to

either drug used alone or when
compared with the use of TMZ.

Metformin + sorafenib is
effective for TMZ-resistant

GBM cells.

Emlet et al. [59] 2014 HCC (U87) PKP EGFRvIII + CD133 Egfrviii + CD133
AB

The specific lysis of the
EGFRvIII+/CD133+ population

significantly reduces the
implantation of primary GBM
tumors in mice and prolongs

survival.

EGFRvIII + CD133 BsAb
target cancer stem cells.

Hong et al. [77] 2014 HCC PKP Aurora-A kinase Alisertib
CE7 epitope was highly detected

in GBM and it represents a
potential therapeutic target.

Inhibiting Aurora-A kinase
enhances radiation effects.

Jung et al. [89] 2014 HCC PKP FOXO3A Z-Ajoene Z-ajoene is a potential candidate
for the treatment of GBM.

Z-ajoene targets glioma
CSCs via FOXO3A pathway.

Liu et al. [105] 2014 HCC (CE7R+ T cells) PKP EGFR and
PI3K/Akt G19

G19 inhibited cell proliferation
of U-87 MG human glioma cells

in vitro and in vivo

G19 targets EGFR and
PI3K/Akt, inducing redox

stress.
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Table 3. Cont.

Reference Year Species/Culture Type Molecular
Mechanism Molecular Target Therapy Success Rate/Outcome Main Study Findings

Liu et al. [108] 2014 HCC (T98G, A172, and U87) PKP AMPK Compound C

Compound C
at 10 µM inhibited proliferation
and glioma formation of human

U87MG glioma cells in vivo.

Compound C is a potent
anti-glioma agent.

Camorani et al. [40] 2015 HCC (U87MG) PKP EGFRvIII CL4 Aptamer +
EGFR Tkis

Combined treatment with CL4
and Gint4.T aptamers led to a

consistently higher inhibition of
cell growth.

CL4 and gefitinib cooperate
with anti-PDGFRβ aptamer.

Ma et al. [114] 2015 HCC (U251 and U87) PKP STAT3 Tetrandrine
Higher expressions of STAT3 in
patients with glioma received

lower survival rates.

Tetrandrine inhibits glioma
growth without affecting

embryos.

Wichmann et al.
[168] 2015 HCC (U251 and LN-229) PKP EGFR and HER2

siRNA +
Cetuximab +
Trastuzumab

Knock-down of HER2
reduces clonogenic survival in

both GBM cell lines.

EGFR and HER2 siRNA
reduce GBM growth rate.

Zhao et al. [181] 2015 HCC (U87) CCRM CDK + Aurora
(dual inhibitor) Jnj-7706621 Id2 is a good molecular target

for GBM gene therapy.
JNJ-7706621 shows potential

for GBM treatment.

Xu et al. [172] 2015 HCC (U87MG) IT CXCR4 POL5551 + MCR89
Icaritin is a promising

anti-cancer agent in the
treatment of GBM.

Higher POL5551
concentrations improve
survival, especially with

VEGF antagonism.

Junca et al. [88] 2017 HCC PKP ALK, ROS1, MET Crizotinib

Overexpression was associated
with poor prognosis with a

survival of 11.7 months against
14.3 months for patients whose
tumors did not express or had

low expression of MET.

MET and ALK
overexpression in glioma;

crizotinib potential.

Thanasupawat et al.
[154] 2017 HCC (U87MG) PKP FGFR Dovitinib N/A Alternation of dovitinib and

TMZ reduces GBM viability.

Caruana et al. [41] 2017 HCC (T98G) OM APLNR
MM54 Or MM193

(APLNR
Antagonists)

N/A
APLNR inhibition

significantly reduces tumor
growth.
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Table 3. Cont.

Reference Year Species/Culture Type Molecular
Mechanism Molecular Target Therapy Success Rate/Outcome Main Study Findings

Barbarisi et al. [32] 2018 HCC PKP CD44 Quercetin + TMZ N/A CD44-targeted nanocarriers
deliver quercetin to GBM.

Merlino et al. [119] 2018 HCC (U87MG) CCRM CDK 4/6 PD-0332991 N/A PD-0332991 inhibits glioma
growth, increases survival.

Franco et al. [63] 2018 HCC (U87MG) MT LTβR Light-VTP N/A
LIGHT-VTP prevents

angiogenesis and promotes
immune infiltration.

Pall et al. [127] 2019 HCC (hBMVECs, U251n and
U87, RAW264.7) MT HIF2α PT2385 N/A

HIF2α is a reasonable
therapeutic target; PT2385 is

effective.

Xiong et al. [171] 2019 HCC (MCF7, HL60, MCF7) MT STING ASA404 N/A ASA404 efficacy varies by
administration method.

Peng et al. [129] 2019
HCC (U-373MG Uppsala,

U-87MG Uppsala, U251 and
T98G)

OM EFTUD1 EFTUD1 shRNA N/A EFTUD1 overexpression is
associated with glioma.

Ariey-Bonnet et al.
[28] 2020 HCC (U87, U87vIII, T98G,

and U251) PKP MAPK14 BMZ N/A BMZ inhibits MAPK14, with
anticancer properties.

Bagca et al. [30] 2020 HCC (T98G) PKP ALK AZD3463 + TMZ N/A Combo with AZD3463 may
enhance TMZ in GBM.
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Table 3. Cont.

Reference Year Species/Culture Type Molecular
Mechanism Molecular Target Therapy Success Rate/Outcome Main Study Findings

Bychkov et al. [39] 2020 HCC (U251 MG and A172) CCRM
S100A9 (one of the
heterodimers for

calprotectin)
shRNA N/A

S100A9 knockdown
demonstrates anticancer

potential.

Cheng et al. [47] 2022 HCC (LN-229, T98, A172,
and human astrocyte) PKP CTSC Piperlongumine +

Scopoletin N/A
CTSC is a MAPK biomarker;

piperlongumine and
scopoletin inhibit growth.

Legend: HCC—Human Cell Culture; ACC—Animal Cell Culture; CCRM—Cell Cycle Regulation Mechanism; PKP—Protein Kinase Pathway; MT—Molecular Targeting; OM—Oncogene
Mutation; IT—Immunotherapy; LTβR—Lymphotoxin Beta Receptor; ALK—Anaplastic Lymphoma Kinase; MAPK—Mitogen-Activated Protein Kinase; CTSC—Cathepsin C; CDK—
Cyclin-Dependent Kinase; FGFR—Fibroblast Growth Factor Receptor; S100A9—S100 Calcium-Binding Protein A9; CXCR4—C-X-C Chemokine Receptor Type 4; AMPK—AMP-Activated
Protein Kinase; MDM2/4—Mouse Double Minute 2/4; SAPK2/p38—Stress-Activated Protein Kinase 2/p38; hnRNP—Heterogeneous Nuclear Ribonucleoprotein; VEGFR—Vascular
Endothelial Growth Factor Receptor; FOXO3A—Forkhead Box O3A; CD44—Cluster of Differentiation 44; CD133—Cluster of Differentiation 133; EGFR—Epidermal Growth Factor
Receptor; EGFRvIII—Epidermal Growth Factor Receptor Variant III; IGF1R—Insulin-Like Growth Factor 1 Receptor; Src—Proto-Oncogene Tyrosine-Protein Kinase Src; RAF—Rapidly
Accelerated Fibrosarcoma; MEK—Mitogen-Activated Protein Kinase; mTOR—Mammalian Target of Rapamycin; PD—Phosphoinositide; Akt—Protein Kinase B; PI3K—Phosphoinositide
3-Kinase; MRP—Multidrug Resistance-Associated Protein; PKB—Protein Kinase B; MEK1/2—Mitogen-Activated Protein Kinase 1 and 2; ERK—Extracellular Signal-Regulated Kinase;
EMT—Epithelial-Mesenchymal Transition; Nrf2—Nuclear Factor Erythroid 2-Related Factor 2; HIF-1alpha—Hypoxia-Inducible Factor 1 Alpha; ILK—Integrin-Linked Kinase; FAK—
Focal Adhesion Kinase; MET—Mesenchymal-Epithelial Transition Factor; STK17A—Serine/Threonine Kinase 17A; BMI-1—B-Lymphoma Mo-MLV Insertion Region 1; APLNR—Apelin
Receptor; JNJ-7706621—a dual CDK and Aurora Kinase inhibitor; MK-2206—an Akt inhibitor; Light-VTP—Light-Photochemical Internalization; STAT3—Signal Transducer and
Activator of Transcription 3; PD-0332991—Palbociclib; STING—Stimulator of Interferon Genes; ASA404—Vadimezan; EFTUD1—Elongation Factor Tu GTP-Binding Domain-Containing
1; N/A—not available or not defined.
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3.4.2. Overview of In Vivo Laboratory Studies

The systematic review encompassed a total of 62 in vivo studies, constituting 37.4% of
the overall studies included in the analysis. Among these in vivo studies, the GBM cell line
U87-MG was the most prominently observed (comprising 9.67% of the total), with GSC11
and U251-MG cell lines each being mentioned in two studies. Of these in vivo studies,
the majority (87%) involved animal subjects, with a predominant focus on mouse samples
(74.2%). Two studies (3.2%) reported human population involvement.

Regarding potential drugs for GBM treatment, the provided studies showcased sev-
eral promising therapeutic approaches. For instance, AMB4269951, as elucidated in the
investigation by Takano et al. [152], demonstrated remarkable anti-tumor effects against
gliomas. Rslurp-1, as evidenced by the research conducted by Saito et al. [139], exhibited
notable antitumor activity, resulting in increased survival rates. AA1881, explored in the
study led by Sathorn-Sumetee et al. [143], targeted BRAF, CRAF, and VEGFR, yielding
inhibition of glioma growth and an extension in median survival (Table 4).

Table 4. Overview of in vivo studies.

Reference Year Species/Culture
Type

Molecular
Mechanism

Molecular
Target Therapy Success Rate/Outcome Main Study

Findings

Takano et al.
[152] 2003 A (mice) MT

CTL1 (choline
transporter-

like
protein 1)

AMB4269951

MST:
52.8 ± 5.5 days (ACNU +

VEGF therapy significantly
mouse survival.

Amb4269951 has
significant

antitumor effects in
glioma.

Saito et al.
[139] 2004 A (rats) OM α7 nAChR Rslurp-1

Rats who received
combination therapy

survived more than 80 days
and revealed fibrous scar

tissue at necropsy.

rSLURP-1
demonstrates

antitumor activity.

SathornSumetee
et al. [143] 2006 A (mice) PKP BRAF, CRAF,

VEGFR AA1881

Median life spans of
12 days for control mice

and 44 days for
AAL881-treated animals.

AAL881 inhibits
glioma growth,
well tolerated.

Yang et al.
[175] 2006 A (rats) CCRM EF2-kinase EF2-siRNA

MST (bioconjugate in
combination with BPA) =
85.5 days compared with
70.4 days for those that

received it alone, 40.1 days
for BPA alone, and 30.3

days for irradiated controls.

EF2 regulates cell
migration;

knockdown
inhibits these

properties.

Yang et al.
[176] 2008 A (rats) PKP EGFR

Boronated
EGFR MAB +
Cetuximab

The MST of animals that
received both boronated

mAbs was 55 days
compared with MSTs of 36

and 38 days for animals
that received either one or
the other boronated mAb.

Both EGFR and
EGFRvIII tumors
must be targeted

for glioma.

Feng et al. [61] 2010 A (Rats) PKP PI3K/Akt;
JNK; ERK Tamoxifen

Treatment with TAM
at 20 µM caused about half
of the C6 glioma cells to die

after 24 h.

TAM-induced
apoptosis reveals
potential targets.

Koul et al. [96] 2010 A (mice) PKP PI3K/Akt Px-866

The median survival time
for controls was 32 days;
treated with PX-866 was

significantly longer at
39 days.

PX-866 inhibits
growth, induces G1

arrest in mice.

Colen et al.
[52] 2011 HCC (U87-MG

and U251-MG) OM MALAT1

Nanocomplex
Targeting

MALAT1 +
TMZ

A 50% survival rate was
observed with the nude rat

model with no tumor
recurrence after treatment.

Combined TMZ
with MALAT1

silencing offers a
survival benefit.
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Table 4. Cont.

Reference Year Species/Culture
Type

Molecular
Mechanism

Molecular
Target Therapy Success Rate/Outcome Main Study

Findings

Joshi et al. [86] 2012

HCC (serum-
cultured and
oncosphere

lines)

PKP Multitarget
kinases

Gefitinib +
Erlotinib +
Sunitinib

Use of PAC-1 with TMZ
substantially improved the

median survival to 205
days compared to vehicle,
compared to TMZ alone.

Sunitinib
combinations are
effective in vitro,

not in vivo.

Li et al. [103] 2012 A (mice) CCRM miR-23a
(APAF1) Anti-mir-23a

The MST of intracranial
U87 glioblastoma-bearing

nude mice treated with
RGD-liposomal pDP

(29 days) was significantly
longer than that of mice

treated with blank
RGD-liposome (23 days)

(p < 0.001).

miR-23a
upregulated in

gliomas;
knockdown

reduces
survivability.

Arcella et al.
[27] 2013 A (mice) PKP mTOR Rapamycin

Rapamycin-treated mice
survive almost double that
observed in vehicle-treated

mice.

Rapamycin is a
potent mTOR

inhibitor for GBM.

Grossman et al.
[69] 2013 A (rats) MT TRPV4 Cannabidiol

(CBD)

TMZ intratumoral
concentrations do not

decline in the setting of the
oral tyrosine kinase
inhibitor cediranib.

CBD induces lethal
mitophagy; TRPV4

is a target.

Chen et al. [46] 2013 A (rats) OM Nestin Anti-Nestin
IGG

TMP shown to be a
potential therapeutic

candidate for the treatment
of resistant malignant

gliomas.

Nestin
downregulation is

associated with
reduced glioma

proliferation and
migration.

Wang et al.
[162] 2014 H PKP RAS Mir-143

ER 51.6%
ER 63.6%
ER 32.0%

miR-143
downregulated in
glioma, inactivates

RAS.

Shingu et al.
[149] 2015 A (mice) PKP MEK, EGFR,

PI3K

Various
Small

Molecule
Inhibitors

Combination of erlotinib
and sorafenib tended to

improve survival of nude
mice bearing GSC11 brain

tumors.

Most synergistic
drug combinations

affect RTKs and
MEK/ERK or

PI3K.

Yao et al. [177] 2015 A (mice) PKP EGFR and
BRAF

BRAF(V600E)
Inhibitor
PLX4720

BRAFV600E + EGFR
inhibitors showed dramatic
reduction in tumor growth

and extended survival
compared to vehicle or

single-drug-treated
counterparts.

Inhibiting EGFR
and BRAF(V600E)

reduces
proliferation.

Venere et al.
[157] 2015 A (mice) OM IDH1R132H Wm17

median survival of 36 days
versus 24 days for the
DMSO vehicle cohort.

WM17 is a mutant
IDH1 inhibitor.

Balkhi et al.
[113] 2016 A (rat) PKP Multitarget

kinases

Caffeic Acid
Phenethyl

Ester (CAPE)
+ Dasatinib

N/A

Combo therapy
inhibits migration
and invasiveness,

and reduces
survival.

He et al. [76] 2016 A (mice) PKP MEK2 MEK2
Antibody

Si-MEK2-infected U87 cell
glioma burden mice had

longer survival times (48 d)
compared with

Si-ctl-infected glioma
burden mice (30.4).

MEK2 antagonists
sensitize TMZ

treatment in GBM.
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Table 4. Cont.

Reference Year Species/Culture
Type

Molecular
Mechanism

Molecular
Target Therapy Success Rate/Outcome Main Study

Findings

Ju et al. [87] 2016 A (mice) PKP COX-2 Celecoxib

Physiological saline
survival (days): range

13–25, Targeting epirubicin
+ celecoxib liposomes
survival (days): 15–36.

Targeting
epirubicin plus

celecoxib
liposomes effective

in glioma.

Zhang et al.
[178] 2016 A (mice) PKP HER2

HER2-
specific NK

cells

Median survival of 200.5
days upon treatment with
NK-92/5.28.z vs 73 days

upon treatment with
parental NK-92 cells.

Modified
HER2-specific NK

cells effective
against GBM.

Grinshtein
et al. [68] 2016 A (mice) CCRM BAG3 BAG3 siRNA N/A

BAG3 is highly
expressed in

gliomas; a
therapeutic target.

Lescarbeau
et al. [102] 2016 A (mice) CCRM p53/MDM2 D-PMNIbeta

Mean survival time after
treatment initiation was
22 days with MK-1775

treatment and only 13 days
with control.

D-PMIBeta an
effective p53

inhibitor.

Tchoghandjian
et al. [153] 2016 A (mice) CCRM EGFR Afatinib +

TMZ

Treatment significantly
increased mouse survival in
a dose-dependent manner.

Afatinib + TMZ
significantly delays

progression.

Fleurence et al.
[62] 2016 A (mice) MT Pan-VEGF Cediranib +

TMZ N/A
Intratumoral TMZ
concentrations are
slightly increased.

Farrell et al.
[60] 2017 A (mice) PKP MET

WO2010/019899A1
+ PF04217903
+ Crizotinib

N/A
Dual targeting of

HGF and MET
could be effective.

Yan et al. [174] 2017 A (mice) PKP CSF-1R + cKIT
+ RTKs

PLX3397 +
Vatalanib +
Dovitinib

N/A
PLX3397 is

effective, improves
TKI efficacy.

Joshi et al. [86] 2017 A (mice) CCRM Phospholipase
C D609

Rats treated with PAC-1
showed significantly

improved survival (59 d)
was 350% longer than for
the untreated control rats

(17 d), and 40% of the
animals survived until the
end of the experiment (day

200).

Chronic D609
treatment leads to
decreased Olig2

biomarker levels.

Abdul Rahim
et al. [23] 2017 A (mice) MT Phosphatidylserine SAPC-DOPS

ATG9A knockdown led to a
significant increase in

mouse survival (+12–18%,
Chloroquine treatment

(20 mg kg−1) significantly
prolonged survival of P3

mice (+18.4%).

SAPc-DOPS targets
GBM effectively.

Angara et al.
[25] 2017 A (rat) MT Endothelial

pigpen protein
Aptamer

III.1 N/A
Aptamer III.1 is a

potential GBM
treatment.

Bäehr et al.
[31] 2017 A (mice) IT ATX + LPA

receptors siRNA
Median survival was

36 days for PBS and 40
days for ASA404.

ATX and LPA
receptor

downregulation
enhances

radio-sensitivity.

Harford-
Wright et al.

[72]
2017 A (mice) OM IDH1R132H

AGI-5198 (In
Combo with

HDACi)
N/A

AGI-5198
attenuates HDACi

resistance.
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Table 4. Cont.

Reference Year Species/Culture
Type

Molecular
Mechanism

Molecular
Target Therapy Success Rate/Outcome Main Study

Findings

Tu et al. [156] 2017 A (mice) OM 14-3-2003 siRNA N/A

14-3-3
downregulation
decreases glioma

survival.

Ciesielski et al.
[49] 2018 A (mice) PKP

Src-kinase +
tubulin poly-
merization
inhibitory

activity

Kx2-361 N/A
Active against

GL261 gliomas in
mice.

Kong et al. [94] 2018 A (mice) CCRM OPN shRNA N/A

U87-MG sphere
cells’ tumorigenic

potential abrogated
upon OPN
silencing.

He et al. [75] 2018 A (mice) MT VEGF + Src
Family kinases

Bevacizumab
+ Dasatinib N/A

Dasatinib may
block bevacizumab-

induced
invasion.

Nandhu et al.
[123] 2018 A (mice) MT NHE9 Gold NEPTT

Intravenously injected
mAb428.2 reduced tumor
volume and significantly

improved survival in all the
fibulin-3-expressing

models, extending median
survival by 28% (GBM09)

to 64% (GBM34) in the
GBM xenografts. However,
mAb428.2 did not prolong

the survival of mice
carrying fibulin-3-negative

COLO201 tumor cells.

Gold nanoparticle-
enabled

photothermal
therapy (NEPTT)
kills tumor cells.

Kim et al. [93] 2018 A (mice) OM LPAR1/3 KI16425

Survival was extended by
scL-siMAL + TMZ (50% of
the mice were surviving at

day 38).

LPA signaling
knockdown

reduces tumor
growth.

Loskutov et al.
[110] 2018 A (mice) OM

PRC2 + BET
bromodomain

proteins
JQ1 + I-BET N/A

H3K27M mutation
effects are reduced
by inhibiting PRC2
and BET proteins.

Chen et al. [44] 2019 A (mice) PKP
CD163

pathway (CK2,
kinase)

TBB N/A
TBB inhibits CK2,
crucial for tumor

growth.

Chen et al. [42] 2019 A (mice) CCRM HDAC/EZH2 Compound
26/UNC1999

IGFBP3 siRNA-treated
mice showed better OS

compared with
siCtrl-treated mice, and the
median survival of siCtrl-,

siIBP3-1-,
and siIBP3-2-treated mice

was 25, 32, and 35 d.

HDAC and EZH2
inhibition shows

synergistic effects.

Liu et al. [107] 2019 A (mice) CCRM STK17A
Anti-

STK17A
shRNA

N/A

STK17A indicates
worse prognosis;

knockdown
reduces

survivability.

Vengoji et al.
[158] 2019 A (mice) CCRM Survivin

Survivin-
siRNA/Transferrin

Receptor
Conjugate

N/A

Conjugate
decreases survivin

expression,
increases survival.
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Wang et al.
[163] 2019 A (mice) CCRM

Carbamoyl-
phosphate
synthetase

(CAD)

Teriflunomide N/A

Targeting
pyrimidine

synthesis may
improve outcomes.

Xu et al. [173] 2019 A (mice) MT CD73 Anti-CD73 N/A

Combination
therapy targets

CD73; anti-CD73
testing suggested.

Luwor et al.
[112] 2019 A (mice) OM

eIF-5A, DHS,
DOHH (both

eIF-5A
activators)

Gc7 N/A
eIF5-A is a
potential

therapeutic target.

Selvasaravanan
et al. [148] 2020 A (mice) PKP MEK or PI3K Trametinib +

Pictilisib N/A
MEK inhibition is

not superior to
PI3K inhibition.

Punganuru
et al. [134] 2020 A (mice) CCRM HSP90

BIIB021 +
17-AAG
(HSP90

Inhibitor) +
BRAFi +/Or

MEKi

N/A

HSP90 inhibitor
overcomes

limitations of
BRAFV600E

therapy.

Renfrow et al.
[137] 2020 A (mice) MT VEGF

Anti-VEGF
AB +

Nimustine

PT2385 single-agent
treatment did improve

mOS compared to placebo;
no difference in animal

survival was seen in
combination treatment with
radiation (RTtemozolomide

TMZPT2385).

Combining
antiangiogenic
therapy with

chemotherapy is
promising.

Watanabe et al.
[166] 2020 A (mice) MT

Calmodulin,
EGFR,

aromatase

W-13 +
Gefitinib +

Exemestane
N/A

Identified
miRNA-based
chemicals for

therapy.

Goswami et al.
[67] 2020 A (mice) IT EMMPRIN Icaritin

Improvement in survival
was noted in WT and

CD73−/− mice treated
with anti-PD-1 +

anti-CTLA-4 compared to
untreated controls.

Following treatment of
anti-PD-1 + anti-CTLA-4,

CD73−/− mice had
improved survival as

compared to WT GBM
tumor-bearing mice.

Icaritin targets
EMMPRIN,

inhibiting GBM cell
invasion and EMT.

Shulepko et al.
[150] 2020 H OM KIF11 Ipinesib N/A

KIF11 inhibition
halts tumor

growth.

Kawauchi et al.
[92] 2021 A (mice) PKP ALK Alectinib +

Ceritinib

Ceritinib or alectinib
significantly prolonged the
survival of mice harboring

intracerebral U87MG or
GSC23 xenografts.

Second-gen ALK
inhibitors are
potent against

GBM.

Maxwell et al.
[118] 2021 A (mice) PKP mTOR1/2 +

MEK
TAK228 +

Trametinib N/A

mTOR1/2 and
MEK inhibitors

induce proteomic
changes.
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Molecular
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Molecular
Target Therapy Success Rate/Outcome Main Study
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Genoud et al.
[66] 2021 A (mice) CCRM PAK5 PAK5

shRNA

Significant increase in
survival with BAL101553 +

aCD40 (49 d), compared
with BAL101553

monotherapy (42).

PAK5
overexpressed in

glioma; its
inhibition is
promising.

Huang et al.
[78] 2021 A (mice) MT

Growth-
Hormone
Releasing
Hormone

MIA-604 +
MIA-690 N/A

GHRH antagonists
augment standard

treatments.

Chen et al. [45] 2021 A (mice) OM EEF1A1 +
RPL11

Puromycin +
Doxorubicin
+ Daunoru-

bicin +
Mitox-

antrone

N/A

Database analysis
identifies target

genes and potential
drugs for glioma

treatment.

Saunders et al.
[144] 2021 A (mice) OM Smoothened Gdc-0449

NSC682769 treated
GFAP-EGFRvIII ×

GFAP-Cre+/Rictor mice
had a marked increase in

OS with more than 75% of
mice surviving at 20 weeks

at 20 mg/kg and 60% of
mice surviving to 20 weeks

receiving the lower 5
mg/kg regimen.

Smoothened is a
prognostic
biomarker.

von
Spreckelsen
et al. [159]

2021 A (mice) OM FTO
SPI1

Inhibitor
DB2313

N/A
FTO is a novel

prognostic
indicator.

Xia et al. [170] 2022 A (mice) MT ITGA9 miR-148a

U251 + U87 cell survival
overexpressing Nrf2

remarkably increased 24,
48, and 72 h after treatment

with apatinib, in
comparison with cells

transfected with the empty
vector.

miR-148a
suppresses GBM
malignancy via

ITGA9 targeting.

Wang et al.
[164] 2022 A (mice) CCRM BCL6 RI-BPi

The combination of
lapatinib and teriflunomide
yielded the greatest efficacy

in tumor control and OS.

BCL6
overexpression in
glioma worsens

prognosis; RI-BPI
reduces tumor

growth.

Joel et al. [84] 2015 N/A PKP PBK/TOPK Hi-Topk-032
PBK may serve as a

potential therapeutic target
in GBM tumors.

HITOPK-032
diminishes tumor

growth.

Legend: A—Animal; CCRM—Cell Cycle Regulation Mechanism; MT—Molecular Targeting; OM—Oncogene Mu-
tation; PKP—Protein Kinase Pathway; EGFR—Epidermal Growth Factor Receptor; VEGFR—Vascular Endothelial
Growth Factor Receptor; PI3K—Phosphoinositide 3-Kinase; TMZ—Temozolomide; DNA—Deoxyribonucleic
Acid; RNA—Ribonucleic Acid; PCR—Polymerase Chain Reaction; mRNA—Messenger Ribonucleic Acid; rRNA—
Ribosomal Ribonucleic Acid; tRNA—Transfer Ribonucleic Acid; ICU—Intensive Care Unit; ER—Emergency
Room; AIDS—Acquired Immunodeficiency Syndrome; CD4—Cluster of Differentiation 4; N/A—not available or
not defined.

3.4.3. Overview of Combined Laboratory Studies

Table 5 furnishes an overarching perspective on the amalgamation of in vivo and
in vitro investigations pertaining to GBM, constituting a total of 32 combined studies
(19.3%). One conspicuous facet of these studies is the breadth of molecular mechanisms
and targets that they explore. For example, Kuan et al. [97] concentrate on receptor-based
targeting strategies, with specific regard to TfR (transferrin receptor), while Guo et al. [71]
delve into the realm of kinase inhibitors, particularly CDK 4/6 and PDGFRα. Moreover,
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various studies scrutinize molecular targets encompassing EZH2, FPR, JNK, and PI3K,
thereby highlighting the intricate and multifaceted landscape of GBM.

Table 5. Overview of combined (in vivo and in vitro) studies.

Reference Year Species/Culture
Type

Molecular
Mechanism

Molecular
Target Therapy Success Rate/Outcome Main Study

Findings

Kuan et al. [97] 2010

HCC (D54 MG,
D247 MG, D392
MG, and D245
MG, T98G and

U251 MG

MT
TfR

(transferrin
receptor)

T12 + B6 +
T7 (Tfr-

Targeting
Peptides)

High levels of RNA
remain a significant

predictor of survival.

T7-modified
liposomes penetrate
the BBB effectively.

Guo et al. [71] 2011 HCC (U87MG) CCRM CDK 4/6 +
PDGFRα

Lenvatinib +
Crenolanib +
Abemaciclib
+ Palbociclib

Compared to
physiological saline,
DOX-LP+ TRAIL-LP,
DOX-LP, and DOX

significantly prolonged
the survival time
(48,49,36 days).

PDGFRα and
CDK4/6 signaling

blockade for a splice
variant.

Wang et al.
[161] 2011 HCC (U87) CCRM EZH2 EZH2si-

DMC

Decrease in proliferation
of cancer cells, reduction

in cancer cell survival
in vitro, and a reduction
in tumor volume in nude

mice.

DMC nanoparticle-
mediated

EZH2-siRNA
decreases tumor

size.

Schleicher et al.
[146] 2011

HCC
(Endothelial cells,

HUVEC) and
ACC (mice)
(bEND.3)

IT FPR F2 Procyani-
dins

Mice treated with
BrP-LPA and irradiation
showed a tumor growth

delay of 6.8 days
compared to mice treated

with irradiation alone.

F2 procyanidins
downregulate FPR,
exerting a cytotoxic

effect.

Benezra et al.
[34] 2012 HCC PKP Multitarget

kinases Dasatinib

Mice gavaged with saline
vehicle survived 14 to 17

days posttreatment,
whereas

dasatinib-gavaged mice
survived 18 to 30 days.

Dasatinib boosts
survival in mouse

GBM.

Matsuda et al.
[117] 2012 HCC (TGS01,

GS-Y01) PKP JNK Sp600125

All mice survived beyond
12 months after treatment,

with no significant
differences found in

general health status as
assessed by body weight

and survival, and in
cognitive function.

JNK is a target for
stem-like potential

in GBM.

Salphati et al.
[140] 2012

HCC
(MDR1-MDCKI,
Bcrp1-MDCKII,
Bcrp-MDCKII,

Mdr1a-LLC-PK

PKP PI3K Gne-317

In the GBM10 model,
mice that were treated

with GNE-317
experienced a marked

survival benefit.

GNE-317 is a PI3K
inhibitor for GBM.

See et al. [147] 2012

HCC (TCC;
LN229, A172,
T98G, MO59J,

LN18, U87, U138)
or the UCSF
BTRC Tissue
Core (U251,
U373, SF188,
U343, SF126,
SF210, SF268,
SF295, SF539)

PKP MEK +
PI3K/mTOR

Vemurafenib
+ PI103

PD0325901 suppressed
the growth of LN229

tumors and increased the
survival of

LN229-bearing animals,
but had no significant

effect on the intracranial
growth of U251 cells or

the survival of U251
tumor-bearing mice.

MEK
inhibitor-resistant

GBM lines respond
to dual therapy.

Miyazaki et al.
[121] 2012

HCC (GBM146,
157, 205, 206, 218,
1600, 2313, and

13, f16w and
1105A)

OM TRAILR
Recombinant

TRAIL +
TMZ

N/A

TMZ + TRAIL
synergistically

improve survival in
tumor-bearing rats.
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Molecular
Mechanism

Molecular
Target Therapy Success Rate/Outcome Main Study

Findings

Preukschas
et al. [133] 2012 H/HCC (G55T2,

U87-MG) OM YAP1 Nsc682769

Glioma patients with a
high expression of eIF-5A
have a lower probability
of survival, compared to

patients with an
intermediate expression.

NSC682769 is a
YAP1 inhibitor,

decreasing glioma
growth.

Dominguez
et al. [57] 2013 HCC (U87, U251) PKP DGK-α

R59022 +
R59949 +
siRNA

N/A
DGK-α is a potential
glioma target linked

to pathways.

Peng et al.
[130] 2013 HCC (U87 and

CHG-5) PKP RACK1-PKC siRNA N/A

RACK1 is a glioma
development target

via SRC/Akt
activity.

Chen et al. [43] 2013 HCC (U87) MT TFAM Melatonin +
TMZ N/A

Melatonin enhances
TMZ effects via

TFAM inhibition.

Huveldt et al.
[79] 2013 HCC MT Nrf2 siRNA

Dasatinib effectively
blocked the increased
invasion induced by

bevacizumab, thus its
combination is

recommended to be used
in clinical settings.

Nrf2 promotes
glioma proliferation;
siRNA is a potential

drug.

Jaszberenyi
et al. [81] 2013 HCC (U-87) MT MRP3 Anti-MRP

Antibody

GHRH antagonists can
increase the direct
inhibitory effect of

traditional
chemotherapeutic drugs.

MRP3 is
overexpressed in
gliomas; specific

antibodies decrease
growth.

Luchman et al.
[111] 2011 HCC (BT142) PKP mTOR1/2 AZD8055 N/A

Dual mTOR1/2
inhibition + TMZ
for resistant GBM.

Qin et al. [135] 2014 A (mice and rats)
+ HCC PKP EMP2

Anti-EMP2
antibodies/Anti-

EMP2
Igg1

Abemaciclib + TMZ
increased survival by

31–37,5 days.

EMP2 promotes
migration/invasion
via protein kinases.

Signore et al.
[151] 2014 HCC (U87MG) PKP PDK1 +

CHK1 UCN-01

Combined inhibition of
PDK1 and CHK1

represents a potentially
effective therapeutic
approach to growth
reduction of human

GBM.

UCN-01
downregulates

PDK1 and CHK1,
killing tumor cells.

Blanco et al.
[35] 2014

HCC
(U87∆EGFR-Luc,

U87-MG)
MT NRP-1 NRP-1 Mab

SapC-DOPS nanovesicles
target tumor cells and

exert antitumor actions
both in vitro and in vivo

NRP-1Mab inhibits
glioma growth and

invasion.

Barone et al.
[33] 2014 HCC (U87) OM

Lactate
(monocar-
boxylate)

transporters

ACCA

CXCR4 antagonist +
POL5551 + mcr84 can
increase median OS in

GBM xenografts
compared to treatment

with either drug as
monotherapy.

ACCA inhibits
lactate transport, a

potential brain
tumor target.

Saito et al.
[138] 2014 HCC (U87MG

and T98G) OM A1CF +
FAM224A shRNA

Combination therapy
consisting of EFTUD1

downregulation with an
autophagy blocker

enhanced the antitumor
effect.

A1CF/FAM224A/
miR-590-

3p/ZNF143 loop
regulates tumor

progression.
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Di Stefano et al.
[56] 2015 HCC PKP FGFR kinase JNJ-

42756493

Targeted inhibition of
FGFR-TK with

JNJ-42756493 may
provide clinical benefits

for patients with
recurrent glioma.

JNJ-42756493
inhibits growth and
regression in GBM.

Zhang et al.
[179] 2015 HCC (U87) PKP mGluR1

siRNA,
Selective

Antagonists
Riluzole +

BAY36-7620

mGluR1 is a potential
therapeutic target for the

treatment of human
gliomas.

mGluR1 inhibition
demonstrated

antitumor activity.

Ge et al. [64] 2015 HCC (U87) CCRM

Tumor
checkpoint
controller

targeting mi-
crotubules

BAL101553

anti-miR-27a could
inhibit the growth of

GBM and has potential
for clinical application.

BAL101553 is a
promising GBM

agent.

Gu et al. [70] 2015
HCC (U87,

SHG-44, CHG-5,
and U251)

CCRM DR4/5 TRAIL +
Doxorubicin

Inhibition of PAK5 by
lentivirus-mediated

RNAi suppressed glioma
development.

TRAIL-LP and
DOX-LP are

stronger against
GBM in vivo.

Lamour et al.
[98] 2015 HCC (U87-MG

and U251-MG) CCRM PLK1 Bi2536 N/A PLK1 is critical to
glioma cell survival.

Niu et al. [125] 2015
HCC (U87, A172,

SHG44, and
U251)

CCRM XIAP +
BCL-2

RIST +
ARIST

Plumbagin inhibited
glioma cell proliferation
and promoted apoptosis
in a nude mouse model.

RIST and aRIST
prolong survival,

reduce tumor
burden.

Nonnenmacher
et al. [126] 2015

HCC (A172, D54,
U118, U138,

T98G, U87-MG)
CCRM MGMT PRIMA-

1MET

RIST therapy can be
considered a promising
treatment strategy for

GBM.

PRIMA-1MET
targets p53, an

effective therapy.

Sanzey et al.
[142] 2015

HCC (NCH421k,
NCH660h,
NCH465,

NCH601 and
NCH644

OM DLL3 Rova-T Glycolysis is a promising
target for GBM therapy.

DLL3 is selectively
expressed in glioma;

targetable with
Rova-T.

Tsigelny et al.
[155] 2017

HCC and ACC
(mice GBM4,

GBM8, U87, and
NHA)

PKP OLIG2 SKOG102 N/A

SKOG102 inhibits
glioma growth via

OLIG2
downregulation.

Mojarad-Jabali
et al. [122] 2022 HCC (T7, B6, and

T12 peptides) MT Fibulin-3 Mab428.2 N/A

mAb428.2 inhibits
fibulin-3, reduces

tumor growth, and
extends survival.

Michaud et al.
[120] 2010

HCC (U87MG,
U138MG, M059J,
Hs683, H4, A172,

LN18, LN229,
CCF-STTG1,

T98G,
DBTRG-05MG,

8MGBA,
42MGBA,

DKMG, GAMG,
GMS10, LN405,
SNB19, AM38,
NMC-G1, and

KG-1-C)

CCRM FOXM1 Plumbagin

The antitumor activity of
PD0332991, when used

with radiation either
concurrently or

sequentially, is superior
to monotherapy.

Plumbagin inhibits
glioma proliferation,
induces apoptosis.

Legend: HCC—Human Cell Culture; PKP—Protein Kinase Pathway; OM—Oncogenic Mutations; CCRM—Cell
Cycle Regulation Mechanism; ACC—Animal Cell Culture; AMP—AMP-Activated Protein Kinase; WNT—Wnt
Signaling; NK—Natural Killer; CIC—Cancer-Initiating Cell; NKCC—Norepinephrine Kinase Complex Cell;
ECM—Extracellular Matrix; BBB—Blood-Brain Barrier; MGMT—O6-Methylguanine-DNA Methyltransferase;
EMT—Epithelial-Mesenchymal Transition; N/A—not available or not defined.
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These investigations also shed light on the efficacy of the therapies, with numerous
studies presenting encouraging outcomes in terms of extended survival and tumor re-
gression. For instance, Rslurp-1, Dasatinib, GNE-317, and dual mTOR1/2 inhibition yield
augmented survival rates, signifying their potential utility in GBM treatment. Furthermore,
the juxtaposition of therapies such as TRAIL and TMZ or PDK1 and CHK1 inhibitors
reveals synergistic effects in the inhibition of tumor growth (Table 5).

4. Discussion
4.1. Global and Research Trends of GBMs

The global incidence of CNS tumors in 2019 was reported at 347,992 cases, indicating
a substantial 94.35% increase from the period spanning 1990 to 2019 [183]. Notably, the
incidence of brain tumors exhibited significant regional variation, with the highest rates
observed in North America and the lowest in Africa. This trend was found to correlate
with increasing Gross Domestic Product (GDP) per capita [184].

Examining the temporal distribution of studies in this systematic review, a notable
proportion were conducted between 2013 and 2015, collectively accounting for 23.4% of the
total studies. This surge in research activity post-2000s appears to be closely linked to the
escalating incidence of GBM. Grech et al.’s [185] research unveiled a significant increase in
GBM incidence from 2010, accompanied by a noteworthy increase in incidence risk ratio,
measured at 1.16 per additional year. Projections further anticipate a 72% surge in incidence
by 2050, compared to figures from 2010 [186].

Within this systematic review, clinical studies constituted 27 (16.3%) of the studies,
while laboratory studies comprised the majority, accounting for 139 (83.7%). This distribu-
tion reflects the inherent challenges associated with limited patient cohorts and abbreviated
survival durations. Initially perceived as predominant in developed nations, oncological
diseases like GBM are now assuming the role of a significant economic and health burden
in low- and middle-income countries (LMICs) [187]. The management of GBM in these
settings is hindered by escalating financial constraints, a shortage of clinical trials, and
restricted access to first-line therapeutic agents. The scarcity of healthcare professionals
and the suboptimal quality of care further exacerbate the treatment gap for GBM in these
regions [187]. Consequently, GBM imposes a substantial financial strain on the healthcare
systems of impoverished nations [188–195]

4.2. Current State of Targeted Molecular Therapy in GBM Treatment

The prevailing standard of care for GBM involves the maximal surgical removal
of the tumor, followed by localized chemotherapy utilizing TMZ, a second-generation
imidazotetrazine known for its DNA-alkylating properties [196]. Its ability to penetrate the
blood-brain barrier makes it particularly potent in treating brain tumors [197]. However,
alongside its benefits, TMZ is associated with significant side effects such as myelotoxicity,
ulcers, nausea, vomiting, fatigue, and harmful DNA damage. Moreover, resistance to this
drug is commonplace in GBM patients [198]. To enhance the effectiveness of initial GBM
treatment, it may be worthwhile to investigate a more potent combination regimen [199].
The presented findings in this review pertain to the use of therapeutic methods and
chemotherapeutic agents in the treatment of GBM. These results reveal that a substantial
majority of studies (60.2%) advocated for a comprehensive therapeutic approach, while a
slightly smaller portion (39.8%) focused on single-strategy treatments.

In terms of mechanistic categorization, 41.6% of studies fell into the PKP mechanism,
18.1% were classified as CCRM, 19.9% were designated as Microenvironmental Targets
(MT), 4.2% were categorized as IT, and 16.3% were attributed to OM. Currently, the pre-
dominant chemotherapeutic compounds employed in the management of GBM are small
molecules designed to intervene with specific aberrant signaling pathways within GBM
cells, including receptor tyrosine kinase activity, the PI3K/AKT/mTOR cascade, the cellular
response to DNA damage, TP53 function, and inhibitors of the cell cycle [200]. The dis-
rupted regulation of numerous signaling pathways in GBM serves as the primary catalyst
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for the uncontrolled proliferation of both initial and recurring tumors. This underscores the
critical importance of identifying the optimal combination of targeted therapeutics for GBM
treatment. It is noteworthy that most GBMs do not exhibit a singularly aberrant pathway,
rendering them less amenable to targeted therapeutic approaches. This is exemplified
by the lack of success observed in late-stage clinical trials of various targeted agents for
GBM [200]. The most recent molecular and genomic evidence highlights the presence of
diverse genetic and molecular characteristics within and between tumors in GBM [200].
This leads to variations in the expression of therapeutic targets across different tumors and
regions within a single tumor. This heterogeneity in GBM may elucidate the lack of success
observed in targeted treatments aimed specifically at tumor biomarkers, including drugs
like cetuximab, gefitinib, erlotinib (targeting EGFR), bevacizumab (targeting VEGF), and
cilengitide (targeting integrin). It is recognized as the underlying cause of resistance to
these therapies.

Temozolomide, akin to dacarbazine, is an imidazotetrazine derivative. It stands
out as one of the rare drugs capable of exerting its effects within the central nervous
system [201]. In the treatment of GBM, TMZ’s primary mechanism of action involves
methylating the O6 positions of guanine. This modification hinders DNA replication
during cellular proliferation and triggers programmed cell death, or apoptosis. Following
its approval by the FDA in 2005 [202], TMZ, when administered alongside surgery and
radiotherapy, has solidified its position as the established and pivotal standard of care for
individuals with GBM. This marked a significant milestone, as it rose to prominence as
the leading initial chemotherapeutic option for GBM treatment. Findings from this study
revealed that TMZ was utilized in 28% of the studies as part of a treatment regimen in
conjunction with other molecular targeted therapy drugs.

In contemporary practice, TMZ is administered alongside radiotherapy as the primary
treatment for GBM and as a secondary option for other malignant gliomas in cases of
relapse. However, the utilization of radiotherapy and chemotherapy comes with certain
limitations, and the emergence of tumor drug resistance is a common outcome. Beyond the
known factors contributing to TMZ resistance, such as uncontrolled signaling pathways,
DNA repair mechanisms, the persistence of cancer stem cell (CSC) subpopulations, and the
activation of self-defense mechanisms [203], it is worth delving into alternative approaches
that may hold promise in addressing these challenges. Mesenchymal stem cells (MSCs)
are gaining traction as a therapeutic avenue in the field of cancer immunotherapy [204].
The development of chemoresistance to TMZ may arise from genetic and epigenetic alter-
ations induced by the drugs in cancerous cells. These changes encompass the induction
and selection of genes that confer a survival advantage, or the preferential selection of
pre-existing cell clones with resistance. Potential alterations encompass an upsurge in
drug efflux facilitated by active membrane pumps, deactivation of intracellular drugs,
heightened resilience to DNA damage, and modifications in genes linked to apoptosis.
These adjustments hold substantial importance in extensively heterogeneous tumors such
as GBM, as treatment interventions may inadvertently promote the survival of resistant
cells, potentially culminating in tumor recurrence. Nevertheless, there is evidence suggest-
ing that combining TMZ with other molecular targeted therapies has demonstrated an
improved survival rate [199].

The acquired resistance pathways in GBM involve the Src tyrosine kinase pathway,
which regulates actin dynamics and the invasion of malignant glial cells [205]. Src trans-
mits signals from the extracellular matrix and interacts with various intracellular pro-
teins, including integrins, Eph kinase, and growth factor receptors. GBM cells exhibit
higher Src tyrosine kinase activity compared to normal brain cells [206,207]. In a study by
Eom et al. [208], an Src tyrosine kinase inhibitor (PP2) was examined in combination with
TMZ. The findings indicated that PP2 enhanced the in vitro radiosensitivity of malignant
glioma cells and inhibited invasion and migration. However, in in vivo trials, the combi-
nation led to a statistically non-significant decrease in tumor volume. On a different note,
other authors [79] discovered that suppressing Src family kinase signaling could impede
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bevacizumab-induced GBM cell invasion, suggesting a potential strategy for overcoming
GBM treatment resistance. Certain studies propose that miRNA may serve as a predictive
marker for the response to TMZ treatment in GBM patients. Certain researchers propose
that when combined with specific drugs, standard-dose TMZ chemotherapy may lead to
an improvement in progression-free survival. As an illustration, the administration of trans
sodium crocetinate (TSC), a substance known for its ability to enhance oxygen delivery,
alongside standard-dose TMZ and radiotherapy proved beneficial for 59 GBM patients
in a phase I/II trial conducted by Gainer et al. [209]. The outcomes revealed that 36% of
patients who received TSC were still alive after two years, in contrast to 27–30% of those
who underwent the standard treatment. The authors proposed that administering TSC in
conjunction with the standard treatment conferred an advantage in GBM therapy [209].
According to Vengoji et al. [158] the combination of afatinib with TMZ significantly post-
pones the progression of GBM. In a study by Sang-Soo et al. [93], a nanocomplex targeting
MALAT1 was examined, and the authors suggested that silencing MALAT1, combined
with TMZ, also provided a survival benefit. Other combinations involving TMZ, such as
its combination with dual mTOR1/2 inhibition, have proven to be effective therapies for
resistant GBM. Similarly, the combination of Metformin and sorafenib has yielded the same
effect [210,211].

In this review, the most frequently targeted molecular entity was identified as the
EGFR, accounting for a substantial proportion. Following closely were the mTOR, VEGF,
and MEK. PI3K and BRAF exhibited an equal number of occurrences. EGFR amplification
and mutation are the most prevailing genetic alterations, occurring in more than 50% of
GBM [200,212]. EGFRvIII is the most common and highly oncogenic EGFR mutant in GBM,
and imaging the status of EGFRvIII could be of great value in GBM treatment [212]. VEGF
induces an augmentation in the vascularization of GBM and is categorized within the ET
group, despite subsequently activating the PKP mechanism, akin to EGFR. VEGFR and
PDGFR are overexpressed, amplified, and/or mutated in GBM, leading to uncontrolled
cell proliferation, angiogenesis, migration, survival, and differentiation [213].

Different cell lines are widely used in scientific research as valuable tools for studying
various biological processes and diseases, including GBM. In this systematic review, human
GBM cell lines, specifically HCC, were the most commonly utilized research samples,
comprising 52.52% of the included laboratory studies. The prominent use of cell lines in
GBM research highlights their importance in providing a controlled and reproducible model
system for investigating the molecular mechanisms underlying GBM development and
testing potential therapeutic interventions. These cell lines, such as U87, U251, and T98G,
have been extensively employed in numerous investigations, demonstrating their relevance
and utility in advancing our understanding of GBM biology [63,69]. In vitro studies
using GBM cell lines have contributed significantly to the identification and evaluation of
potential drugs for GBM treatment. Within the systematic review, 25.3% of the included
studies focused on in vitro research. Notably, the U87 cell line emerged as the most
frequently encountered cell line in these studies, appearing in 40.5% of the investigations.
This consistent utilization of the U87 cell line underscores its importance as a representative
model for studying GBM in vitro [179].

4.3. Effectiveness of Targeted Therapy in GBM Treatment

Several drugs have shown promise in the context of GBM target therapy treatment,
as indicated by various outcomes, including survival time, mPFS, PFS-6, and OS data
from Table 2. For instance, AZD1775 demonstrated therapeutic concentrations and good
tolerability [141]. Alectinib, Palbociclib, Temsirolimus, Idasanutlin, and Vismodegib were
evaluated in the NCT Neuro Master Match trial, which utilizes GBM molecular signatures
for treatment [169]. However, Imatinib did not show a significant effect on GBM, with an
mPFS of 2.8 months in Arm A and 2.1 months in Arm B, along with corresponding mOS
values of 5.0 and 6.5 months [145]. Nimotuzumab, when combined with temozolomide and
radiation therapy, exhibited promising results, with an mOS of 15.9 months and an mPFS of
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10 months [165]. Bevacizumab, used in various regimens, demonstrated diverse outcomes,
from activity and tolerance [29,37,54] to serving as a salvage regimen for recurrent GBM [29].
Regorafenib presented a significant survival benefit in recurrent GBM, with an mOS of
24.8 months [109]. Conversely, pembrolizumab, with or without bevacizumab, did not
prove effective, resulting in a PFS-6 of 26.0% and an mOS of 8.8 months with bevacizumab,
and a PFS-6 of 6.7% and an mOS of 10.3 months without bevacizumab [124]. These findings
not only highlight the potential of various therapies but also emphasize the importance of
assessing survival times and progression-free intervals in evaluating treatment efficacy for
GBM patients.

4.4. Promising Targeted Therapies for GBM Treatment

Various targeted therapies demonstrate promising GBM treatment potential. The
Anti-GD2 antibody [36] specifically targets O-acetyl GD2 ganglioside, effectively prevent-
ing glioma proliferation. AMB4269951 [152] shows antitumor effects by targeting CTL1
and significantly improving mouse survival. rSLURP-1 [139] effectively inhibits GBM
growth by targeting α7 nAChR. QLT0276 in DMSO [95] inhibits integrin-linked kinase
(ILK), leading to decreased glioma cell invasiveness and down-regulated proliferation
and invasion. AA1881 [143] targets BRAF, CRAF, and VEGFR, significantly increasing
mouse survival. EF2-siRNA [175], targeting EF2-kinase, demonstrates increased survival
in rats and inhibits cell migration. Furthermore, boronated EGFR MAB + Cetuximab [176]
significantly enhances survival by targeting EGFR and EGFRvIII tumors. The combina-
tion of Rapamycin + PD184352 [128] offers promise in CDK4-dysregulated tumors by
providing complete inhibition of DNA synthesis and pRb phosphorylation. Tamoxifen [61]
induces apoptosis and presents potential therapeutic targets for GBM. PX-866 [96] inhibits
PI3K/Akt and increases survival in mice. NVP-AEW541 + Dasatinib [151] through dual
IGF1R and Src inhibition increases apoptosis in glioma cells. Sorafenib [132] exhibits potent
in vivo and in vitro anti-GBM activity. Plumbagin [120] effectively inhibits glioma prolif-
eration and induces apoptosis, especially when combined with radiation. T7-modified
liposomes [97] effectively penetrate the blood-brain barrier (BBB). The combination of
SB203580 + Rapamycin [51] significantly inhibits tumor growth by targeting SAPK2/p38
and mTORC1. Anti-bFGF siRNA [106] holds potential for glioma treatment by inducing
apoptosis. Lenvatinib + Crenolanib + Abemaciclib + Palbociclib [71], targeting PDGFRα
and CDK4/6 signaling, offers a potential GBM treatment. DMC nanoparticle-mediated
EZH2-siRNA [161] decreases tumor size. Targeting ID2 with anti-ID2 siRNA [180] increases
sensitivity and decreases glioma apoptosis. Finally, F2 procyanidins [146] downregulate
FPR and exert cytotoxic effects in mouse models.

4.5. Advantages and Disadvantages in Molecular Targeted Therapy of GBM

Precision-targeted therapies are engineered to selectively target cancer cells, poten-
tially mitigating the adverse effects of treatment [214]. This focused approach enhances
therapeutic efficacy while minimizing collateral damage to healthy tissues. Furthermore,
targeted therapies can synergize with complementary treatments like chemotherapy and
radiation therapy, yielding improved outcomes for patients [215]. By tailoring these ther-
apies to the specific genetic profile of the tumor, treatment effectiveness is optimized.
Additionally, precise administration through controlled targeting enhances drug delivery
to the tumor site, augmenting treatment efficacy while reducing systemic toxicity [216].
Also, by accumulating comprehensive data from large-scale studies on molecular targets,
researchers can harness the power of artificial intelligence to develop predictive algorithms
for patient outcomes and prognosis. This emerging field holds immense promise and aligns
with the ongoing advancements in neurosurgery and medical technology [217].

While targeted therapies demonstrate remarkable efficacy against specific molecular
targets, the emergence of resistance in tumors over time poses a significant challenge.
These therapies may not be universally effective across all subtypes of GBM due to the
tumor’s intrinsic heterogeneity, making the identification of reliable targets a complex
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endeavor [216,218]. Moreover, the cost associated with targeted therapies, coupled with
potential insurance coverage limitations, may restrict patient access to these advanced
treatments, especially in lower-middle-income countries. It is essential to note that, like
many treatments, targeted therapies can also induce side effects, such as skin rash, diarrhea,
and fatigue, which may impact the overall quality of life for patients undergoing treatment.

4.6. Limitations of the Study

The limitations of this systematic review primarily revolve around its inclusion criteria,
which restricted the analysis to studies published in English, potentially excluding relevant
research in other languages. Additionally, the presence of heterogeneity among the sampled
studies, such as variations in patient populations, treatment approaches, and study designs,
may introduce some degree of bias and make it challenging to draw uniform conclusions.

5. Conclusions

In conclusion, this systematic review provides insights into the global and research
trends of GBM and the current state of targeted molecular therapy in GBM treatment. The
increasing incidence of GBM, particularly in developed regions, presents a substantial
healthcare and economic burden. The distribution of clinical and laboratory studies in
this review reflects the challenges associated with limited patient cohorts and abbreviated
survival durations, which are particularly pronounced in low- and middle-income countries.
The standard of care for GBM primarily involves maximal surgical removal of the tumor
and the use of TMZ. However, resistance to TMZ is common, and exploring more potent
combination regimens is crucial for enhancing GBM treatment. The findings reveal that
most studies advocate for a comprehensive therapeutic approach, and the mechanistic
categorization shows the importance of targeting multiple pathways. The effectiveness
of targeted therapy in GBM treatment varies, and promising therapies target various
molecular entities. Precision-targeted therapies offer advantages in terms of efficacy and
reduced collateral damage, but resistance, tumor heterogeneity, cost, and potential side
effects remain significant challenges.
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Appendix A

Search Strategy

Search (Glioblastoma multiforme OR GBM) AND (Molecular targeted therapy)
Filter from 2000 to 2022

Search
details

((“glioblastoma”[MeSH Terms] OR “glioblastoma”[All Fields] OR (“glioblastoma”[All Fields]
AND “multiforme”[All Fields]) OR “glioblastoma multiforme”[All Fields] OR “GBM”[All
Fields]) AND (“molecular targeted therapy”[MeSH Terms] OR (“molecular”[All Fields] AND
“targeted”[All Fields] AND “therapy”[All Fields]) OR “molecular targeted therapy”[All Fields]
OR (“protein kinase inhibitors”[Pharmacological Action] OR “protein kinase inhibitors”[MeSH
Terms] OR (“protein”[All Fields] AND “kinase”[All Fields] AND “inhibitors”[All Fields]) OR
“protein kinase inhibitors”[All Fields]) OR (“immunotherapy”[MeSH Terms] OR
“immunotherapy”[All Fields] OR “immunotherapies”[All Fields] OR “immunotherapy s”[All
Fields]) OR (“apoptosis”[MeSH Terms] OR “apoptosis”[All Fields]))) AND (2000:2022[pdat])
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