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Abstract: Uni-hemispheric concurrent dual-site anodal transcranial direct current stimulation (UHCDS
a-tDCS) of the primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) may enhance
the efficacy of a-tDCS after stroke. However, the cellular and molecular mechanisms underlying its
beneficial effects have not been defined. We aimed to investigate the effect of a-tDCSM1-DLPFC on
brain metabolite concentrations (N-acetyl aspartate (NAA), choline (Cho)) in stroke patients using
magnetic resonance spectroscopy (MRS). In this double-blind, sham-controlled, randomized clinical
trial (RCT), 18 patients with a first chronic stroke in the territory of the middle cerebral artery trunk were
recruited. Patients were allocated to one of the following two groups: (1) Experimental 1, who received
five consecutive sessions of a-tDCSM1-DLPFC M1 (active)-DLPFC (active). (2) Experimental 2, who
received five consecutive sessions of a-tDCSM1-DLPFC M1 (active)-DLPFC (sham). MRS assessments
were performed before and 24 h after the last intervention. Results showed that after five sessions of
a-tDCSM1-DLPFC, there were no significant changes in NAA and Cho levels between groups (Cohen’s
d = 1.4, Cohen’s d = 0.93). Thus, dual site a-tDCSM1-DLPFC did not affect brain metabolites compared to
single site a-tDCS M1.

Keywords: transcranial direct current stimulation; metabolism; stroke; magnetic resonance spectroscopy

1. Introduction

Stroke is the second leading cause of death worldwide [1]. More than 50% of survivors
suffer from chronic disability [2]. Motor impairment is the most common physical com-
plication. However, improving motor function in stroke patients remains a challenge [3].
Recently, neurorehabilitation has progressed towards direct brain stimulation, and studies
have suggested that brain modulation may have beneficial effects on motor training [4].
Non-invasive brain stimulation (NIBS) aims to transcranially modulate the excitability of
specific brain areas [5]. Transcranial direct current stimulation (tDCS) is a form of NIBS
that delivers low-intensity direct current through the scalp and facilitates cell plasticity by
acting on the neuronal network [6–8]. A recent meta-analysis demonstrated the efficacy of
tDCS for motor recovery in stroke patients [9].

Changing the parameters of tDCS to achieve the maximum effect is clinically impor-
tant. One of the most important parameters is electrode placement. Studies have shown
that stimulation of brain areas functionally connected to the primary motor cortex (M1)
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increases corticospinal excitability (CSE) [10]. A related method, called uni-hemispheric
concurrent dual-site a-tDCS (UHCDS a-tDCS) stimulates two functionally connected brain
regions simultaneously [11]. We chose M1 and the dorsolateral prefrontal cortex (DLPFC).
The DLPFC is largely responsible for attention, executive function, and working mem-
ory [12]. There is evidence of a strong link between executive function and the prefrontal
cortex [13]. It is possible that DLPFC stimulation in addition to M1 has an additive effect
on motor recovery via functional connectivity to M1, which is thought to be stronger than
M1 stimulation alone.

Neuroimaging evidence suggests that changes in neuronal and glial metabolism may
play an important role in both functional decline and recovery of brain function. Proton
magnetic resonance spectroscopy (H-MRS) can detect changes in the metabolic levels of
neurotransmitters such as N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr), and
can provide a good picture of the metabolic state of damaged tissue [14].

N-acetyl aspartate (NAA) is used as a non-invasive marker of neurological health.
Stroke survivors have shown decreased levels of brain NAA [15], suggesting a loss
of neurons.

NAA deficiency is associated with reduced levels of ATP, acetyl CoA and other metabo-
lites involved in energy metabolism [11]. The researchers found that the recovery of NAA
levels was only observed in conjunction with the regeneration of ATP [15]. Cr, found in
neurons and glial cells, plays an important role in maintaining the high levels of energy
required to maintain membrane potentials [11]. Cho and its metabolites can affect func-
tions such as maintaining the structural integrity of cell membranes and transmembrane
signaling [12,13].

Hone-Blanchet et al. showed that anodal tDCS to the left DLPFC and cathodal tDCS
to the right DLPFC in healthy subjects had rapid excitatory effects during stimulation and
increased the amount of NAA in the left DLPFC [16]. Carlson et al. reported decreases in
glutamate/glutamine and Cr after cathodal tDCS compared to sham tDCS [17].

The present study aims to extend the previous MRS research with metabolites in
stroke patients. The aim of this study is to investigate whether the addition of DLPFC
stimulation to M1 (UHCDS a-tDCSM1-DLPFC) can alter brain metabolite concentrations. We
hypothesized that the levels of brain metabolites such as NAA, creatine, and choline would
change significantly after UHCDS a-tDCSM1-DLPFC treatment compared to baseline levels.

2. Materials and Methods
2.1. Participants and Study Design

Eighteen patients with a first chronic stroke (>6 months post-stroke) in the MCA
territory were enrolled in this double-blind, randomized clinical trial. The study sample
was recruited from 533 patients who were admitted to Pars Hospital with a diagnosis
of stroke between 20 June 2021 and 20 July 2022, diagnosed by a physiotherapist and a
neurologist based on the admission criteria.

Ischemic stroke was confirmed clinically and by neuroimaging. Patients had no history
of chronic neurological or cardiac disease and were not taking any medication that could
alter their cognitive state. The severity of wrist flexor Spasticity was 1 or higher on the
Modified Modified Ashworth Scale (MMAS). They were able to communicate verbally with
the therapist. They did not have severe cognitive and memory impairment according to
the Persian version of the Mini-Mental State Examination (MMSE) (MMAS ≥ 23). Figure 1
shows the study procedure.

Patients were assured that they could withdraw from the study at any time. All
patients gave written informed consent to participate in the study. The study was ap-
proved by the Ethics Committee of the University of Social Welfare and Rehabilitation
(IR: USWR.REC.1400.185).
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Randomization 
The assessor and the participants were kept blinded to the group allocation. Ran-

domization was carried out using the Randomization.com website (accessed on 20, March, 
2023). The patients were randomized into two groups: Experimental 1 and Experimental 
2, using a computer-generated randomization block. (1) Experimental 1 received five con-
secutive sessions of a-tDCS M1-DLPFC M1 (active)-DLPFC (active). (2) Experimental 2 re-
ceived five consecutive sessions of a-tDCS M1-DLPFC M1 (active)-DLPFC (sham). All pa-
tients were assessed by MRS before and 24 h after five consecutive sessions of tDCS inter-
vention. All patients completed the intervention period and there were no dropouts. Fig-
ure 1 demonstrates the CONSORT flow diagram depicting the phases of enrollment, in-
tervention allocation, follow-up, and data analysis in this two-group parallel randomized 
trial (Figure 1). 

2.2. H-MRS Protocol 
MRS data were acquired using a Siemens 1.5 T scanner (Erlangen, Germany) with an 
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× 1 × 1 mm3) was acquired for all patients before the MRS sequence as a reference image 
for volume of interest (VOI) positioning. For single-voxel spectroscopy (SVS), MRS was 
acquired using a point-resolved spectroscopy (PRESS) sequence. Two 2 × 2 × 2 cm3 voxels 

Figure 1. Consort diagram of patients.

Randomization

The assessor and the participants were kept blinded to the group allocation. Ran-
domization was carried out using the Randomization.com website (accessed on 20 March
2023). The patients were randomized into two groups: Experimental 1 and Experimen-
tal 2, using a computer-generated randomization block. (1) Experimental 1 received five
consecutive sessions of a-tDCS M1-DLPFC M1 (active)-DLPFC (active). (2) Experimental 2
received five consecutive sessions of a-tDCS M1-DLPFC M1 (active)-DLPFC (sham). All
patients were assessed by MRS before and 24 h after five consecutive sessions of tDCS
intervention. All patients completed the intervention period and there were no dropouts.
Figure 1 demonstrates the CONSORT flow diagram depicting the phases of enrollment,
intervention allocation, follow-up, and data analysis in this two-group parallel randomized
trial (Figure 1).

2.2. H-MRS Protocol

MRS data were acquired using a Siemens 1.5 T scanner (Erlangen, Germany) with
an eight-channel receive-only head coil. A conventional 3-dimensional brain image
(sagittal T1 MPRAGE, TR/TE = 1800/3.5, field of view (FOV) = 256 × 256 × 160 mm3,
resolution = 1 × 1 × 1 mm3) was acquired for all patients before the MRS sequence
as a reference image for volume of interest (VOI) positioning. For single-voxel spec-
troscopy (SVS), MRS was acquired using a point-resolved spectroscopy (PRESS) sequence.
Two 2 × 2 × 2 cm3 voxels were located in the primary motor cortex (M1), dorsolateral
prefrontal cortex (DLPFC). Voxels were carefully placed to avoid contact with subcutaneous
fat, skull, vasculature, arachnoid space, and cerebrospinal fluid. Manual shimming was
performed on all acquisitions. Parameters were set to TR/TE = 1500/135 and NEX = 128.
Six saturation bands were placed around the VOI to suppress external volume signals. The
average duration of each H-MRS acquisition was 10 ± 2 min (5 min for each region) with
no complications.

Randomization.com
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MRS Data Processing

Data were pre-processed by applying a water removal algorithm to the reference offset
of 4.65 ppm to remove residual water signals. SVS raw data were fitted using TARQUIN
(Gerg Reynolds and Martin Wilson, version 4.3.10). The predefined data set of NAA, Cho,
and Cr target metabolites was selected for peak fitting and metabolite concentration. The
metabolite ratios of NAA/Cr and Cho/Cr were calculated by dividing the metabolite
values in the same spectrum for the M1 region.

2.3. Transcranial Direct Current Stimulation

Two single-channel tDCS devices delivered direct current stimulation through two
saline-soaked electrodes. Electrode placement was determined using the international
10–20 system of electroencephalography. In both groups, the active electrodes were placed
on M1 (C3/C4) and DLPFC (F3/F4) according to the involved hemisphere, and the reference
electrodes were placed on the supraorbital area of the uninvolved side (Figure 2) [10].
According to the previous research [18], a constant current of 1 mA was applied for 20 min.
In the sham group “experimental 2”, the stimulation was switched off after 30 s only in the
DLPFC region. The standard 5 × 7 cm2 electrode was used as the reference electrode. To
localize the excitability of the motor cortex and increase the excitability of the corticospinal
tract, an active electrode of 4 × 4 cm2 was applied to the M1 and DLPFC regions [10,19].
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Figure 2. This figure is adapted from (The effects of anodal-tDCS on corticospinal excitability
enhancement and its after-effects: Conventional vs. uni-hemispheric concurrent dual-site stimulation,
Vaseghi et al., 2015 [10]).

Ref. [20] Schematic illustration of electrode montage in experimental 1: UHCDS a-
tDCSM1-DLPFC and experimental 2: UHCDS a-tDCSM1-DLPFC (M1active-DLPFC sham); The
reference electrodes were placed over the contralateral supraorbital area in two conditions.
In both groups, the active electrodes were positioned over M1 and dorsolateral prefrontal
cortex (DLPFC).

2.4. Measurement of Metabolites

MRS is an objective, non-invasive technique to detect and quantify changes in certain
biochemical compounds such as NAA, Cr, and Cho in brain tissue. MRS data were collected
from M1 for all patients.

2.5. Experimental Procedures

The study procedures consisted of three steps: baseline assessment, intervention
period, and post-intervention period. In the first step, MRS data were collected from
patients in both groups at baseline. In the next step, all patients received five sessions of
tDCS according to the group allocation.
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The stimulation dose was selected based on a previously published study. In the [10,18]
post-intervention period, patients underwent MRS 24 h after the last tDCS session (Figure 3).
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2.6. Outcome Measures and Data Analysis

The primary outcome was the concentration of brain metabolites (NAA, Cr, Cho) and
the metabolite ratio (NAA/Cr, Cho/Cr) in M1 tested by H-MRS. Metabolite levels on local
brain H-MRS are often reported as ratios rather than absolute concentrations. The most
common denominator is the Cr level, which is thought to be stable under normal conditions
as well as under some pathological conditions [21]. Therefore, we examined NAA/Cr
and Cho/Cr.

Data analysis was performed using SPSS software version 26 (IBM SPSS Statistics
for Windows, version 26, IBM Corp, Armonk, NY, USA). Continuous variables were
summarized as mean ± standard deviation. The Shapiro-Wilk test was used to determine
the normal distribution of quantitative data. The test results indicated that the MRS data
were not normally distributed. Non-parametric Mann-Whitney U test and Wilcoxon signed
rank test were used to compare MRS data between/within groups.

Group differences were examined by ANCOVA controlling for baseline metabo-
lite. p < 0.05 was considered statistically significant. The sample size was calculated
using G*Power software (version 3:1, Heinrich-Heine-University) based on the effect size
(d = 2.0) derived from the Rayen study (power of 0.90 and α = 0.05). We compensated for
20% of the dropouts.

3. Results

Eighteen stroke patients (10 female, 8 male) with a mean age of 60.94 ± 6.92 years
were enrolled. The mean time since stroke onset was 34.28 ± 8.91 weeks. Table 1 shows that
there were no statistical differences between the two study groups in terms of demographic
characteristics, comorbidities, and spasticity level. This study assessed the mean NAA,
Cr, Cho, NAA/Cr, and NAA/Cho between/within the two groups at baseline and after
intervention in M1.
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Table 1. Summary of the Clinical Data.

Study Group

Experimental 1
(n = 9)

Experimental 2
(n = 9)

Total
(n = 18) p-Value

N(%) N(%) N(%)

Gender
Female 3(33.3) 7(77.8) 10(55.6)

0.15 *
Male 6(66.7) 2(22.2) 8(44.4)

Age Mean(SD) 61.8(6.25) 60.0(7.79) 60.9(6.92) 0.57 †

Weeks since stroke Mean(SD) 32.4(4.88) 36.1(11.72) 34.2(8.91) 0.39 †

MMSE Med (range) 30(29,30) 30(29,30) 30(29,30) 0.99 ‡

MMAS Med (range) 2(1,4) 1(1,2) 2(1,4) 0.06 ‡

Comorbidity diseases

Hypertension Yes 4(44.4) 3(33.3) 7(38.9) 0.99 *

Diabetes mellitus Yes 2(22.2) 4(44.4) 6(33.3) 0.62 *

Dyslipidemia Yes 3(33.3) 2(22.2) 5(27.8) 0.99 *

* Fisher’s Exact Test; † Independent T-Test; ‡ Mann-Whitney U.

3.1. Between-Group Comparison

The results showed significantly higher NAA and Cho concentrations in M1 after the
intervention (p = 0.040, p = 0.050 respectively), with large effect sizes for NAA and Cho,
1.41 and 0.93 respectively. Metabolite ratio results showed a non-significant difference in
NAA/Cr and Cho/Cr after intervention (p = 0.113, p = 0.387).

3.2. Comparison within Groups

The result showed significant changes in NAA, Cr, and Cho in group Experimental 2
(p = 0.008), and the concentration of metabolites was increased. In group Experimental 1
there were significant differences in Cr. Cr concentration was decreased (Table 2). For
changes in metabolite ratios, there was a significant difference in NAA/Cr in both groups.
However, changes in Cho/Cr (p = 0.004) were only observed in group Experimental 2
(Figure 4).

Table 2. Differences between baseline and post-intervention of brain metabolites in the M1 between
two groups.

Brain Metabolites Time Mean(SD) p-Value

Experimental 1 Experimental 2 p-value † p-value *

NAA

Baseline 158.4(59.6) 194.1(12.4) 0.43
0.04

Post-intervention 190.9(35.3) 229.2(14.5) 0.04

p-Value 0.08 0.008

Cr

Baseline 166.73(25.21) 135.23(14.60) 0.004
0.04

Post-intervention 146.95(12.15) 152.58(15.15) 0.43

p-Value 0.02 0.008

Cho

Baseline 142.98(23.58) 126.09(23.98) 0.22
0.008

Post-intervention 137.62(20.07) 159.39(26.27) 0.05

p-Value 0.59 0.008

* ANCOVA; † Mann-Whitney U.
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4. Discussion

To our knowledge, this is the first study investigating changes in brain metabolites
after uni-hemispheric concurrent dual-site a-tDCS in chronic stroke patients.

The main findings of the results were significantly higher NAA, Cr, and Cho con-
centration in the M1, in the group single-site a-tDCSM1 compared to a-tDCSM1-DLPFC, as
measured by 1.5 T MR spectroscopy.

Previous literature has investigated bi-hemispheric single-site tDCS in healthy sub-
jects [16,21,22] and children with spastic cerebral palsy (CP) [23,24]. Studies have shown
that a-tDCS increases the levels of NAA and Cho [16,24]. Our study was also consistent
with the previous study, and the group Experimental 2 that received the single-site stimula-
tion had a significant increase in metabolites after the intervention. Hone-Blanchet et al. [16]
showed that the online effect of a single session of a-tDCS on the DLPFC increased the
amount of NAA. Auvichayapat et al. [24] reported an increase in Cr, Cho, and NAA after
tDCS in the basal ganglia of CP patients. N-acetyl aspartate is usually considered a neuronal
marker because it is only found in mature neurons.

Researchers have found an association between low levels of brain NAA concentration
and poor motor function in patients after stroke, and increased levels of NAA were also
predictive of recovery [25]. Glodzik-Sobanska et al. showed that an increase in NAA in
stroke patients was associated with neurological improvement [24]. Perhaps an increase
in NAA after a-tDCS is due to an increase in neuronal excitability leading to long-term
potentiation, such as plasticity. However, the study of metabolites in dual-site stimulation
has not been investigated. Previous fMRI studies have shown that dual-site stimulation
increases corticospinal excitability up to twofold [26,27].

Our results also showed an increase in Cho concentration in both groups, particularly
significant in Experimental group 2. This finding is consistent with Auvichayapat et al. [24]
Cho is a membrane marker and its metabolites play an important role in a variety of
mechanisms, such as maintaining the structural integrity of the cell membrane, methyl
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metabolism, and transmembrane signaling. In this case, choline repletion may affect
neuronal connections and facilitate neuroplasticity in the adult CNS.

The lesser increase of NAA and Cho in the group receiving dual-site a-tDCS of both
the DLPFC and M1 region could be explained by the concept of homeostasis—that is, the
ability of the human brain to regulate changes in synaptic plasticity to avoid drastic changes
in its function. Homeostasis maintains stable function against changes in the activity of
the number and strength of synapses. Homeostatic plasticity is increasingly recognized as
a regulator of neural change within physiological limits [24]. In this context, researchers
emphasize homeostatic plasticity as a tool to prevent the instability of the neural network
that occurs in neurorehabilitation. Thus, dual-site stimulation could not induce further
changes by overshooting the physiological range.

5. Limitations

The limitations of this study should also be noted. Firstly, changes in brain metabolites
were measured only 24 h after the last stimulation session, and at longer follow-up times or
immediately after the intervention. Therefore, we were not able to investigate immediate
and long-term effects. Secondly, a single voxel MRS was used with a 1.5 T MRI, which may
have limited the collection of data from multiple brain regions simultaneously. It could be
suggested that further studies use a multi-voxel 3 or 7 T MRI system to measure stimulation
effects in multiple brain regions, and to investigate other metabolites. Thirdly, the tDCS
intervention consisted of five consecutive days of 20 min tDCS applications, may not be
sufficient to alter brain metabolites. Finally, chronic stroke patients were included in the
current study, so it is suggested that future studies investigate the changes in metabolites
in subacute patients and examine the levels of metabolites in both hemispheres.

6. Conclusions

This study aimed to investigate the effect of adding transcranial direct stimulation
of the DLPFC to M1 stimulation on changes in brain metabolites in the M1 region. The
results showed that there are no significant changes in the amount of brain metabolites
after UHCDS a-tDCSM1-DLPFC compared to a-tDCS M1.
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