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Abstract: Background and aims: Doxorubicin (DOX) causes cognitive impairment (chemobrain)
in patients with cancer. While DOX damages the cholinergic system, few studies have focused
on the protective effects of cholinergic function on chemobrain. The acetylcholinesterase inhibitor
galantamine (GAL) demonstrates neuroprotective properties. We investigated the mechanisms
associated with DOX-induced cognitive impairments and the potential protective role of GAL in
preventing chemobrain. Main methods: Female Wistar rats were divided into control, DOX, GAL, and
DOX + GAL groups. The rats in the DOX group were administered DOX (5 mg/kg intraperitoneally
twice weekly for two weeks), while those in the GAL group were orally administered GAL (2.5 mg/kg)
via oral gavage once daily for 15 days. The combination group (DOX + GAL) received GAL (once
daily) and DOX (two times per week) concurrently. The body weights and survival rates were
monitored daily. The animals were subjected to behavioral tests to assess the memory function
followed by the biochemical estimation of inflammatory markers, including tumor necrosis factor-α
(TNF-α), interleukine-1β (IL-1β), and interleukine-6 (IL-6) in rat brain tissue and RT-qPCR. Key
findings: DOX caused a reduction in the body weight and survival rate, which was alleviated by
GAL concomitant treatment with DOX (DOX + GAL). These groups had reduced body weights and
survival rates. DOX-treated animals exhibited an impairment of short-term spatial working memory,
manifested as a behavioral alteration in the Y-maze test, the novel object recognition (NOR) test, and
the elevated plus-maze (EPM) test. Concurrent treatment with GAL (DOX + GAL) showed improved
memory function, as evidenced by an increase in the number of entries and time spent in the novel
arm, the time spent exploring the novel object, and the transfer latency in the Y-maze, NOR test, and
EPM test, respectively. These findings were also supported by biochemical observations showing
the reversal of DOX-induced changes in IL-1β, IL-6, and TNF-α, as well as their relative expression
of mRNA in brain tissue following concurrent GAL treatment. Conclusion: GAL appeared to be a
neuroprotective agent against neuroinflammation caused by DOX by reducing inflammatory markers
in the brain.

Keywords: doxorubicin; galantamine; neuroinflammation; cognitive impairment; neuroprotective;
ELISA; rats

1. Introduction

Cancer is a major leading cause of death around the world [1]; nearly 10 million people
died from cancer in 2020 [2]. Despite the increased cancer mortality incidence, the survival
rate of patients in developing countries improved due to early detection and quality
treatment [3]. While chemotherapy is effective, toxicity and chemotherapy resistance
are its main limitations [4]. Neurotoxicity resulting from chemotherapy can affect any
neuron either directly (direct contact with the cell body and neurites) or indirectly (glial
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damage, inflammation, and other mechanisms) [5–7]. Chemobrain is defined as a persistent
cognitive impairment, where patients experience difficulties in maintaining attention,
memory, and processing speed during or after chemotherapy [8]. There is growing evidence
that chemobrain is highly prevalent among patients with breast cancer due to either a direct
effect of the cancer itself or nonspecific factors, where approximately 18% and 78% of
patients with breast cancer experience dyscognition soon after starting chemotherapy,
respectively [9,10].

An anthracycline chemotherapeutic drug, doxorubicin (DOX), is widely used in adju-
vant therapy for patients with breast cancer. DOX exerts antitumor effects by intercalating
DNA and inhibiting topoisomerase II [11,12]. DOX increases the level of free radicals, which
damage cellular membranes, DNA, and proteins [13]. Despite its limited ability to cross the
blood–brain barrier (BBB), DOX can cause severe neurotoxicity in the brain through direct
or indirect mechanisms [12]. DOX-induced cognitive deficits in well-developed chemobrain
are caused by multifactorial mechanisms including oxidative stress, inflammation, mito-
chondrial dysfunction, altered neurotransmitter levels, glial activation, the accumulation
of the autophagic substrate p62, the activation of apoptosis, and the inhibition of neuro-
genesis [12]. In addition, choline acetyltransferase activity, the level of choline-containing
compounds, and phospholipase D activity significantly decreased in the hippocampal
region following treatment with DOX in mice [14].

Acetylcholine, a neurotransmitter produced by cholinergic neurons, is crucial for
memory function [15]. Cholinergic innervation in the hippocampus originates primarily
from the medial septum and the diagonal band, and is abundant in nicotinic acetylcholine
receptors (nAChRs), specifically subtype 7 [16,17]. Furthermore, cholinergic signaling
through the α7 nAChR induces long-term potentiation (LTP) and suppresses long-term
depression, which influences synaptic plasticity [18]. In addition, glutamate also appears to
induce LTP through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and
subsequently N-methyl-D-aspartate (NMDA) glutamate receptors. As part of LTP induc-
tion, both presynaptic and postsynaptic neurons must be simultaneously activated, as the
postsynaptic neuron must be depolarized when glutamate is released from the presynaptic
bouton to remove the Mg2+ block of N-methyl D-aspartate (NMDA) receptors. Depolariza-
tion and glutamate binding results in maximal calcium influx through NMDARs, which
activate intracellular signaling cascades that are ultimately responsible for altered synaptic
efficacy. Consequently, NMDAR-dependent LTP is an associative form of plasticity that
strengthens neural connections [19]. Accordingly, synaptic plasticity loss is associated with
dementia [19]. Surprisingly, DOX has been shown to affect learning and memory function
in rodents via the impairment of synaptic plasticity in hippocampal neurons caused by
AMPA receptor dysregulation [20]. Acetylcholinesterase (AChE) is primarily present at
postsynaptic neuromuscular junctions and breaks down or hydrolyzes acetylcholine, which
prevents it from spreading and activating nearby receptors [21]. AChE has different func-
tions, which include influencing inflammation, oxidative stress, apoptosis, morphogenic,
and adhesion functions, participating in β-amyloid accumulation [22]. Accordingly, AChE
is crucial in neurodegenerative diseases [22].

The acetylcholinesterase inhibitor (AChEI) galantamine (GAL) is used to treat Alzheimer’s
disease (AD). GAL does not cure AD but can improve learning, memory, and awareness
by improving cholinergic function [23]. GAL blocks acetylcholine breakdown, promotes
presynaptic neuron acetylcholine release, and modulates nAChRs, and has antioxidant
function [24–26]. A unique drug, GAL, is an allosteric potentiator of α4β2 and presynaptic
α7 nAChR [27], and facilitates presynaptic neuron acetylcholine release, rendering its dual
mode of action clinically significant [27]. Furthermore, studies in both clinical and pre-
clinical settings have revealed the neuroprotective properties of GAL, as well as its ability
to improve cognitive performance. GAL inhibited plaque formation, attenuated amyloid
deposition, and prevented neuroinflammation [28,29]. In addition, GAL facilitated the pro-
tection of dentate gyrus neurons against the lead-induced impairment of neuronal plasticity
in rats [30]. Although DOX has low permeability through the BBB, the pro-inflammatory
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cytokines that it produces, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumour
necrosis factor-alpha (TNF-α), are able to cross this barrier and cause local inflammatory
responses in the brain, as well as oxidative stress in the brain, via the production of reactive
oxygen species [31]. Furthermore, GAL inhibits inflammatory signaling molecules (NF-κB
and p65) and cytokines (TNF-α, IL-1β, and IL-6), and also prevents astrocyte and microglia
activation markers (CD11b and GFAP) in lipopolysaccharide-exposed mice [32].

Notwithstanding the higher percentage of chemobrain following DOX in breast cancer
patients and the fact that DOX is among the most widely used anticancer antibiotics for
breast cancer regimens, research that investigates the effect of DOX on the memory function
of female rodents, as well as possible remedies, has been inadequate. In addition, the dearth
of a scientific explanation of cognitive deficits following chemotherapy has hampered
therapeutic outcomes in survivors of breast cancer patients, with higher mortality rates than
without cognitive deficit. Therefore, it is quite interesting to investigate the effect of DOX
on cognitive impairment in female rats and its possible amelioration using galantamine.
Furthermore, the results of this research intend to incite an in-depth understanding of the
underlying mechanisms of chemotherapy-induced cognitive impairment that provides an
experimental tool for researching possible interventions that promote better quality of life
in cancer survivors by protecting non-targeted organs from anticancer drug toxicity.

2. Materials and Methods
2.1. Drugs and Chemicals

DOX injection fluid (2 mg/mL) was obtained from EBEWE Pharma Ges.m.b.H.
Nfg.KG, Unterach am Attersee, Austria, and galantamine hydrobromide was purchased
from Sigma-Aldrich, St. Louis, MO, USA.

2.2. Animals

In this study, a total of forty-eight Wistar female rats (weighing 150–300 g) were pro-
cured from the animal house facility of the College of Pharmacy, Qassim University, Saudi
Arabia. The animals were kept in propylene cages, maintained at 25 ± 2 ◦C under a 12 h
light–dark cycle, and had free access to food and water. The rats were observed daily and
their body weights were measured. The experiment was conducted in accordance with the
guidelines of the College of Pharmacy Research Centre (no. 23-20-16) at Qassim University.

2.3. Experimental Groups and Treatment Schedule

The animals were randomly divided into four groups: control (n = 10), DOX (n = 18),
GAL (n = 10), and DOX + GAL (n = 10). The control group was orally administered with
drinking water via an oral gavage and normal saline (0.1 mL/100 g, i.p.) twice weekly for
two weeks. The second group (DOX) was treated with DOX (5 mg/kg, i.p.) twice/week
for two weeks (cumulative dose, 20 mg/kg) [33]. The animals in the GAL group received
GAL (2.5 mg/kg) orally (p.o.) through oral gavage once a day for two weeks [34]. The
DOX + GAL group administered GAL (2.5 mg/kg, p.o.) once daily and DOX (5 mg/kg,
i.p.) twice weekly for two weeks. The animals were subjected to behavioral tests for an
assessment of cognitive function using Y-maze, the novel object recognition (NOR) test,
and the elevated plus-maze (EPM) test (Figure 1).
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2.4. Y-maze

A Y-maze is used in rodent studies to study spatial learning and memory. The test is con-
ducted using a Y-shaped maze with three wooden arms (measuring 50 cm × 10 cm × 18 cm,
arranged at a 120◦ angle). Rat recognition abilities are measured by blocking off one arm
of the Y-maze (novel arm). In this study, the test was performed by marking each arm as
a starter arm, a familiar arm, and a novel arm. One rat was placed in the starter arm so
that it could freely access the familiar arm for 10 min (training session). After 3 h, the test
session was conducted with all arms open and with no restriction on maze exploration. For
the test session, the animal was again placed on the starter arm and its preference for the
novel arm or known arms was observed for 5 min. The test was conducted in an isolated
area with good light distribution, and the apparatus was cleaned after each trial. The test
sessions were video-recorded to enable an assessment of the duration that the rats spent on
each arm and how many entries they made. The animal was considered to have entered an
arm if all of its paws entered the arm [33].

2.5. Novel Object Recognition (NOR)

Various aspects of learning and memory in the rats were assessed with the NOR test.
An open box made of wood (measuring 40 cm × 40 cm × 40 cm) was used with two
different items (familiar objects: black cans; novel object: a small white-painted reagent
bottle). Neither positive nor negative reinforcers were used in the NOR test. The rat was
placed in the center of the apparatus to explore identical objects located at equal distances
(training session) for 10 min. After 3 h, the test session was conducted, where a familiar
object was replaced with a novel object, and the rat was exposed to it for 5 min. To avoid
odor cues that could affect the animal’s behavior, the arena and objects were cleaned with
70% ethanol solution before each trial. The duration that each animal spent discovering a
novel object during the test session was recorded with a video camera [33].

2.6. Elevated Plus-Maze (EPM) Test

The EPM test is used to evaluate memory and assess anxiety-related behaviors in
rodents. A cross-shaped wooden elevated apparatus was used for this study. The apparatus
consisted of two oppositely positioned closed arms (50 cm × 10 cm), two oppositely
positioned open arms (50 cm × 10 cm), and a center platform (10 cm2). A rat was placed at
the end of the open arm, facing the open area, which allowed the apparatus to be explored
for 5 min. The EPM test was performed in silence, and the animal was observed via a
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computer-connected camera. The maze was swept after every trial. The transfer latency,
the duration spent on the closed arm, and the number of entries to open and closed arms
were measured with a video camera and a stopwatch. An animal was considered to have
entered the arm when all of its paws were inside [33,35].

2.7. Brain Tissue Collection for Biochemical Analysis

The rats were placed in a glass chamber and anesthetized with CO2 [36], before then
being killed by decapitation. The brains were removed and then their blood was washed
out. Subsequently, the brains were homogenized in total protein extraction buffer with
protease inhibitor, then centrifuged at 12,000 rpm for 10 min before being stored at −80 ◦C.
The cerebellum was not collected.

2.8. Bicinchoninic Acid (BCA) Protein Assay

The BCA assay standard curve and protein estimation were conducted based on
a previously described method [37]. A standard working reagent (200 µL) containing
100 vol BCA solution with 2 vol of copper (II) sulfate pentahydrate 4% (w/v) was added to
25.0 µL samples containing 0.1–1.2 mg of protein standard solution (bovine serum albumin).
The BCA assay was performed in triplicate. The plates were incubated at 37 ◦C for 30 min,
the absorbance was measured at 570 nm using a microplate reader, and a standard curve
was plotted across a 0.1–1.2 mg/mL protein range [37].

2.9. Enzyme-Linked Immunosorbent Assay (ELISA)

The ELISA is a powerful analytical biochemistry technique that is used to detect and
quantify specific proteins. In this study, inflammatory marker proteins in the supernatant
(IL-6, IL-1β, and TNF-α) were detected with sandwich ELISA. The inflammatory marker
levels were detected using rat ELISA kits for IL-1β (cat. no. RK00009, ABclonal Tech-
nology, Woburn, MA, USA), IL-6 (cat. no. RK00020, ABclonal Technology), and TNF-α1
(cat. no. RK00029, ABclonal Technology). The ELISA was performed according to the
manufacturer’s instructions.

2.10. Reverse Transcription–Quantitative PCR (RT-qPCR)

An RT-qPCR is a sensitive and quantitative technique used to quantify mRNA ex-
pression levels. In this study, the mRNA levels of inflammatory cytokines (TNF-α and
IL-6) were detected. The total RNA was extracted from tissue samples according to the
manufacturer’s protocol using a GET Total RNA kit (cat. no. 787-123, Biosciences, San
Diego, CA, USA). The oligo primers (Integrated DNA Technologies, Coralville, IA, USA)
were designed using the PrimerQuest Tool, diluted to 10 µM/µL using double-distilled
water, and stored at −20 ◦C. The RNA purity of each sample was determined using a
NanoDrop ND-2000c spectrophotometer (Thermo Fisher Scientific, Labtech, UK). Inte-
grated DNA Technologies tools were used to design a specific primer for each gene for
the RT-PCR (Table 1), and 10 µM/µL working concentrations were prepared. Reverse
transcription and PCR quantification were conducted using an ABScript II One-Step SYBR
Green RT-qPCR Kit (cat. no. RK20404, ABclonal Technology). RNA (400 ng per sample)
was reverse-transcribed into complementary DNA, and the PCR was run using an AriaMx
Real-Time PCR System (Agilent Technologies, Santa Clara, CA, USA) according to the
manufacturer’s instructions. A mixture of SYBR green RT-qPCR buffer, ABScript II enzyme
mix, 10 µM of each forward and reverse primer, ROX II reference dye (50×), and total
RNA was prepared and topped up to 20 µL with RNase-free water. The thermocycling
conditions were as follows: reverse transcription consisted of one cycle for 5 min at 42 ◦C
and pre-denaturation consisted of one cycle for 1 min at 95 ◦C followed by 40 reactions for
5 s at 95 ◦C and 32–34 s at 60 ◦C.
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Table 1. TNF-α and IL-6 primer sequences used for RT-PCR.

Gene Sequence (5′–3′) Length (bp)

TNF-α FWD ACCTTATCTACTCCCAGGTTCT
87

TNF-α REV GGCTGACTTTCTCCTGGTATG

IL-6 FWD GCCAGAGTCATTCAGAGCAATA
87

IL-6 REV TTAGGAGAGCATTGGAAGTTGG

GAPDH FWD ACTCCCATTCTTCCACCTTTG
104

GAPDH REV CCCTGTTGCTGTAGCCATATT
FWD: forward; REV: reverse.

To ensure the validity of the results, the samples were run in duplicate in three
independent experiments. The data were analyzed automatically using AiraMx software
after setting the plate for the comparative quantitation experiment. The gene expression
levels were normalized with the housekeeping gene Gapdh. To determine changes in the
mRNA expression, transcript abundance was calculated for each gene relative to Gapdh
transcript abundance.

2.11. Statistical Analysis

All results are presented as the mean ± SEM and were analyzed using GraphPad
Prism 9 software (GraphPad, Boston, MA, USA). All the data (body weights; survival rates;
Y-maze, NOR, and EPM tests; biochemical assay) were analyzed using a one-way analysis of
variance (ANOVA), followed by Dunnett’s analysis. The data of the treatment group were
compared with the data of the control group. p < 0.05 was considered statistically significant.

3. Results
3.1. Effect of DOX and GAL on Body Weight and Mortality

The DOX and DOX + GAL groups had reduced body weights compared with the
control group. In contrast, the GAL group had increased body weight (Figure 2A). The DOX
and DOX + GAL groups had higher mortality rates (Figure 2B) (DOX mortality rate:33%).
No mortality was reported in the control or GAL groups.
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3.2. Effect of DOX and GAL on Y-maze Performance

The control group had a higher number of entries into the novel arm, whereas the
DOX group recorded the lowest number of novel arm entries (Figure 3A), which may
reflect a reference spatial memory deficit. GAL administration resulted in improved entries
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and duration spent in the novel arm compared to DOX treatment. There was no significant
difference in the duration spent in the novel arm between the control and DOX groups
(Figure 3B).
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Figure 3. The effect of DOX and GAL on the behavior of rats on the Y-maze test. (A) The effect of
DOX and GAL on the number entries into the novel arm. (B). The effect of GAL and DOX on the
duration spent on the novel arm. The data are expressed as the mean ± SEM. The data were analyzed
using a one-way ANOVA with Dunnett’s analysis and were considered significant when * p < 0.05 as
compared to the control group.

3.3. Effects of DOX and GAL on NOR Test Performance

The DOX- and GAL-treated groups spent significantly less time exploring the novel
object compared to the control group (Figure 4). However, GAL co-treatment prolonged
the novel object exploration compared to DOX alone. These findings indicate that GAL
may improve the memories of rats with DOX-induced chemobrain.

3.4. Effects of DOX and GAL on EPM Test Performance

The transfer latency between the GAL with DOX (p < 0.01) and control (p < 0.05) groups
was significantly different. However, the total duration spent in the closed arms was not
significantly different between the four groups. The DOX group had the lowest transfer
latency, whereas the transfer latency was the highest in the GAL and DOX + GAL groups
(Figure 5A). Furthermore, the control and DOX + GAL rats spent more time in the closed
arm (Figure 5B). The DOX rats recorded the highest number of entries into the open arm,
which was significantly different from the control and GAL groups (Figure 5D). There were
no significant differences in the number of entries into the closed arm between the groups
(Figure 5C).

3.5. Effects of DOX and GAL on Inflammatory Markers

The DOX group had significantly increased IL-1β, IL-6, and TNF-α levels in the brain
compared to the control group (Figure 6A–C). In contrast, GAL significantly diminished
brain inflammation compared to DOX-injected rats. Additionally, the GAL group had
significantly reduced IL-6 in comparison to the control group (Figure 6B).
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3.6. Effects of DOX and GAL on Inflammatory Marker mRNA Expression

IL-6 and TNF-α gene expression increased significantly following DOX administration
(p< 0.0001) (Figure 7A,B), and GAL co-treatment decreased this overexpression. In compar-
ison with the control group, the GAL group had significantly reduced IL-6 expression. This
indicates that GAL had anti-inflammatory properties.

3.7. Collective Diagram of Results

Figure 8 summarizes the findings of the study, and GAL reverses the changes induced
by DOX in the rats.
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4. Discussion

Clinical oncology advances over the past few decades have significantly improved
the long-term survival of patients with cancer [38]. Many cancer survivors may experi-
ence different complications lasting months or years after treatment, including cognitive
impairment [38]. In this study, we hypothesized that GAL may prevent and improve
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DOX-induced cognitive dysfunction through its neuroprotective actions. Furthermore,
DOX may cause increased AChE, which increases acetylcholine hydrolysis and contributes
to inflammation [39,40]. Using GAL will compensate for acetylcholine reduction and
contribute to improving memory and reducing inflammation.

In this study, DOX was used to induce a model of chemobrain. The effects of GAL
were evaluated using behavioral tests such as the Y-maze, where animal performance is
linked to the majority of brain regions, such as the hippocampus, basal forebrain, and
prefrontal cortex [41]. The results show that DOX caused spatial memory deficiencies,
evidenced by the lower number of novel arm entries. In contrast, GAL treatment improved
the number of entries and the percentage of duration in the novel arm, indicating spatial
memory improvement.

The rat discrimination ability was assessed with the NOR test. Among the four groups,
the DOX rats demonstrated the reduced ability to discriminate between familiar and novel
objects. Therefore, this paralleled previous studies that reported a significant deficit in
working memory [33,39]. Nevertheless, the NOR test demonstrated that GAL co-treatment
with DOX improved exploration time, indicating that GAL prevented DOX-induced cogni-
tive deficits. The improved effects of GAL on DOX-induced cognitive impairment may be
related to nAChR activation, where nAChR activation improved recognition memory in
Aβ-treated animals and methamphetamine-treated mice [42,43]. Noda et al. suggested that
muscarinic acetylcholine receptors (mAChRs) have little influence on the effects of GAL on
specific cognitive tasks (NOR test), as scopolamine does not block the effects of GAL at the
dose that impairs the performance of saline-treated mice [43].

In the EPM test, the control and DOX groups had the lowest transfer latency, with
higher entries and durations in the closed arm, indicating anxiety-like behavior. The DOX
group recorded more entries to the open arm, which could indicate memory impairment
(amnesia) [44]. The increased transfer latency and decreased entries to the open arm in the
GAL group suggested anxiety-induced behavioral inhibition, as previous studies reported
that increased acetylcholine levels following the inhibition of AChE in mouse hippocampus
induced anxiety-like behaviors [45].

TNF-α, IL-1β, and IL-6 were significantly increased in the DOX group compared to
the control group, which accorded with previous studies in which DOX activated neu-
roinflammatory mediators [12]. The increased peripheral TNF-α levels following DOX
administration disturbed the BBB, which increased TNF-α penetration in the brain tis-
sues and initiated the central neuroinflammatory process via further TNF-α production in
the brain. Moreover, TNF-α levels facilitated the local production of other proinflamma-
tory mediators by activating NF-κB and increasing IL-1β and IL-6 gene expression. This
neuroinflammation may contribute to neural apoptosis and behavioral changes [12,46].

Increased IL-6 and IL-1β impaired spatial memory task learning and inhibited LTP
in hippocampal slices [47–49]. Furthermore, blocking IL-6 enhanced LTP and improved
long-term memory in a task that is dependent on the hippocampus [50]. The GAL treatment
significantly suppressed DOX-induced and increased TNF-α and IL-6 mRNA expression in
brain tissues compared with the DOX group, and significantly reduced IL-6 compared to
the control group. The reduction in inflammatory marker levels and expression in the GAL
group may have resulted from acetylcholine elevation after GAL administration, leading
to the stimulus of α7 nAChR on immune cells, which caused a calcium ion influx in the
immune cells. The increased calcium ion levels activated the NF-κB pathway, reducing
proinflammatory cytokine production [51,52].

Inflammation is involved in psychiatric illness [53,54]. Increased peripheral or central
IL-6 levels are associated with depression [55,56]. IL-6-induced depression may result
from the activation of the hypothalamic–pituitary–adrenal axis or from influencing neu-
rotransmitter metabolism, where IL-6 causes reduced serotonin, as indicated in a study
which reported that IL-6 directly influenced serotonin reuptake by controlling serotonin
transporter levels [56,57]. Therefore, the GAL reduction effect on IL-6 may be involved in
controlling depressive symptoms in cancer survivors. These findings are consistent with
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previous reports which state that GAL reversed memory impairment, the inflammation of
hippocampal neurons, and synaptic plasticity caused by lipopolysaccharide in mice [32].

Typically, GAL is prescribed to treat mild-to-moderate confusion (dementia) [58,59].
Using a rat model, we evaluated the beneficial effects of GAL on chemotherapy-induced
cognitive deficits. The results demonstrated that GAL can be used as a therapeutic target
to reduce DOX-induced cognitive deficits by enhancing cholinergic transmission, inhibit-
ing proinflammatory cytokine release, and enhancing cognitive ability. These findings
can be used to explore additional evidence to support the further clinical use of acetyl-
cholinesterase inhibitors against chemobrain.

5. Conclusions

The findings of this study reveal that DOX treatment can initiate the impairment of
memory function and the elevation of inflammatory cytokines and their relative expression
in the brain. The administration of GAL as a co-treatment reverses these effects. Therefore,
GAL appears to be a plausible candidate for treating cognitive dysfunction in the chemo-
brain caused by DOX treatment. In addition, GAL reduced neuronal inflammation in the
brain, demonstrating a therapeutic effect.
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