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Abstract: The impact of different meditation protocols on human health is explored at the cognitive
and cellular levels. Preksha Dhyana meditation has been observed to seemingly affect the cognitive
performance, transcriptome, and methylome of healthy and novice participant practitioners. In
this study, we performed correlation analyses to investigate the presence of any relationships in the
changes in cognitive performance and DNA methylation in a group of college students practicing
Preksha Dhyāna (N = 34). Nine factors of cognitive performance were assessed at baseline and
8 weeks postintervention timepoints in the participants. Statistically significant improvements
were observed in six of the nine assessments, which were predominantly relating to memory and
affect. Using Illumina 850 K microarray technology, 470 differentially methylated sites (DMS) were
identified between the two timepoints (baseline and 8 weeks), using a threshold of p-value < 0.05
and methylation levels beyond −3% to 3% at every site. Correlation analysis between the changes
in performance on each of the nine assessments and every DMS unveiled statistically significant
positive and negative relationships at several of these sites. The identified DMS were in proximity
of essential genes involved in signaling and other important metabolic processes. Interestingly, we
identified a set of sites that can be considered as biomarkers for Preksha meditation improvements at
the genome level.
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1. Introduction

Meditation and yoga practices have evidenced their efficacy in improving the life
quality for meditation participants. Such practices are known to reduce anxiety, stress, and
depression, and they have proved to be valid clinical intervention tools for the treatment of
depression, ADHD, pain management, drug abuse, and addiction [1–6]. Preksha Dhyāna
meditation (PM) demonstrated performance-enhancing effects on the psycho-emotional
assessments and beneficial changes in the gene profiling and DNA methylation of novice
college students [7–9]. In addition, PM proved its efficacy in reducing the clinical symptoms
such as abdominal pain, stress, and vomiting when tested in a cohort of children with
functional abdominal pain disorders (FAPDs) [10]. Furthermore, PM was found to affect
several pathways when analyzed at the transcriptome and methylome levels [8,9]. At
the cellular level, yoga sessions were found to affect global gene expression in peripheral
blood mononuclear cells (PBMCs) [11]. Relaxation was also found to induce temporal
transcriptome alterations in inflammatory pathways and energy metabolism [12]. Recently,
a link between meditation and the immune system, human microbiota, and epigenetics
was proposed [13].

Although practices and protocols may vary, the positive effects of meditation on hu-
man health are generally attributed to the reduction in stress through self-recognition, purifi-
cation of emotions, and self-regulation in general [6]. Various researchers have begun investi-
gating the physiological changes associated with the practice of meditation, but the mechanis-
tic pathways responsible for the changes in higher-order functioning (e.g., cognitive processes,
affect, behavior, and other states) remain largely unknown [3,14–16]. For meditation and yoga
practices to transcend the current role of being an auxiliary tool in the treatment of clinical
conditions to becoming, itself, actualized as a validated clinical intervention, elucidation
of the genetic and cellular changes responsible for those improvements in higher-order
functioning must be achieved. Studies correlating the two levels are lacking. These sorts of
studies are always hampered by experimental design, sample size, and/or the expense,
but preliminary research must start somewhere. In this report, we assess the correlation
between improvements in cognitive skill performance and changes in methylation at the
genome level in 34 healthy and novice college students participating in an 8-week course
of meditation practice.

2. Materials and Methods
2.1. Participants and Study Design

The study was approved by the Florida International University (FIU) ethics and
IRB committees. The study was registered in the U.S. National Library of Medicine
(Clinicaltrials.gov). The study ID was NCT03779269. Of the 142 healthy and novice
college students enrolled in the study, 34 participants subjected to a combined sound and
color meditation condition were included in our analyses. All participants provided formal,
written consent to be enrolled in the study and were given ID numbers in accordance
with IRB standards. Participants attended three guided PM sessions each week for a total
of eight weeks. The meditation protocols, participant assignments, and data collection
procedures were described in detail in our previous publications [7–9].

2.2. Participants and PM Meditation Protocol

The 34 participants included 6 males and 28 females, and their ages ranged from 18 to
24 years old. The total duration of the meditation and yoga session was 60 min divided
into several sessions of 11 min each. A basic universal sound of bee-like buzzing (achieved
using several deep breaths and exhaling with closed lips for several seconds at a time while
focusing on the vibrations in the head) is repeated to achieve intense concentration. Addi-
tionally, focused meditation on a green-colored object like a tree is carried out. Participants
concentrated on the visualized green image just in front of the forehead and are guided
through imagery emanating from the tree. Between focused meditation periods, a version
of alternate nostril breathing, anulom vilom, and varying combinations of the following
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yoga poses are used: Vajrasana, Shashankasana, Ushtrasana, Marjariasana, Padhastasana,
Dhanurasana, Trikonasana in two variations, Pawanmuktasana, and Paschimottanasana.

2.3. Test Assessments and Data Management

A battery of assessments was administered, and survey data were obtained to evaluate
the cognitive performance (namely, memory and attentional capacities) and affective state
of participants in this study. The Automated Working Memory Assessment—Short Form
(AWMA-S) was used to assess six facets of short-term and working memory including
the following: digit recall and digit recall processing; language recall and language recall
processing; and spatial recall and spatial recall processing. The AWMA-S is a construct
that involves tasks of recalling increasing complex stimuli (e.g., numeric, auditory, and
geometric) and has been validated in up to 22 years of age [17]. The Conners Continuous
Performance Test Third Edition™ (Conners CPT 3™) was used to obtain measures of
inattentiveness, impulsivity, and sustained attention. The test is a series of letters flashing
on the screen with a variable time frame between letters but averaging 250 milliseconds. The
respondents are asked to press the spacebar after each letter but omitting this for all X letters
that show (presented 36 times among the 324 letters presented). Respondent error and
reaction time are analyzed to determine the attention-related capacity scores. The Conner’s
CPT has been used to assess the impact of mindfulness in young adults with ADHD [18].
Measure of participants’ affective state was finally obtained using the Positive and Negative
Affect Score (PANAS). This short questionnaire consists of two 10-item self-report mood
scales measuring the distinct dimensions of positive and negative affect [19]. The Positive
Affect scale reflects the extent to which a person feels enthusiastic, active, and alert; the
Negative Affect scale reflects the experience of unpleasant mood states, such as nervousness,
distress, and irritability. The two scales have been shown to be highly internally consistent,
uncorrelated, and stable over time. Mahaprana Dhvani is a humming or buzzing sound
produced in the practice of PM. Participant adherence to the meditation practice was
assessed by measuring the duration of cued Mahaprana Dhvani (referred to as “Buzz” in
our analyses) at different points throughout the meditation sessions.

2.4. Blood Withdrawal, DNA Extraction, and Microarrays Analysis

Blood collection, DNA extraction, and DNA quality control were performed as rec-
ommended. DNA methylation analysis was performed according to Illumina Infinium
HumanMethylation850 BeadChip EPIC array technology, as previously described [9]. In
addition, blood cell heterogeneity analysis, bioinformatic pipeline, and statistical analysis
were performed as described by Pragya et al. [9]. Briefly, blood samples were drawn into
purple-top EDTA tubes at baseline and by the end of the 8 weeks of meditation sessions.
A total of 34 pairs of samples were included, and the blood specimens were shipped to
the Biorepository at the John P. Hussman Institute for Human Genomics at the University
of Miami Miller School of Medicine. DNA extraction was performed according to the
manufacturer’s recommendations on the Autogen FlexStar instrument (Holliston, MA,
USA) (Catalog # AGKT-WB-640). After extraction, DNA quality control (QC) was per-
formed using gel electrophoresis on a 0.8% agarose gel, and the DNA concentration was
assessed using the Qubit dsDNA broad-range (BR) assay (ThermoFisher Scientific, San
Diego, CA, USA).

2.5. Genome-Wide DNA Methylation and Quality Control and Downstream Analysis

Methylation arrays were conducted at the John P. Hussman Institute for Human
Genomics Center for Genome Technology using validated protocols and fully automated
liquid handling instrumentation (PerkinElmer, Shelton, CT, USA). DNA concentrations
were normalized for the Illumina Infinium HumanMethylation850 BeadChip EPIC array.
The samples were bisulfite converted according to Illumina specifications. The DNA input
for bisulfite conversion was 500 ng. DNA samples were randomized across all arrays
and scanned on an Illumina iScan (Illumina, San Diego, CA, USA). Raw.idat files were
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loaded into Illumina’s Genome Studio V1.0.0 software (Illumina, San Diego, CA, USA)
for initial quality control and also were processed in R software (v4.1.1) with the minfi
package for quality control [20]. All samples passed quality control criteria of (1) log
median intensity in both the methylated and unmethylated channels over 10.5; (2) mean
detection p-value across all probes less than 0.01. Individual probes were removed if the
detection p-value was over 0.01 in any sample, if they were located on the sex chromosomes,
if they contained a single nucleotide polymorphism with minor allele frequency ≥0.01
in the last five base pairs of the probe, or if they mapped to multiple positions in the
genome [21]. To take into account the heterogeneity of cell type proportions across the
samples, the proportion of 6 cell types (CD8 T cells, CD4 T cells, Natural Killer cells, B cells,
monocytes, and Neutrophils) was estimated using the estimateCellCounts2 function in
FlowSorted.Blood.EPIC R package [22,23]. The probes used in the estimation were removed
from the subsequent analysis. Following quality control, data normalization was carried
out in two steps. First, quantile normalization was applied using the lumiN function in the
Lumi R package [24]. Second, beta-Mixture Quantile (BMIQ) normalization was applied
to correct for the bias of type-2 probe values [25]. To remove potential batch effects, the
ComBat method from the sva R package was applied [26,27]. Differential methylation
analysis was performed broadly according to a recently published protocol for the analysis
of methylation data primarily using the limma software package (Bioconductor version
3.17) with methylation M-value, log2 ratio of the intensities of methylated probe versus
unmethylated probe, as the outcome. For each probe, a linear model was fitted (M-value ~
pre_treat + post_treat + CD8T + NK + Bcell + Mono + Neu), and empirical Bayes moderated
t-statistics and p-values were generated [28,29]. To account for the samples from the sample
subject, intra-subject correlations were estimated using a duplicate Correlation function
in limma by including the subject ID as a blocking variable [30]. Probes with a nominal
p-value below 0.05 and at least a 3% difference in methylation level were considered to be
differentially methylated.

2.6. Correlation Study

The data analysis was carried out in the Julia computational Language framework
(https://julialang.org, accessed on 5 June 2023). The modules employed are listed in the
Supplementary Materials (Table S1), which contain all the functions discussed hereafter. To
acquire insight on the potential relationships between the 470 methylated sites identified
as differentially significant out of the ~850k total sampled sites (DMS) and the cognitive
skill metrics, two separate correlation analyses were conducted. (1) The correlation be-
tween methylation changes in each of the 470 methylated sites and assessed cognitive
skill, and (2) the correlations in methylation changes occurring among all 470 DMS. A
Pearson correlation coefficient rx,y was used as a measure of linear correlation (or linear
dependency) between dataset pairs (Equation (1)). The coefficient value may vary between
−1 < rx,y < 1. A value of rx,y = −1 indicates a perfect negative correlation (for an increas-
ing x, y decreases); conversely, a value of rx,y = 1 indicates a positive correlation (for an
increasing x, y increases). However, if rx,y = 0, the two data are said to be uncorrelated.
Values in the range [−1;1] indicate the degree of correlation.

rx,y =
cov(x, y)

σxσy
=

∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(1)

To display the correlation calculation for the two analyses, a set of heatmaps will
provide a qualitative visual tool to elucidate outcomes.

2.7. Further Statistical Analysis

Once the correlation matrices are generated, it is possible to further filter the dataset by
finding and differentiating sites that display good and poor correlation and sites that appear
to be recurrently positively or negatively correlated across tests. To this end, the datasets are

https://julialang.org
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first tested for normality, and then, a Student’s t-distribution test is carried out to determine
if the correlation coefficient for each pair is significantly removed from an uncorrelated
outcome. Normality was assessed using a Shapiro–Wilk test, which determines how
closely a dataset approximates a normal distribution. The null hypothesis (Ho) implies
the sampled dataset is normally distributed p > 0.05 (i.e., no significant difference from a
standard normal distribution). If p < 0.05, the null hypothesis is rejected, and the data are
not normally distributed. For a sample size below 5000, the Shapiro–Wilk test’s p-value
can accurately be estimated, and the outcome can be safely interpreted. The Student’s
t-distribution test with n-2 degrees of freedom verifies whether the computed correlation
coefficients are significant; in other words, with this test, we determine if each correlation
coefficient obtained from paring samples is significantly removed from a hypothetical
coefficient of 0 where no correlation is found (i.e., ro = 0).

t =
r
σr

=
rxy − ro√

1−rxy2

n−2

(2a)

{
Ho : rxy = ro, null hypothesis accepted
H1 : rxy 6= ro, null hypothesis rejected

(2b)

n represents the number of participants (in this case, n = 34). Cognitive skill assess-
ments were analyzed as baseline and 8 weeks postintervention comparison, using Graph-
Pad prism version 8 (GraphPad software, Boston, MA, USA); a p value < 0.05 was
considered significant.

3. Results
3.1. Cognitive Skills Assessments of the Different Meditation Groups

Following a set of paired t-tests with Bonferroni correction, the comparison between
baseline and 8 weeks postintervention revealed statistically significant differences in four of
the performance assessments. Interestingly, though, improvements were observed on
nine measures. Briefly, the buzzing average, buzzing maximum, spatial recall, spatial
recall processing, and positivity did not show significant changes in the 34 participants
(p > 0.01). Improvements were significant at the level of digital recall, listening recall,
listening recall processing, and negativity (p < 0.01; see Figure 1). Individual scores for all
the participants are included in the Supplementary Materials (Table S2). Again, DMS were
identified by selecting sites that showed a significant methylation differential of greater
than 3% (p < 0.05). This selection yielded a total of 470 DMS meeting these criteria after
Bonferroni correction (reported in the Supplementary Table S3). The total 470 DMS and
their genomic localizations, chromosome assignment, and potential functions can be found
in the Supplementary Materials (Table S3).

3.2. Correlation between the Cognitive Skills and the 470 Differentially Methylated Sites

To correlate the cognitive skills and the methylation differential across all participants
(n = 34), we (1) subtracted baseline scores from 8 weeks postintervention scores for every
participant and (2) subtracted baseline methylation levels from 8 weeks post-intervention
methylation levels for every participant (Equation (3)). Based on a significance level of
0.05 and sample size n = 34, a critical correlation value of ±0.34 was found (Equation (4)).
We identified the 10 most positively and 10 most negatively correlated DMS with every
cognitive skill. The data summarizing the correlation coefficient, p-value, DMS, genomic
position, and chromosome localization are illustrated in the Supplementary Materials
(Table S4). Table 1 depicts the most positively and negatively correlated DMS with every
cognitive skill. In addition, Figure 2 shows the correlation between DMS and the nine
cognitive skills.



Brain Sci. 2023, 13, 1214 6 of 18

Brain Sci. 2023, 13, x FOR PEER REVIEW 6 of 17 
 

 
Figure 1. Comparison of the nine cognitive skills in the 34 participants baseline and 8 weeks 
postintervention. p-value < 0.05 was considered significant. *, **, and *** depicts p-value < 0.05, p-
value < 0.001, and p-value < 0.0001, respectively.  

3.2. Correlation between the Cognitive Skills and the 470 Differentially Methylated Sites 
To correlate the cognitive skills and the methylation differential across all partici-

pants (n = 34), we (1) subtracted baseline scores from 8 weeks postintervention scores for 
every participant and (2) subtracted baseline methylation levels from 8 weeks post-inter-
vention methylation levels for every participant (Equation (3)). Based on a significance 
level of 0.05 and sample size n = 34, a critical correlation value of ±0.34 was found (Equa-
tion (4)). We identified the 10 most positively and 10 most negatively correlated DMS with 
every cognitive skill. The data summarizing the correlation coefficient, 𝑝-value, DMS, ge-
nomic position, and chromosome localization are illustrated in the Supplementary Mate-
rials (Table S4). Table 1 depicts the most positively and negatively correlated DMS with 
every cognitive skill. In addition, Figure 2 shows the correlation between DMS and the 
nine cognitive skills.  

Figure 1. Comparison of the nine cognitive skills in the 34 participants baseline and 8 weeks
postintervention. p-value < 0.05 was considered significant. *, **, and *** depicts p-value < 0.05,
p-value < 0.001, and p-value < 0.0001, respectively.



Brain Sci. 2023, 13, 1214 7 of 18

Table 1. Summary of correlation calculations between methylation sites and cognitive skill test re-
porting Pearson’s correlation r, its p-value relative to a hypothetical ro = 0, gene name, chromosomal
localization, and positioning.

Buzz
Average Buzz Max Digit

Recall
Listening

Recall
Listening

Recall
Processing

Negative Positive Spatial
Recall

Spatial
Recall

Processing

m
ax

po
si

ti
ve

r 0.55 0.52 0.49 0.57 0.45 0.62 0.40 0.52 0.42

p-value 7.07 × 10−4 1.79 × 10−3 3.37 × 10−3 4.81 × 10−4 7.55 × 10−3 9.41 × 10−5 1.87 × 10−2 1.61 × 10−3 1.42 × 10−2

site cg01704474 cg01704474 cg19060557 cg23140777 cg12128316 cg17095850 cg06148656 cg05990364 cg03333699

Chromosome chr11 chr11 chr3 chr9 chr5 chr11 chr5 chr5 chr7

Position 504918 504918 179399839 125457429 157137992 35311522 147808721 173493084 966569

m
ax

ne
ga

ti
ve

r −0.47 −0.42 −0.52 −0.47 −0.36 −0.56 −0.53 −0.50 −0.46

p-value 5.26 × 10−3 1.33 × 10−2 1.77 × 10−3 5.44 × 10−3 3.60 × 10−2 5.78 × 10−4 1.41 × 10−3 2.46 × 10−3 5.81 × 10−3

site cg03261565 cg03261565 cg13049398 cg06938601 cg23561053 cg23768860 cg13566979 cg22717379 cg00730266

Chromosome chr10 chr10 chr18 chr10 chr1 chr7 chr3 chr4 chr7

Position 29312799 29312799 74157682 132942686 84465000 47472944 17712381 147939863 94537716
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The initial raw datasets for the overall methylation sites (~850k), reduced set of
differentially methylated sites (470), and cognitive skill test outcomes for 34 participants
were first imported, processed, and reorganized, to then evaluate the baseline data xb and
8-weeks postintervention data xi differences (Equation (3)).

∆ = xi − xb (3)

rc =

√√√√ t2
c

n−2
t2
c

n−2 + 1
(4)

Once the statistically significant relative difference ∆ for both site methylation and
cognitive skill score were computed and compiled into matrices, the two correlation
analyses were carried out. This table only reports a small portion (~3.8%) of the available
observations given the rather large number of sites considered (470). Extended tabulation
for the 20 highest DMS-to-cognitive skill correlations is provided in the Supplementary
Materials. The data displayed in Table 1 show a significant degree of correlation between
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site methylation and every cognitive skill. It can be seen that positive correlation reached as
high as 0.62 (for cg17095850 on chr11 position 35311522), while inverse correlation reached
−0.56 (for cg23768860 on chr7 position 47472944). Both significant outcomes occurred
for the Negative Affect assessment factor. Mean positive correlation across all tests listed
in the table is of 0.50, while the average negative correlation is of −0.48, which is well
above the critical correlation coefficient. These findings suggest that maintaining a regular
meditation practice is associated with measurable alterations in methylome and cognitive
health. These results require confirmation at a larger sample size and different clinical trials
before reaching a final conclusion about efficacy and feasibility.

Based on the extended tabulation for the 20 highest site–cognitive skill correlation,
it is possible to further filter the dataset considering the frequency of each gene across
all cognitive skill tests. Table 2 provides a condensed summary of the site frequency for
a minimum count of 3; an extended version of this table for a minimum count of 2 is
provided in the Supplementary Materials (Table S5). Among the six sites (~1% of the
470 original sites) with the highest frequency detected, only one site has a frequency of 4
(~44%), whereas the other five sites have a frequency of 3 (~33%). If the exclusion criterium
is reduced to a minimum of two occurrences (~22%) across all cognitive skill tests, an
additional 28 sites are identified for a total of 34 (~7% of the 470 original sites).

Table 2. Condensed site frequency/count for top 20 site-cognitive skill test correlation, assuming a
minimum occurrence of 3. An extended site frequency/count with a minimum occurrence of 2 is
provided in the Supplementary Materials.

CG Site Buzz
Average Buzz Max Digit

Recall
Listening

Recall
Listening

Recall
Processing

Negative Positive Spatial
Recall

Spatial
Recall

Processing
Total

Count

cg26094004 1 1 0 0 1 0 1 0 0 4

cg03362824 0 1 0 1 1 0 0 0 0 3

cg14862307 0 0 1 0 0 0 0 1 1 3

cg23632416 0 0 1 1 1 0 0 0 0 3

cg23191941 0 0 0 1 1 0 1 0 0 3

cg12128316 0 0 0 1 1 0 1 0 0 3

The provided p-value (Table 1) is calculated based on the assumption that the cor-
relation evaluations follow a normal distribution. The Shapiro–Wilk test reveals that the
correlation values for all 470 sites and each cognitive skill are normally distributed aside
from the “Digit Recall” test (p > 0.05). The “Digit Recall” test reports a p-value of 0.0003,
with a W = 0.9869 indicating that there is evidence that this particular cognitive skill corre-
lation value may not be normally distributed. Figure 1 is meant to support the calculation
reported in Table 3.

The histogram representation (with 100 bins) in Figure 2 shows a seemingly nor-
mal distribution of correlation coefficients for cognitive skills about near-zero means
(0.0320172, 0.0403665,−0.0297508, 0.026424, 0.0506869, 0.025163,−0.0186902,−0.000654581,
and −0.00665924). Figure 2 also exhibits a number of correlation values that are signif-
icantly removed from each skill’s mean, indicating that, as previously observed, there
can be a high degree of correlation between methylation sites and cognitive skill changes
following a meditative practice. These tail values would typically be labeled as outliers, but
in this analysis, the interpretation is different. A high correlation value (0.5 < r < 1 and
−1 < r < −0.5) identifies significant matching between methylome up/downregulation
and cognitive skill performance improvements; high correlation counts are observed in less
than 0.43% sites for each skill test (“Negative” and “Spatial Recall” tests). This, however,
does not mean that other sites do not correlate. In fact, Figure 3 helps highlight the relative
abundance of well-correlated sites in the form of a boxplot where the outliers and whisker
values (1st and 4th quartile) represent good correlation outcomes. If the criteria for good
correlation counts is extended (0.25 < r < 1 and −1 < r < 0.25), observations occur at
an appreciably higher frequency for each skill test of up to 17% of sites (“Digit Recall”
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test). The boxplot provides additional insight on the data distribution, where most methy-
lation sites are poorly correlated to any particular cognitive skill and each distribution is
approximately centered at r = 0 (no linear correlation detected).

Table 3. Shapiro–Wilk test outcome for each cognitive skill test reporting the W score, p-value, and
interpretation. The null-hypothesis of this test assumes the data to be normally distributed; if p > 0.05,
the null hypothesis is rejected.

Skill W p-Value Normal

Buzz Average 0.9972 0.6258 true

Buzz Max 0.9989 0.9930 true

Digit Recall 0.9869 0.0003 false

Listening Recall 0.9957 0.2282 true

Listening Recall
Processing 0.9952 0.1592 true

Negative 0.9958 0.2411 true

Positive 0.9977 0.7672 true

Spatial Recall 0.9983 0.9267 true

Spatial Recall
Processing 0.9944 0.0850 true
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Figure 3. Boxplot representation of correlation coefficient distribution for each cognitive skill test.

Given the large datasets for the computed correlation data, heatmaps were generated
as a visual tool to better grasp the correlation distributions for (1) site-to-cognitive skill and
(2) site-to-sites (Figure 4). Figure 4A supports the claim that there is a significant amount of
sites that are well correlated to each skill test (dark and light slivers), once again suggesting
that the proposed meditation regime is linked to positive outcomes for participants through
modifications in the regulatory methylome, ultimately influencing higher-order cognitive
functions like memory processes and emotional states. Similarly, Figure 4B displays



Brain Sci. 2023, 13, 1214 10 of 18

the site-to-site correlation coefficient heatmap highlighting a significant amount of high
positively and inversely correlated locations (light and dark spots, respectively). The plot
is symmetrical about the light-colored diagonal, which pairs each site to itself (representing
the correlation matrix). The correlation matrix represented in Figure 4B was also used to
evaluate the p-value about a hypothetical ro = 0, which revealed that the null-hypothesis
(site-to-site correlation being close to 0) can be rejected in ~37% of cases. This helps
support the data displayed in the figure, highlighting a significant amount of positively
and negatively correlated sites. Detailed information relative to the nature of site-to-site
correlation as well as a comprehensive mapping of correlation relationships may help
elucidate which pathways are being activated and how.
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To show in detail the previous observations relative to site-to-site and cognitive skill-
to-site, correlation plots can be generated for each of the nine columns of Table 1. Figure 5
shows a sample, detailed set of plots displaying (1) the high positive and inverse correlation
of two sites (cg01704474 and cg03261565) to the “Buzz Average” skill test exemplified by
the linear curve fits slop magnitudes and (2) the high inverse correlation between those
two sites. Similar figures have been generated for the following columns in Table 1 and
are reported in the Supplementary Materials (Figures S6–S13). The scatter plots in Figure 5
report the raw methylation regulation data for all 34 participants revealing in detail how
well-correlated test score and sites can be. In addition, the histograms show a reasonably
well-distributed set of measured observations for either test or site complemented by the
related heatmaps.
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Figure 5. Correlation plot for Table 1 first column entries displaying the correlation between
cg01704474 and the “Buzz Average” test, the correlation between cg03261565 and the “Buzz Average”
test, and the correlation between cg01704474 and cg03261565. The scatter plot color code reflects
the degree of correlation (blue = high positive correlation r > 0, orange = high negative correlation
r < 0, and yellow = no correlation r = 0). The histograms illustrate the distribution of each pair of
correlated variables (e.g., skill test; sites). The heatmaps reflect the data distribution of the scatter
plots (yellow = high density, black = low density).

4. Discussion

In this report, we revealed the correlation between the performance differentials in
cognitive skill assessments and changes at DMS in the human DNA methylome of healthy
participants. Although the buzzing average, buzzing max, and the spatial recall did not
show statistically significant differences between baseline and 8 weeks postintervention
(Figure 1), our data revealed that some DMS correlated with these three cognitive skills.
Buzzing average and buzzing max both correlated positively with cg01704474, which is
located at the 5′UTR (untranslated region) of RNH1 on chromosome 11. RNH1 is a gene
involved in hematopoietic-specific translation in human [31]. Conversely, cg03261565 was
found to be the most negatively correlated with both cognitive skills, and it was not adjacent
of any relevant gene. Additionally, digital recall was positively correlating with cg19060557,
which is located at 5′UTR of USP13 gene coding for Ubiquitin Specific Peptidase 13. The
USP13 gene is involved in multiple functions such as autophagy, mitochondrial energy
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metabolism, and DNA damage response [32–36]. On the other hand, our data revealed
that digital recall is negatively correlating with the level of methylation at cg13049398,
which is also found at the 5′UTR of a transcriptional factor ZNF156. This gene encodes a
transcriptional repressor involved in malignant transformation, especially breast cancer
and cellular proliferation through other cellular targets [37–40].

Listening recall was found to be positively correlating with cg23140777 of the unknown
gene target on the human genome, while the listening recall was negatively correlating
with cg06938061. This site was found to be in proximity to the TCERG1L gene, which codes
for a transcriptional elongation regulator that is a key regulator of human obesity [41].
Interestingly, this site was among the most hypomethylated in the study participants
(level of methylation was −10% at 8 weeks postintervention compared to baseline; see
Supplementary Materials). The listening recall processing was positively correlating with
cg12128316, while it was negatively correlating with cg23561053, which is located on
the promoter region of the TTLL7 gene. The TTLL7 gene codes for Tubulin Tyrosine
Ligase like 7, which is involved in MAP2-positive neurites [42,43]. TTL7 is involved in
tubulin glutamylation, which is known to be the most abundant tubulin post-translational
modification occurring in the adult human brain [44].

The decline in negative affect was positively correlating with cg17095850, which is
located in proximity of the SLC1A2 gene. This gene codes for a solute carrier transporter,
especially the excitatory amino acid transporter 2 (EAAT2) in the brain [45–51]. This
negative affect factor was found to be negatively correlating with cg23768860, which is
localized in proximity of the TNS3 gene (Tensin 3), which is involved in signal transduction
and cancer [52–54]. For the positive affect, our data revealed that this cognitive factor is
positively correlating with cg06148656, which is localized 1500 bp from the transcriptional
start site of the FBXO38 gene. This gene is mediating PD-1 ubiquitination and antitumor
regulation in humans [55–58]. The analysis of positive affect relationships in our cohort of
participants revealed that this cognitive factor is negatively correlating with cg13566979
present at the 5′UTR of the TBC1D5 gene. This gene codes for a GTPase-activating protein
(GAP), which is involved in cellular trafficking through the membrane [59–62]. Spatial recall
was found to positively correlate with cg05990364, which is adjacent to the HMP19 gene.
HMP19 codes for a pancreatic cancer suppressor, especially in ductal adenocarcinoma
(PADC) [63]. The spatial recall correlated negatively with cg22717379, which is found
on chromosome 4 and is not in proximity of any gene of interest. Finally, the spatial
recall processing was found to positively correlate with cg03333699, which is localized in
chromosome 7 and was in proximity to the ADAP1 gene. ADAP1 also encodes for a GTPase-
activating protein involved in cancer progression and brain memory function [64–68]. The
spatial recall processing was found to be negatively correlating with the methylation level
at cg00730266, which is at TSS1500 from the PPP1R9A gene at chromosome 7. This gene
encodes for Neurabin1, which is a key candidate in protein in synaptic formation and
function [69–73].

Our data revealed that several sites of hypo- and hypermethylated patterns were found
to be correlated with improvements in performance on cognitive skills assessments in our
participant cohort (healthy and novice college students). We presented the top 10 sites
that are either positively or negatively correlating with every cognitive skill improvement
(Supplementary Materials). In our analyses, changes in additional sites involved in brain
function, memory, synaptic trafficking, and other metabolic activities were identified,
which potentially emphasize the urgent need to design more robust studies involving
larger sample sizes of participants. Interestingly, some of the identified sites were found to
be correlating with more than one cognitive skill, implying that Preksha meditation (PM)
might have a signature of a cluster of genes that are common (Table 2). cg26094004 was
found to correlate with four cognitive skills, and it is localized at the 5′UTR of the PYY gene
on chromosome 17 and is involved in post-prandial appetite and glucose regulation [74,75].
cg03362824 was found to correlate with three cognitive skills and it was found to be at
TSS200 from SKAP2, which is a gene coding for Src Kinase Associated Phosphoprotein 2
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and is involved in inflammation suppression [76–78]. On the other hand, cg14862307 was
close to a gene coding for STK4 which is a Serine/Threonine which in combination with
STK3 (Serine/Threonine kinase 3) are key components in the Hippo Signaling pathway
that is involved in cell proliferation and death [79]. Finally, the other sites which correlated
with three cognitive skills were cg23632416, cg23191941, and cg12128316, and they were
found in Open Sea on the genome.

Our sample size was 34 participants, which is a limiting factor in this study, but the
exploration of similar studies with larger sample sizes will strengthen our understanding
about the molecular elements correlating with cognitive skills improvements. Ultimately,
we aim to use similar noninvasive and safe techniques to address diseases or syndromes
that can be the next phase of future interventions in the medical field. We understand
that our study is exploratory in nature, and the results are correlative. We believe that
additional trials with larger sample size are required to confirm the results before adopting
the meditation into routine practice in the clinical field.

5. Conclusions

In this study, we reported an association between the cognitive skills improvements
and changes at the methylation levels on the human genome. In-depth insights are re-
quired to associate other outcomes such as clinical improvements measurements with
similar changes at the genetic or epigenetic levels, especially using cost-effective, easy, and
noninvasive intervention tools such as meditation. These interventions and others should
be understood at the molecular levels before adopting them in the clinical field to treat
diseases such as ADHD, autism, and other psychiatric diseases.

Supplementary Materials: Supporting information for methylated site data, performance test scores,
extended correlation coefficient table and additional correlation figures can be downloaded at:
https://www.mdpi.com/article/10.3390/brainsci13081214/s1, Table S1: List of Julia packages used
for analysis; Table S2: Cognitive skill scores for 9 tests and 34 participants at baseline (1) and 8 weeks
post-intervention (2); Table S3: Overview of 470 DMS and their genomic localizations, chromosome
assignment, potential functions; Table S4: Extended summary of correlation calculations between
methylation sites and cognitive skill test reporting Pearson’s correlation coefficient, its p-value, gene
name, chromosomal localization, and positioning for the 10 most directly and 10 inversely correlated
data pairs; Table S5: Extended site frequency/count for top 20 site-cognitive skill test correlation
assuming a minimum occurrence of 2; Figure S6: Correlation plot for Table 1 second column entries
displaying the correlation between cg01704474 and the “Buzz Maximum” test, the correlation between
cg03261565 and the “Buzz Maximum” test, and the correlation between cg01704474 and cg03261565.
The scatter plot color code reflects the degree of correlation (blue = high positive correlation r > 0,
orange = high negative correlation r < 0, and yellow = no correlation r = 0). The histograms describe
the distribution of each correlated variable (skill test and sites). The heatmaps reflect the data
distribution of the scatter plots (yellow = high density, black = low density); Figure S7: Correlation
plot for Table 1 third column entries displaying the correlation between cg19060557 and the “Digital
Recall” test, the correlation between cg13049398 and the “Digital Recall” test, and the correlation
between cg19060557 and cg13049398. The scatter plot color code reflects the degree of correlation
(blue = high positive correlation r > 0, orange = high negative correlation r < 0, and yellow = no
correlation r = 0). The histograms describe the distribution of each correlated variable (skill test
and sites). The heatmaps reflect the data distribution of the scatter plots (yellow = high density,
black = low density); Figure S8: Correlation plot for Table 1 fourth column entries displaying the
correlation between cg23140777 and the “Listening Recall” test, the correlation between cg06938601
and the “Listening Recall” test, and the correlation between cg23140777 and cg06938601. The scatter
plot color code reflects the degree of correlation (blue = high positive correlation r > 0, orange = high
negative correlation r < 0, and yellow = no correlation r = 0). The histograms describe the distribution
of each correlated variable (skill test and sites). The heatmaps reflect the data distribution of the scatter
plots (yellow = high density, black = low density); Figure S9: Correlation plot for Table 1 fifth column
entries displaying the correlation between cg12128316 and the “Listening Recall Processing” test,
the correlation between cg23561053 and the “Listening Recall Processing” test, and the correlation
between cg12128316 and cg23561053. The scatter plot color code reflects the degree of correlation
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(blue = high positive correlation r > 0, orange = high negative correlation r < 0, and yellow = no
correlation r = 0). The histograms describe the distribution of each correlated variable (skill test
and sites). The heatmaps reflect the data distribution of the scatter plots (yellow = high density,
black = low density); Figure S10: Correlation plot for Table 1 sixth column entries displaying the
correlation between cg17095850 and the “Negative” test, the correlation between cg23768860 and
the “Negative” test, and the correlation between cg17095850 and cg23768860. The scatter plot color
code reflects the degree of correlation (blue = high positive correlation r > 0, orange = high negative
correlation r < 0, and yellow = no correlation r = 0). The histograms describe the distribution of
each correlated variable (skill test and sites). The heatmaps reflect the data distribution of the
scatter plots (yellow = high density, black = low density); Figure S11: Correlation plot for Table 1
seventh column entries displaying the correlation between cg06148656 and the “Positive” test, the
correlation between cg13566979 and the “Positive” test, and the correlation between cg06148656
and cg13566979. The scatter plot color code reflects the degree of correlation (blue = high positive
correlation r > 0, orange = high negative correlation r < 0, and yellow = no correlation r = 0). The
histograms describe the distribution of each correlated variable (skill test and sites). The heatmaps
reflect the data distribution of the scatter plots (yellow = high density, black = low density); Figure
S12: Correlation plot for Table 1 eight column entries displaying the correlation between cg05990364
and the “Spatial Recall” test, the correlation between cg22717379 and the “Spatial Recall” test, and
the correlation between cg05990364 and cg22717379. The scatter plot color code reflects the degree
of correlation (blue = high positive correlation r > 0, orange = high negative correlation r < 0, and
yellow = no correlation r = 0). The histograms describe the distribution of each correlated variable
(skill test and sites). The heatmaps reflect the data distribution of the scatter plots (yellow = high
density, black = low density); Figure S13: Correlation plot for Table 1 ninth column entries displaying
the correlation between cg03333699 and the “Spatial Recall Processing” test, the correlation between
cg00730266 and the “Spatial Recall Processing” test, and the correlation between cg03333699 and
cg00730266. The scatter plot color code reflects the degree of correlation (blue = high positive
correlation r > 0, orange = high negative correlation r < 0, and yellow = no correlation r = 0). The
histograms describe the distribution of each correlated variable (skill test and sites). The heatmaps
reflect the data distribution of the scatter plots (yellow = high density, black = low density).
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