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Abstract: Electroencephalogram (EEG) connectivity patterns can reflect neural correlates of emotion.
However, the necessity of evaluating bulky data for multi-channel measurements increases the
computational cost of the EEG network. To date, several approaches have been presented to pick
the optimal cerebral channels, mainly depending on available data. Consequently, the risk of low
data stability and reliability has increased by reducing the number of channels. Alternatively, this
study suggests an electrode combination approach in which the brain is divided into six areas. After
extracting EEG frequency bands, an innovative Granger causality-based measure was introduced
to quantify brain connectivity patterns. The feature was subsequently subjected to a classification
module to recognize valence–arousal dimensional emotions. A Database for Emotion Analysis
Using Physiological Signals (DEAP) was used as a benchmark database to evaluate the scheme. The
experimental results revealed a maximum accuracy of 89.55%. Additionally, EEG-based connectivity
in the beta-frequency band was able to effectively classify dimensional emotions. In sum, combined
EEG electrodes can efficiently replicate 32-channel EEG information.

Keywords: electroencephalogram; Granger causality; emotion recognition; brain area; electrode
combination

1. Introduction

Emotions are complex internal states affecting people’s reactions to surrounding
events. They appear as behavioral, physiological, and psychological manifestations in
humans. Despite the existence of many theories and many efforts to understand the nature
of emotions, a consensus among scientists has not been reached on its definition. The
importance of emotions in human daily life is so momentous that a new science called
“affective computing” has been dedicated to them.

Early attempts to measure emotions have been based on subjective measurements. In
these approaches, participants provide feedback about their feelings after being given an
emotional stimulus. Different types of self-report questionnaires have been developed for
standardizing and interpreting individual feedback more easily. Despite these approaches’
frequent use and popularity, they have disadvantages, such as their dependence on in-
dividual differences, the potential that subjects misrepresent their feelings by answering
questions unrealistically, and the like. Therefore, the evaluation of objective criteria using
psychophysiological information was proposed.

To date, researchers have studied various physiological indicators under emotional
stimulation, including electroencephalography (EEG), electrocardiography (ECG), heart
rate variability (HRV), photoplethysmography (PPG), electrodermal measurements, pulse
wave analysis, and eye blinking [1–16]. Since EEG signals express the direct effect of
emotional stimulation on the central nervous system, they have received more attention
from the scientific community.
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Feature engineering (extraction) and classification (pattern recognition) are general
phases of the design of an EEG emotion recognition system. The former exploits signal
processing approaches in the frequency, time, time–frequency, and nonlinear domains to
reduce the amount of data and provide a pre-eminent data description. The latter allocates
a class label (target emotions) to an input pattern.

Time-domain measures were calculated simply in the previous literature. Among
them, the average, peak, variance, standard deviation, and the like were the most com-
monly measured attributes [17–19]. For frequency analysis, a time series was usually
transformed by a fast Fourier transform (FFT). Then, the sub-band EEG power spectral
density (PSD) was estimated [17]—one of the most popular procedures in affect detection
studies from the beginning of such studies until now [19–22]. The wavelet transform,
as a time–frequency method, contains both time and frequency information. Wavelet-
based indices have been suggested in some emotion classification schemes [19,23–25].
Since the last decade, nonlinear and chaotic methods have captured more attention, aim-
ing at characterizing dynamical system behavior. Some nonlinear-based measures in an
affect recognizer are Poincare’s plot [11], a second-order difference plot [26], the correla-
tion dimension (CD) [27], fractal patterns [28], the fractal dimension (FD) [25], entropy
measures [29] such as approximate entropy (ApEn) [30] and differential entropy [20,21],
detrended fluctuation analysis (DFA) [25], multifractal DFA (MDFA) [31], and empirical
mode decomposition (EMD) [25,26]. Although a wide range of feature engineering ap-
proaches have been evaluated, feature engineering is still one of the main challenges in
designing emotion recognition [18].

In addition to the mentioned approaches, EEG brain networks have also been fre-
quently used in emotion studies [32–35]. To calculate brain connectivity, each EEG channel
is defined as a node, and connections between the nodes are determined as edges. These
approaches are divided into two main groups: functional connectivity and effective con-
nectivity [33,36]. Chai et al. [32] explored effective connectivity networks under different
color-related learning conditions. The authors attempted to evaluate the influence of color
on emotive experiences and memory performance using EEG. A phase slope index was
estimated by utilizing directional connectivity and network topologies. The experimental
results highlighted positive affective experiences during learning due to the application
of colored multimedia learning materials that impressed the brain’s information process-
ing, reflected by EEG effective connectivity measures. Zhang et al. [33] proposed an EEG
emotion recognition system based on cross-frequency Granger causality feature extraction
and fusion in the left and right hemispheres. The experimental results on a DEAP dataset
indicated an average accuracy of 84.91%. Ghodousi et al. [34] endeavored to determine
whether EEG connectivity patterns were able to show information exchange differences
during affective playing. Effective connectivity was examined using Granger causality in
different EEG frequency bands. The results showed that the state of networks implicated
in the transfer of feelings through music performance could be effectively conveyed by
EEG-based connection in the beta and gamma frequency ranges, while low-frequency
bands (delta, theta, and alpha) did not provide such information. Gao et al. [35] intro-
duced Student’s t-based Granger causality for an EEG analysis of emotions. The results
stressed network-topology differences between male and female participants during ex-
posure to different emotional states. The average subject-wise classification accuracy of
the proposed Granger causal connection was 55.65%. Granger causality, as an effective
connectivity methodology, has been broadly used to discover the causality of emotional
EEG signals [33–35]. However, the main challenge of these approaches has been the high
computational cost of developing brain networks with a large number of EEG channels
and their quantification.

To date, several machine learning algorithms and neural networks have been evaluated
for emotion recognition [19,21–23,26,28,37], among which the most frequently used routines
have been the k-nearest neighbor (KNN) and the support vector machine (SVM). In the
past few years, convolutional neural networks (CNN) and deep learning have attracted the
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attention of scientists [20,38–45]; however, the loss of some emotion-sensitive features in
deep layers has been reported as their limitation in recognizing emotion [43,46–49].

Some researchers have used a combination of information provided by EEG and other
biological signals in their recognition systems. Most of the scientists who have studied
EEG in a single modality have analyzed it in multiple channels [19,23,24,39–41,43]. The
necessity of evaluating bulky data samples drives up the cost of multi-modal/channel
measurements and lowers their efficiency. Previously, several approaches have been
presented for picking the optimal cerebral channels. In most of these methods, one or
a few channels are selected, and processing is performed on them. They depend on
available data, and nominated channels change with data alterations. In addition, the
risk of the low data stability and reliability of an electrode increases when reducing the
number of channels. Alternatively, the present study suggests dividing the brain into
specific areas and calculating the superposition effect of electrodes within the region, which
allows calculations to be performed within a limited number of areas. Consequently, the
computational cost is significantly reduced, and data validity/accuracy is guaranteed.

The chief contributions of the present procedure are as follows:

(1) A novel approach is proposed for computerized EEG emotion recognition.
(2) Instead of processing bulky EEG electrodes, distinct brain regions are defined, in

which the superposition of EEG channels is calculated.
(3) A simple measure is proposed, which is based on Granger causality between pairs

of regions to characterize EEG behavior. This measure is used to recognize emotions.
Two conventional classifiers, SVM and KNN, are employed to categorize four emotion
classes using a DEAP benchmark dataset.

The main innovation of the study is the quantification of brain connectivity based on
Granger causality; as far as we know, the proposed feature in this article is presented for the
first time. Additionally, instead of the time-consuming calculations of a connectivity matrix
for 32 electrodes, we propose an innovative approach for combining brain electrodes and
reducing the dimensions of the matrix.

The next section of this paper describes the methodology in detail. It provides a
comprehensive description of the data, the electrode combination, Granger causality and its
thresholding/quantification, and classification. Section 3 delivers the experimental results.
A discussion is offered in Section 4. To close, Section 5 briefly describes the achievements
and conclusions.

2. Materials and Methods

Figure 1 shows an overview of the suggested emotion recognition method. Initially,
32-channel EEG data for four emotions were taken from the Database for Emotion Analysis
using Physiological Signals (DEAP). Then, EEG frequency bands, including α, β, γ, and
δ, were extracted by wavelet decomposition. Each frequency band and the raw EEG data
(including all frequencies) were subjected to the following steps. An electrode combination
was performed to reduce the data size. The advantage of this step was that instead of
analyzing the 32 brain channels, it defined six brain regions used in subsequent analyses.
For comparison, all EEG channels were also subjected to the following steps. The purpose
of this comparison was to investigate whether reducing the number of channels could
maintain the efficiency of the recognition algorithm or not. Next, normalization was
performed, and Granger causality between each brain area/electrode was calculated. After
thresholding, the summation of selected F-statistic values was measured as an emotion
quantifier. Eventually, emotion recognition was performed by entering the quantifier into
classification models, including SVM and KNN. The subsequent sections precisely explain
all procedure steps.
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Figure 1. Proposed system. Green arrows show the process of performing the algorithm by combining
brain channels into six regions. Blue arrows display the procedure for 32-channel EEGs.

2.1. DEAP Dataset

This research studied EEG signals from a DEAP database [50]. DEAP includes the
32-channel EEGs of 32 healthy volunteers (50% male), aged between 19 and 37. The EEG
channels were Fp1, AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2,
AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4, and O2 [50].

The experimental protocol included two phases of signal acquisition:

− Baseline data:

• A cross point on a monitor for two minutes.

− Emotional data:

• Forty trials with forty video clips, each presenting the following items:

(1) The experimental number (for 2 s);
(2) A fixation cross (for 5 s);
(3) A music video (for 60 s);
(4) A self-assessment.

A short break was given following the 20th trial. Some cookies and non-caffeinated
and non-alcoholic beverages were served. Additionally, the electrode attachments and the
quality of the signals were examined [50].

The contributors ranked the dominance, like/dislike, valence, arousal, and familiarity
dimensions of each stimulus. Scores from one to nine were indicated using the Self-
Assessment Manikins (SAM). We considered two-dimensional emotions, namely, valence–
arousal scores, as follows.

• Class 1 = low (<4.5) arousal and low valence (LALV);
• Class 2 = high (≥4.5) arousal and low valence (HALV);
• Class 3 = low arousal and high valence (LAHV);
• Class 4 = high arousal and high valence (HAHV).

This experiment examined the EEG signals in two ways: (1) by evaluating only
available signals and (2) by examining only signals decomposed into four sub-frequencies.
The EEG frequency sub-bands were delta (δ: 0–4 Hz), alpha (α: 8–16 Hz), beta (β: 16–32 Hz),
and gamma (γ: 32–64). The decomposition was performed using the “Daubechies” wavelet
mother at level 5. D2, D3, and D4 (detail wavelet coefficients) referred to γ, β, and α waves,
and the approximate coefficient (A5) was assigned to δ.
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It is noted that the choice of the mother wavelet and its level can affect the results of a
signal analysis. On the other hand, in order to extract EEG frequency bands by utilizing
the wavelet transform, the sampling rate of signals should be taken into account. Based on
a previous study on a DEAP database [51], the “Daubechies” wavelet mother at level 5 was
used in this study.

2.2. Electrode Combination

Previously, it was shown that the brain hemispheres are anatomically and functionally
asymmetric [52–54]. Dimond et al. [52] assessed the cognitive differences between the
left and right hemispheres triggered by emotion excitation. A greater power of realizing
negative emotions was found in the right hemisphere. Zhao et al. [55] found asymmetric
hemisphere activation in tenderness through the analysis of frontal alpha asymmetry
measures. Cui et al. [54] proposed EEG-based emotion recognition using an end-to-end
regional-asymmetric convolutional neural network. The model included an asymmetric
differential layer in an asymmetric feature extractor, which captured the discriminative
information between the left and right hemispheres of the brain. Li et al. [53] introduced a bi-
hemisphere adversarial neural network model for EEG emotion recognition. Prete et al. [56]
extracted EEG microstates during positive and negative emotions. The main role of the
right hemisphere in emotion processing was concluded. On the other hand, some studies
have emphasized the role of only specific brain areas in emotions, such as the frontal [57],
central and temporal [58], and parietal and occipital [59] regions. Accordingly, analyzing
left- and right-hemisphere EEG signals is crucial in improving emotional recognition. We
hypothesized that there is a functional difference between the right and left hemispheres of
the brain. We divided each cerebral hemisphere into three parts. The first part involved
the frontal sensors. The second included the temporal and central channels, and the
third contained the parietal and occipital electrodes. These channels were symmetrically
distributed in each cerebral hemisphere with the least number of brain regions. The
electrodes were distributed into the six areas (Figure 2), and the average of EEGs within
each area was obtained.
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Figure 2 shows the positioning of 32 electrodes on the scalp. Additionally, the defined
brain areas are highlighted in the figure and are as follows:

Area 1: Fp1, AF3, F3, FC5, and F7.
Area 2: Fp2, AF4, F4, FC6, and F8.
Area 3: FC1, CP1, C3, and T7.
Area 4: FC2, CP2, C4, and T8.
Area 5: CP5, P3, PO3, O1, and P7.
Area 6: CP6, P4, PO4, O2, and P8.

The electrode combination was performed in five forms of EEG: (1) raw signals
containing all frequency bands and (2) α, (3) β, (4) γ, and (5) δ waves. Each form was
analyzed separately, and their performance results were finally compared.

The following steps were performed in two modes, (1) for 32-channel EEGs and (2) for
6-area EEGs. Additionally, each mode contained (1) all frequency bands and (2) α, (3) β,
(4) γ, and (5) δ waves.

2.3. Normalization

The normalized value (X) of an EEG signal (E) in the range of −1 to 1 was computed
as follows:

X = 2(
E − Emin

Emax − Emin
)− 1 (1)

where Emin shows the lowest amplitude of the EEG time series, and Emax is the highest
value of the EEG.

2.4. Granger Causality

Granger causality is an effective connectivity approach for showing the direction
of the information flow between brain areas [60,61]. It is a quite simple algorithm that
demonstrates complex interactions and directed connections between brain areas. This
algorithm is practical for estimating the causal relationship between the activities of dif-
ferent brain regions [62]. Additionally, it can identify that one time series can predict
another series [63,64] and can highlight the frequency band in which the time series can
be predicted [65].

Consider two signals x(t) and y(t). If x Granger causes y, then x’s past values should
supply information for y’s prediction. On the contrary, y’s past values alone are insufficient
for predicting its future [66].

First, the optimal lagged values of y, y(t − i), were calculated to perform the univariate
autoregression of y(t) (Equation (2)), which was recalculated by including the lagged values
of x(t) (Equation (3)).

y(t) = e(t) +
∞

∑
i=1

a(i).y(t − i) (2)

y(t) = ẽ(t) +
∞

∑
i=1

a(i).y(t − i) +
∞

∑
j=1

b(i).x(t − j) (3)

where a(i) and b(j) refer to the regression coefficients, and e(t)/ẽ(t) is the calculated pre-
diction error without/with using the effect of the lagged values of x(t) on predicting y(t).
Consider the variance of e(t) and ẽ(t) to be var(e) and var(ẽ). If var(ẽ) is smaller than var(e),
then x(t) Granger causes y(t) with a Granger causality of 1. If var(ẽ) is larger than var(e),
then x(t) Granger does not cause y(t) with a Granger causality of 0.

2.5. Thresholding and Quantification

Granger causality was obtained in two forms: (1) between each pair of brain areas
(Figure 3a) and (2) between each pair of electrodes (Figure 3b). Therefore, 6 × 6 and 32 × 32
connectivity matrices were created, respectively.
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tify the maximum values. This value was chosen by trial and error. The elements with 

Figure 3. Connectivity matrices for (a) 6 brain areas and (b) 32-channel EEG.

Each element (i, j) of the connectivity matrices shows the F-statistic value between
areas/channels i, j. Hot colors show high F values. A threshold of 60 was adopted to
identify the maximum values. This value was chosen by trial and error. The elements
with higher values than the threshold (>60) were selected. Finally, the summation of the
selected elements was used as a quantifier. For example, consider the connectivity matrix in
Figure 3a. The numbers on the vertical and horizontal axes indicate the brain areas (area 1
to area 6). Three regions marked with dark-red color have F values greater than 60, namely,
(1, 3), (6, 3), and (6, 1), whose F values are 101.54, 91.93, and 68.17, respectively. Therefore,
the quantification results in an integer (261.64 = 101.54 + 91.93 + 68.17) instead of a 6 × 6
matrix. The same approach was adopted for the 32 × 32 matrix.

It is noted that the theta frequency band was also extracted; however, since the F
values were mostly below the threshold level, it was excluded from the analysis process.

Figure 4 shows the connectivity matrices and their corresponding quantifiers for six
brain areas in four emotion categories. As the figure shows, the interactions/connections
between the brain areas are dissimilar in different emotion categories. Additionally, the
quantifier’s value differs significantly among various emotions.
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Figure 5 shows how the connectivity matrices are altered in different EEG frequency bands.
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Figure 5. Connectivity matrices for four EEG frequency bands for the same person and stimuli.

2.6. Classification Models

The quantification of the connectivity matrices (according to what was described
in Section 2.5) gave a vector whose number of features was one (the proposed Granger
causality quantifier), and the number of its samples was the number of participants × the
number of stimuli. Therefore, the dimension of the resulting feature vector was 1 × 1280
(40 × 32 = number of participants × number of clips). Regardless of whether one frequency
band was extracted or all frequencies were examined, and regardless of whether all elec-
trodes were used or a combination of brain regions was employed, the dimensions of the
feature vector were constant. The feature vector was formed for α, β, δ, and γ sub-bands
and all EEG frequencies in the two conditions of the 32 channels and 6 brain regions.

Two popular classifiers, SVM and KNN, were used to classify four emotions. Different
K values varying from 1 to 20 were tested for KNN classification.

Before the classification, the feature vector was normalized according to Equation (1).
K-fold cross-validation (CV), with k values varying from 2 to 20, was utilized in a one-
vs.-all (OVA) classification problem. The classifier’s performance was appraised using the
accuracy (AC), F1 score (F1), and sensitivity (SE) criteria. Consider TP as a true positive, TN
as a true negative, FP as a false positive, and FN as a false negative. They were calculated
as follows.

AC (%) =
TP + TN

TP + TN + FP + FN
× 100 (4)

SE (%) =
TP

TP + FN
× 100 (5)

F1 (%) =
2TP

2TP + FP + FN
× 100 (6)
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3. Results

Since it is impossible to report all the results (all values of K for KNN and k for k-
fold), only the highest classification performance is reported. In this regard, the highest
classification accuracy was determined, and the classification parameters (K for KNN and k
for k-fold), sensitivity, and F1 values corresponding to that accuracy are bolded in the tables.

Tables 1 and 2 demonstrate emotion recognition rates using KNN and SVM for 32-
channel EEG measures.

Table 1. The highest kNN classification performance when utilizing 32-channel EEGs. The classifier
was tested for the proposed Granger causality quantifier in α, β, δ, and γ sub-bands and all frequencies
implementing different k for kNN and varying k for k-fold CV utilizing the OVA strategy.

Class Number K for k-Fold K for kNN AC (%) SE (%) F1 (%)

α

1 18 5 88.06 87.88 93.55

2 15 7 81.25 80.77 89.36

3 18 3 83.82 82.81 90.6

4 18 10 69.12 65.57 79.21

β

1 18 3 89.55 91.8 94.12

2 17 9 81.69 81.16 89.6

3 18 5 83.82 85 90.27

4 16 13 72 73.47 77.42

δ

1 19 3 87.5 87.72 93.1

1 19 5 87.5 88.52 93.1

2 17 2 81.69 81.82 89.26

3 15 7 82.5 81.82 90

4 13 2 67.39 65.38 77.27

γ

1 17 5 87.32 87.14 93.13

2 19 12 82.81 81.97 90.09

2 19 17 82.81 81.97 90.09

3 18 5 82.09 81.54 89.83

4 12 5 72.45 73.44 77.69

All
frequencies

1 19 5 89.06 88.71 94.02

2 18 4 82.35 82.54 89.66

3 18 11 82.09 81.54 89.83

4 19 1 70.31 75.76 74.67
Class 1: LALV; class 2: HALV; class 3: LAHV; class 4: HAHV.

Although the performance results of KNN and SVM were very close, KNN outper-
formed SVM. Among the emotion groups, class 1 had the highest recognition rate, and class
4 had the lowest. Class 1 was recognized with a maximum accuracy of 89.55% using 3NN
and 18-fold CV when the proposed Granger causality quantifier of β waves was used. In
this case, the sensitivity was 91.8%, and the F1 score was 94.12%. However, considering all
emotion groups, the best performance was achieved by utilizing the suggested quantifier
of β and γ waves.

Tables 3 and 4 exhibit the emotion recognition rates using KNN and SVM for
combined electrodes.
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Table 2. The highest SVM classification performance when utilizing 32-channel EEGs. The classifier
was tested for the proposed Granger causality quantifier in α, β, δ, and γ sub-bands and all frequencies
implementing different k for k-fold CV utilizing the OVA strategy.

Class Number K for k-Fold AC (%) SE (%) F1 (%)

α

1 18 86.57 86.57 92.8

2 16 81.33 81.16 89.39

3 19 79.69 79.69 88.7

4 18 60.29 60.32 74.77

β

1 18 86.57 86.57 92.8

2 17 78.87 78.87 88.19

3 18 82.09 81.54 89.83

4 19 59.38 59.38 74.51

δ

1 15 87.5 87.34 93.24

1 19 87.5 87.3 93.22

2 17 78.87 78.87 88.19

3 19 79.69 79.69 88.7

4 19 59.38 59.38 74.51

γ

1 18 86.57 86.57 92.8

2 17 83.1 82.35 90.32

3 19 79.69 79.69 88.7

4 19 59.38 59.38 74.51

All
frequencies

1 18 86.57 86.57 92.8

2 17 78.87 78.87 88.19

3 19 79.69 79.69 88.7

4 16 63.16 61.11 75.86
Class 1: LALV; class 2: HALV; class 3: LAHV; class 4: HAHV.

Table 3. The highest kNN classification performance when utilizing combined electrodes of EEG. The
classifier was tested for the proposed Granger causality quantifier in α, β, δ, and γ sub-bands and all
frequencies implementing different k for kNN and varying k for k-fold CV utilizing the OVA strategy.

Class Number K for k-Fold K for kNN AC (%) SE (%) F1 (%)

α

1 16 3 88.16 88.89 93.43

1 16 4 88.16 87.84 93.53

2 16 2 82.67 82.86 89.92

3 17 2 81.94 84.13 89.08

4 15 4 66.25 85.19 63.01

β

1 17 3 88.73 88.41 93.85

2 19 4 81.25 83.33 89.09

2 19 6 81.25 81.67 89.09

3 18 7 83.58 82.93 90.6

4 17 11 67.61 65.52 76.77

4 17 14 67.61 68.63 75.27

4 17 20 67.61 67.27 76.29
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Table 3. Cont.

Class Number K for k-Fold K for kNN AC (%) SE (%) F1 (%)

δ

1 19 7 87.5 87.3 93.22

1 19 9 87.5 87.3 93.22

2 19 11 81.25 80.65 89.29

2 19 13 81.25 80.65 89.29

3 19 3 82.81 84.21 89.72

3 19 4 82.81 82.26 90.27

4 17 17 70.42 67.24 78.79

γ

1 14 5 88.24 87.95 93.59

2 18 17 82.09 81.25 89.66

3 19 8 82.81 82.26 90.27

4 18 18 68.66 65 78.79

All
frequencies

1 14 7 88.24 87.95 93.59

2 19 12 81.25 80.65 89.29

3 19 7 81.25 80.95 89.47

4 16 18 70.67 68.97 78.43
Class 1: LALV; class 2: HALV; class 3: LAHV; class 4: HAHV.

Table 4. The highest SVM classification performance when utilizing combined electrodes of EEG.
The classifier was tested for the proposed Granger causality quantifier in α, β, δ, and γ sub-bands
and all frequencies implementing different k for k-fold CV utilizing the OVA strategy.

Class Number K for k-Fold AC (%) SE (%) F1 (%)

α

1 18 86.57 86.57 92.8

2 19 81.25 80.65 89.29

3 19 79.69 79.69 88.7

4 12 62.63 61.29 75.5

β

1 18 86.57 86.57 92.8

2 17 78.87 78.87 88.19

3 16 81.33 80.82 89.39

4 19 59.38 59.38 74.51

δ

1 18 88.06 87.88 93.55

2 12 79.59 79.38 88.51

3 19 79.69 79.69 88.7

4 19 59.38 59.38 74.51

γ

1 18 86.57 86.57 92.8

2 19 82.81 81.97 90.09

3 19 79.69 79.69 88.7

4 19 59.38 59.38 74.51

All frequencies

1 18 86.57 86.57 92.8

2 17 78.87 78.87 88.19

3 19 79.69 79.69 88.7

4 18 64.71 62.9 76.47
Class 1: LALV; class 2: HALV; class 3: LAHV; class 4: HAHV.
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Again, KNN outperformed SVM. Among the emotion groups, the highest classification
rates belonged to class 1, and the lowest belonged to class 4. Class 1 was recognized
with a maximum accuracy of 88.73% using 3NN and 17-fold CV whenever the proposed
connectivity measure of β waves was used. In this case, the sensitivity was 88.41%,
and the F1 score was 93.85%. Using SVM, the best performance was achieved for the
quantifier of δ waves. In this case, the maximum accuracy rate was 88.06% for class
1 recognition and 18-fold CV. In this condition, the sensitivity and the F1 score were 87.88
and 93.55%, respectively.

Compared with each other, the results obtained from the 32 electrodes and 6 brain
regions showed almost equal accuracies.

All calculations were performed using an Intel®Core™i5-6400CPU@2.70 GHz proces-
sor. In brief, the computational cost was as follows:

(1) The implementation time of the algorithm, excluding the classification phase:

• Extracting an EEG frequency band for all subjects and combined electrodes
(6 × 6): 486.15 s;

• Extracting an EEG frequency band for all subjects and all electrodes (32 × 32):
7060.68 s.

(2) The implementation time for the classification (KNN):

• For all k in KNN and all k in K-fold CV: 27.34 s;
• For one k in KNN (e.g., 4, 4NN) and all k in K-fold CV: 1.37 s;
• For one k in KNN (e.g., 4, 4NN) and k = 2 in K-fold (2-fold) CV: 0.2 s;
• For one k in KNN (e.g., 4, 4NN) and k = 20 in K-fold (20-fold) CV: 0.27 s.

4. Discussion

This study aimed to examine the functional connectivity potential in emotion recog-
nition using a novel Granger causality quantifier. The effectiveness of the algorithm was
analyzed in different frequency bands, specifically α, β, δ, and γ. In addition, we verified
the proposed algorithm in emotion recognition with two strategies: utilizing 32 brain
electrodes and combining electrodes to create 6 brain regions. The results show that the
electrode combination decreases the computational cost (regarding speed) and maintains
the classification performance.

The value of the proposed scheme can be discussed concerning (1) the benefits of the pro-
jected feature engineering methodology and (2) the advantages of the classification technique.

(1) Benefits of the projected feature engineering methodology:

The previous literature indicates the collaboration of multiple brain areas in emotion,
forming brain networks that connect brain regions structurally or functionally [67]. There-
fore, this study evaluated Granger causality as a simple and effective connectivity approach
to characterize complex interactions between brain areas. Quantifying brain connectivity
between all electrodes is computationally expensive. On the other hand, evaluating limited
brain channels with routine channel selection algorithms increases the risk of mistrusting
the analysis. Consequently, the present study suggests dividing the brain into specific areas
and calculating the superposition effect of electrodes within the region. In this case, the
information gained from all channels is used, and none is removed from the calculation
procedure. However, instead of computing connectivity for a 32-channel EEG, a 6-area
connectivity approach is needed. As a result, a 32 × 32 connectivity matrix is replaced by a
6 × 6 one, where lower computational time is required, and the algorithm implementation
is faster.

(2) Advantages of the classification technique:

Simplicity, applicability, and accessibility are the requirements for designing a di-
agnostic/classification system. Based on a published review study [18], SVM and KNN
have been the most widely used classification methods in studies of EEG emotion recog-
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nition. However, many features have been used to train networks. Table 5 summarizes
state-of-the-art research conducted on databases similar to the one we used in this study.

Table 5. Comparison between the proposed algorithm and former emotion classification schemes.

Study Dataset Signal Methodology Maximum Accuracy (%)

[21] SEED and DEAP EEG
Differential entropy, discriminative

graph regularized extreme
learning machine

SEED: 91.07
DEAP: 69.67

[23] DEAP EEG DWT, statistical features, MLPNN
and kNN 77.14 (MLPNN)

[40] DEAP EEG Long Short-Term Memory
(LSTM) 87.99

[41] DEAP EEG Three-dimensional convolutional
neural networks (3D-CNN) 88.49

[19] DEAP EEG Time, frequency and wavelet, random
forest (RF), SVM, LDA 75.6 (RF)

[47] DEAP
SEED EEG

Electrode-frequency distribution maps
with short-time Fourier

transform, CNN

SEED: 90.59
DEAP: 82.84

[39] DEAP
MAHNOB-HCI EEG Locally robust feature selection,

ensemble learning

65–68 (DEAP)
67–70 (MAHNOB-HCI)
for arousal and valence

[24] DEAP EEG
Wavelet, pairwise functional
connectivity, graph-theoretic

measures, mRMR, SVM
69.73

[43] DEAP EEG Feature fusion modules and dilated
bottleneck-based CNN Two-class: 79.45/83.98

[46]

DEAP
AMIGOS

MAHNOB-HCI
DREAMER

Multi-modal Deep-learning-based methods

AMIGOS:
81.49 (liking)

MAHNOB-HCI: 85.49 (valence)
DEAP: 80.95(liking)
All for EEG + face
DREAMER < 80

This study DEAP EEG Combined electrodes, Granger
causality, kNN, SVM 89.55%

The current approach provides higher recognition rates compared to all previous stud-
ies on similar databases (Table 5). Naser and Saha [24] also proposed a brain-connectivity-
based approach to recognize emotions by utilizing a database similar to that used in the
current research. However, the scheme could only classify emotions at a rate of 69.73%.
The emotion recognition rate validated by the current database did not exceed 70% in
some other studies [21,39]. Systems based on conventional machine learning with wavelet
analysis also provided recognition rates of about 75% [19,23]. Deep learning algorithms
also resulted in recognition rates between 80 and 88.5% [40,41,43,46,47].

Despite the admirable performance of the proposed method, some restrictions should
be considered in the future. Synergistic interactions occur between multiple brain areas
during emotions. Consequently, EEG studies should provide an electrode arrangement
scheme that can determine spatiotemporal causal relationships between several brain
regions. This study combined 32 brain channels to define 6 brain regions. These regions
were defined based on the asymmetry of the two brain hemispheres and the importance of
the central, parietal, frontal, and occipital areas. It would be beneficial to know how the
results would be affected if a different number of areas were selected for analysis. Optimal
brain regions should be investigated in future works. Changing the number of areas may
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have a significant effect on the classification performance. On the other hand, this study
used one of the simplest available methods for evaluating brain connectivity (Granger
causality). Different algorithms have been introduced to evaluate these connections, ones
that should be assessed in future studies. The number of EEG recordings in the database
is limited. A richer dataset should be evaluated in subsequent works. The DEAP dataset
provides two EEG versions: the original data and pre-processed data. In the former, the
sampling frequency was 512, while in the latter, the data were down-sampled to 128 Hz,
and ocular artifacts were removed using a blind source separation technique [50]. We used
the pre-processed version without further filtering before the wavelet transform. Data
pre-processing may have significant effects on the results. Therefore, future studies should
carefully examine the consequences of noise removal algorithms. This study applied
normalization before Granger causality to make the EEG scales identical for all data.
We did not assess the normalization effects on the results; however, the study by van
Mierlo et al. [68] suggested that time series normalization before connectivity analysis is
preferred. Future studies should address how normalization affects the Granger causality
matrices. The algorithm execution when utilizing all electrodes lasted about 117 min, and
with the combination of electrodes, it took about 8 min. These results indicate that the
combination of electrodes led to a drastic reduction in the execution time. Due to the
high computational cost, the connectivity method was mainly studied offline. The current
approach provides a technique to diminish the volume of calculations in connectivity-based
methodologies. However, further studies should investigate strategies that benefit from
lower computational costs for possible use in real-time online emotion detection. In the
present study, a threshold was chosen by trial and error to quantify the Granger causality
matrices. Future approaches should consider the effect of different threshold values on
emotion recognition results. The algorithm needs to compare many parameters, such
as k in KNN, to identify the best parameter; therefore, the pre-calculation time will be
expensive. Future works should investigate hyper-parameter optimization algorithms so
that the training process only needs to occur one time for each subject, where the same
parameters are transferred for subsequent experiments. The present study reported subject-
independent classification results, and the distribution of emotion classes was not identical
among participants. This imbalance can affect the classification performance. In particular,
it becomes a challenging issue for emotion recognition in a subject-dependent mode. Future
studies should design and collect data whose distribution of emotion classes is balanced
among participants or provide an approach to deal with imbalanced datasets.

5. Conclusions

The present study suggests an innovative functional connectivity-based measure for
EEG emotion recognition using Granger causality. The proposed system presents an ap-
proach to deal with time-consuming calculations of brain connectivity in high numbers of
EEG channels. This step was performed by adding a groundbreaking electrode combination
module, which provided an approach that increased the speed of calculations and, at the
same time, maintained the efficiency of the recognition system. Moreover, the scheme per-
formance was compared with different EEG bands and raw signals without decomposing
them into frequency waves. The current investigation shows that combined EEG electrodes
can efficiently reflect 32-channel EEG information. Additionally, EEG-based connectivity
in β waves can effectively classify dimensional emotions, especially low arousal and low
valence (LALV). After evaluating traditional machine learning algorithms, the system’s
superiority in emotion classification, with a maximum accuracy of 89.55%, was highlighted.
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