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Abstract: Emotion recognition is crucial in understanding human affective states with various ap-
plications. Electroencephalography (EEG)—a non-invasive neuroimaging technique that captures
brain activity—has gained attention in emotion recognition. However, existing EEG-based emotion
recognition systems are limited to specific sensory modalities, hindering their applicability. Our study
innovates EEG emotion recognition, offering a comprehensive framework for overcoming sensory-
focused limits and cross-sensory challenges. We collected cross-sensory emotion EEG data using
multimodal emotion simulations (three sensory modalities: audio/visual/audio-visual with two
emotion states: pleasure or unpleasure). The proposed framework—filter bank adversarial domain
adaptation Riemann method (FBADR)—leverages filter bank techniques and Riemannian tangent
space methods for feature extraction from cross-sensory EEG data. Compared with Riemannian
methods, filter bank and adversarial domain adaptation could improve average accuracy by 13.68%
and 8.36%, respectively. Comparative analysis of classification results proved that the proposed
FBADR framework achieved a state-of-the-art cross-sensory emotion recognition performance and
reached an average accuracy of 89.01% ± 5.06%. Moreover, the robustness of the proposed methods
could ensure high cross-sensory recognition performance under a signal-to-noise ratio (SNR) ≥ 1 dB.
Overall, our study contributes to the EEG-based emotion recognition field by providing a comprehen-
sive framework that overcomes limitations of sensory-oriented approaches and successfully tackles
the difficulties of cross-sensory situations.

Keywords: EEG emotion recognition; cross-sensory emotion recognition; Riemannian feature extraction;
adversarial domain adaptation

1. Introduction

Emotion recognition is identifying and interpreting human emotions based on cues
such as facial expressions, vocal intonations, physiological signals, and behavioral pat-
terns [1]. It involves using algorithms and machine learning to analyze these cues and
classify them into different emotional states, such as happiness, sadness, anger, or fear.
Emotion recognition is applicable in various fields, including psychology, human–computer
interaction, and healthcare [2]. Electroencephalography (EEG) is a neuroimaging technique
that measures the electrical activity in the brain using electrodes placed on the scalp. It
records collective electrical signals generated by neuron firings in the brain. EEG provides
valuable insights into brain activity and is widely used in neuroscience research, clinical
diagnostics, and brain–computer interface (BCI) systems [3]. EEG signals can be analyzed
to detect patterns associated with specific mental states, cognitive processes, and emotional
responses. EEG, owing to its non-invasiveness and high sensitivity to various emotions, has
recently gained increasing attention as a physiological signal for emotion recognition [4].
The affective brain–computer interface (aBCI) combines the principles of EEG and emotion
recognition to create a direct communication pathway between the brain and an external
device or computer system. This allows individuals to control external devices or interact
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with computer systems using their emotional states as inputs. The aBCI systems use EEG
signals to detect and interpret emotional states, translated into commands or actions for
connected devices [5].

The current trend in EEG-based aBCI focuses on improving the accuracy and reli-
ability of emotion recognition using EEG signals [6]. The general concept of EEG-aBCI
comprises data acquisition, preprocessing, feature extraction, classification/regression,
model evaluation, and emotion recognition. The mean-focused parts are feature extraction
and classification/regression. Recently, various machine learning-inspired methods have
been applied in EEG emotion recognition. Liu et al. [7] proposed an EEG emotion recogni-
tion model that combines an attention mechanism and a pre-trained convolution capsule
network to effectively recognize emotions, enhancing emotion-related information in EEG
signals. Li et al. [8] presented the Frontal Lobe Double Dueling Deep Q Network (FLD3QN),
a model inspired by the Papez circuit theory and reinforcement learning neuroscience,
utilizing EEG signals from the frontal lobe to enhance emotion perception. Padhmashree
and Bhattacharyya [9] presented a novel four-stage method for human emotion recogni-
tion using multivariate EEG signals, achieving exceptional performance by incorporating
deep residual networks and time-frequency-based analysis. Wei et al. [10] proposed that
the Transformer Capsule Network (TC-Net) achieves state-of-the-art EEG-based emotion
recognition performance on DEAP and DREAMER datasets. This demonstrates its ef-
fectiveness in capturing global contextual information through an EEG Transformer and
Emotion Capsule modules. Cui et al. [11] integrated signal complexity, spatial brain struc-
ture, and temporal context through 4D feature tensors, Convolutional Neural Networks,
and Bidirectional Long-Short Term Memory, achieving high accuracy (94% for DEAP and
94.82% for SEED datasets) by deep decoding EEG signals and extracting key emotional
features. Algarni et al. [12] developed a deep learning-based approach for EEG-based
emotion recognition, contributing to improved accuracy in diagnosing psychological disor-
ders by achieving high accuracies (99.45% valence, 96.87% arousal, 99.68% liking) through
a multi-phase process involving data selection, feature extraction, selection, and classi-
fication using a stacked bi-directional Long Short-Term Memory (Bi-LSTM) Model. To
enhance human–computer interaction, Islam et al. [13] proposed PCC-CNN, which is a
deep machine-learning-based Convolutional Neural Network (CNN) model for emotion
recognition using EEG signals in which Pearson’s correlation coefficient-featured images are
employed for channel correlation analysis in sub-bands. Peng et al. [14] introduced a unified
framework, GFIL (graph-regularized least square regression with feature importance learn-
ing), for EEG-based emotion recognition and highlighted the significance of the Gamma
band and prefrontal/central region channels in emotion recognition. Huang et al. [15]
presented an EEG-based emotion detection system that utilized short EEG segments of 1
s, incorporating a novel feature extraction algorithm—asymmetric spatial filtering—into
a filter bank framework. Chen et al. [16] proposed an emotion recognition method using
EEG signals, which involved extracting the energy means of detail coefficients as feature
values and using a support vector machine (SVM) for classification. They demonstrated the
validity of the feature values and provided a theoretical basis for implementing effective
human–computer interaction. Wu et al. [17] highlighted the importance of Riemannian
feature extraction in EEG-based emotion recognition, demonstrating that the proposed in-
dependent component analysis with a Riemannian manifold and long short-term memory
networks (ICRM-LSTM) model outperformed existing methods by effectively addressing
the uncertain ordering in independent component analysis (ICA). Wang et al. [18] proposed
a domain-adaptation symmetric positive definite (SPD) matrix network (daSPDnet) that
effectively captured shared emotional representations among different individuals using
Riemannian feature extraction. Based on the aforementioned EEG emotion recognition
studies, the filter bank was highly robust, and Riemannian feature extraction is an emerging
field for effective feature extraction.

Recent research has revealed that multimodal stimulation with cross-sensory emotions is
crucial in human–computer interaction and affective computing (AC). Ranasinghe et al. [19]
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demonstrated that wearable accessories such as head-mounted displays (HMD), with wind
and thermal stimuli, significantly improve sensory and realism factors, enhancing the sense
of presence compared to traditional virtual reality (VR) experiences. Zhu et al. [20] explored
the emerging field of multimodal sentiment analysis, which integrates text, visual, and
audio information to infer sentiment polarity, aiming to provide researchers with insights
and inspiration for developing effective models in this field. Calvo and D’Mello [21]
provided an overview of recent progress in AC, focusing on affect detection. This highlights
the need for an integrated examination of emotional theories from multiple disciplines
to develop effective practical AC systems. Wang et al. [22] introduced the multimodal
emotion database (MED4), encompassing EEG, photoplethysmography, speech, and facial
images for emotion recognition research, demonstrated the superiority of EEG signals in
emotion recognition, and proposed fusion strategies that combine speech and EEG data to
significantly enhance accuracy and robustness.

Tsiourti et al. [23] examined how incongruity in emotional expressions displayed by
humanoid robots affects their recognition and response. Their research underscored the
negative impact of such incongruence on the robot’s appeal and credibility. A retrospective
examination of previous studies in this field is necessary to comprehend the role of cross-
sensory modalities in EEG-based emotion recognition. A critical limitation of applying
the EEG-based aBCI is that the required system training and test data are highly sensory-
dependent. Additionally, the current EEG-based aBCI system can only be based on one
type of sensation from emotion simulation. For example, if an EEG-based aBCI is trained
using EEG data from auditory stimuli, its operation is limited to auditory stimulation.

Similarly, its operation is limited to visual stimulation if it is trained using EEG data
from visual stimuli. If an EEG-based aBCI is trained using EEG data from audio-visual
stimuli (e.g., video stimuli), its operation requires audio-visual stimulation. In real-world
applications, emotional stimuli are inherently multimodal [24]. Video stimuli contain
auditory and visual modalities, resulting in a compound multimodal representation. When
exposed to a partial sensory component of a multimodal emotional stimulus, individu-
als naturally perceive the same emotional category [25]. For instance, when individuals
receive the audio, the visual, or both (audio-visual) components for the same video stim-
ulus, the emotional category should be the same and identifiable using the EEG-based
aBCI. Nevertheless, owing to sensory differences, the features extracted from EEG data
can vary for different sensory modalities, even if they originate from the same stimulus
source (e.g., the same video material). The key challenge in this study was effectively
extracting features and mitigating the differences between different sensory modalities
in EEG data. The cross-sensory EEG emotions were lacking in earlier research. However,
the cross-sensory theme was highly related to transfer learning in EEG-based emotion
recognition. This is valuable for tracing the previous comprehensive research on transfer
learning in EEG-based emotion recognition. Existing transfer learning research has mainly
focused on cross-subject, cross-session, and cross-dataset. Cimtay et al. [26] introduced
a novel multimodal emotion recognition system using facial expressions, galvanic skin
response (GSR), and electroencephalogram (EEG) data, achieving high accuracy rates and
surpassing reference studies in subject-independent recognition. Li et al. [27] presented the
self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition,
achieving state-of-the-art performance by dynamically constructing graph structures for
each signal. CLISA (Contrastive Learning method for Inter-Subject Alignment), a method
developed by Shen et al. [28], leverages contrastive learning to minimize inter-subject dif-
ferences and improve cross-subject EEG-based emotion recognition by extracting aligned
spatiotemporal representations from EEG time series. Domain adaptation with adversar-
ial adaptive processes has recently gained increasing attention, achieving state-of-the-art
performance. Wang et al. [29] proposed a multimodal domain adaptive variational au-
toencoder method by learning shared cross-domain latent representations and reducing
distribution differences, demonstrating superior performance in emotion recognition with
small labeled multimodal data. Guo et al. [30] proposed a multi-source domain adaptation
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with a spatiotemporal feature extractor for EEG emotion recognition, effectively reduc-
ing cross-subject and cross-session, demonstrating its powerful generalization capacity.
He et al. [31] proposed a method that combines temporal convolutional networks and
adversarial discriminative domain adaptation for EEG-based cross-subject emotion recogni-
tion, effectively addressing the domain-shift challenge. Sartipi and Cetin [32] proposed an
approach that combined transformers and adversarial discriminative domain adaptation
for cross-subject EEG-based emotion recognition, achieving improved classification results
for valence and arousal.

This study aimed to effectively extract features and mitigate the differences in EEG
data between sensory modalities using domain adaptation techniques. The previous
EEG-based aBCI and proposed cross-sensory EEG-based aBCI are illustrated in Figure 1.
Emotional EEG data can be used to train the aBCI system regardless of the sensory modality.
Establishing a robust emotion recognition framework is essential to address this issue.
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Hence, inspired by previous research on general emotion recognition, transfer learning-
based emotion recognition, and domain adversarial adaptation, we conducted experiments
to collect cross-sensory emotion EEG data with a video as the source stimulus. Audio-,
visual-, and audio-visual sensory-inspired EEG data were obtained from 20 participants.
Subsequently, filter bank adversarial domain adaptation Riemann methods (FBADR) have
been proposed for cross-sensory EEG emotion recognition. Specifically, the proposed meth-
ods use filter banks and Riemann methods for feature extraction. An adversarial domain
adaptation method inspired by conditional Wasserstein generative adversarial networks
was explored for domain adaptation. The classification was conducted using an ensemble of
SVMs with a meta-classifier. Experimental results from the proposed FBADR revealed its
state-of-the-art performance in cross-sensory emotion recognition with high robustness. This
study could also be recognized as pioneering research in cross-sensory emotion recognition
with a video stimulus as multimodal emotion stimulation using two categories of emotion:
pleasure and displeasure. The results of this study can be further applied to EEG-based
aBCI for theoretical analysis and practical applications. The table of abbreviations, their full
names, and usages are provided in Supplementary Material Table S1.

2. Materials and Methods
2.1. Data Acquisition Paradigm

Cross-sensory EEG emotion recognition experiments were conducted using EEG data
from self-designed multimodal emotion-stimulation experiments [33]. Twenty emotion
videos—ten of pleasure and ten of unpleasure—sourced from the New Standardized
Emotional Film Database for Asian Culture [34] were explored as multimodal emotion
stimulation for inducing cross-sensory EEG emotion data during the experiment. Self-
assessments were performed after stimulation in each trial. The participants were twenty
healthy participants with no previous mental or physical injury and currently native
Chinese speakers. In the experiment, two computers were utilized; one was dedicated to
controlling the stimulation process, while the other was used for recording EEG data and
manually inspecting the recorded information. As the stimulation control window could
potentially interfere with the window for EEG data recording, we employed two separate
computers for these tasks to ensure the smooth progress of the experiment.

There are three stimulus modalities for inducing their respective sensory modalities:
audio, visual, and audio-visual. The audio stimulus modality provided audio information
from the emotion videos, the visual stimulus modality provided visual information from
the emotion videos, and the audio-visual modality provided audio and visual information
from the emotion videos. Hence, we had two types of emotions (pleasure or displeasure)
and three stimulus modalities (audio, visual, and audio-visual) for inducing EEG data.
The collected cross-sensory emotion EEG data can be described as follows: pleasure EEG
(audio/visual/audio-visual sensory) and unpleasure EEG (audio/visual/audio-visual
sensory). The experimental setup is illustrated in Figure 2. Twenty healthy participants
were recruited for the experiment. The experimental details and data validation have been
described in previous studies [33]. Detailed information on the cross-sensory EEG emotion
data is presented in Table 1.

Table 1. Detailed information on the cross-sensory EEG emotion data.

Cross-Sensory EEG Emotion Data Information

Number of participants 20 (Native Chinese speaker)

Sex 11 males, 9 females

Age 24.7 ± 1.9 years

Number of channels 32 channels

Sampling rate 500 Hz

Experimental stimulus conditions Audio pleasure/visual pleasure/audio-visual pleasure/audio
unpleasure/visual unpleasure/audio-visual unpleasure

Collected EEG data Each participant: 10 trials with 30 s duration for each condition
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2.2. Data Preprocessing

The data preprocessing is described in Figure 3.
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Preprocessing cross-sensory EEG emotion data for cross-sensory emotion recognition
involved the following steps. An applied finite impulse response (FIR) bandpass filter facil-
itated EEG signal extraction between 1 Hz and 50 Hz [35,36], with a subsequent notch filter
employed to eliminate 50 Hz mains power interference. Baseline correction was conducted
within the initial 1000 ms before stimulation onset. The primary focus of the investigation
was the EEG data spanning 0–30 s during stimulation, utilizing a 5 s window [37–39].
A total of 7200 samples were analyzed, comprising 60 samples per participant for each
of the six cross-sensory EEG data types, each sample containing 2500 temporal features
derived from 500 × 5 data points. The EEG data consisted of 32 channels, referencing
FCz. Excluding FCz, 31 channels were utilized for further framework implementation. The
above preprocessing steps were executed by the MNE 1.2.1 [40] library in Python 3.6.

3. Methodology
3.1. Filter Bank Riemannian Feature Extraction

Emotional EEG signals contain information of various frequency ranges. By catego-
rizing the signals into different frequency bands, the features within each band can be
better captured. The frequency bands are associated with different neural activities related
to emotional states. Therefore, separating them helps extract emotion-related features
accurately. Different frequency ranges of EEG signals are associated with specific neural
activity. For instance, the low-frequency range (1–4 Hz) is often associated with relaxation
and resting, whereas the high-frequency range (30–50 Hz) is associated with attention and
arousal states [41]. Dividing the signals into different frequency bands allowed for a more
accurate representation of the influence of different neural activities on emotional states.
The most frequently used frequency bands were 1–4 Hz (delta), 4–8 Hz (theta), 8–13 Hz
(alpha), 13–30 Hz (beta), and 30–50 Hz (Gamma) [42]. In this study, we further divided
the beta into two sub-bands:13–20 Hz (Beta 1) and 20–30 Hz (Beta 2), to better distinguish
different neural activities and EEG signal characteristics [43,44]. In the beta band, the lower
frequency range (13–20 Hz) is typically associated with attention, cognitive processing,
and emotion regulation, whereas the higher frequency range (20–30 Hz) tends towards
motor control and perception [45]. Different neural activities and features can be captured
more precisely by separating them. Therefore, we used IIR bandpass filters to divide the
preprocessed 1–50 Hz EEG signals into six sub-bands: 1–4 Hz (Delta: band 1), 4–8 Hz
(Theta: band 2), 8–13 Hz (Alpha: band 3), 13–20 Hz (Beta 1: band 4), 20–30 (Beta 2: band 5),
and 30–50 Hz (Gamma: band 6).

The Riemannian space method has good generalizability in transfer learning. By
learning Riemannian features from the source domain, transfer learning can be performed
in the target domain, reducing the sample requirements and improving the classification
performance [46]. Riemannian space methods can capture shared structures and features
between source and target domains, enabling knowledge and model transfer.

Extracting Riemannian features from EEG signals involves computing the covariance
matrix (CM) in SPD form [47]. EEG signals are typically represented as multi-dimensional
time-series data, in which each observation at a given time corresponds to a voltage
recorded at different electrode locations. Transforming these time series into a matrix
representation is necessary for feature extraction and classification. We can capture the
correlation and coactivity between different electrodes in the EEG signals by computing the
covariance matrix. The covariance matrix is a symmetric positive-definite, describing the
spatial covariance relationships between the different electrodes. Hence, the dimensions of
the covariance matrix are related to the number of electrodes. Therefore, computing the
covariance matrix in its SPD form is necessary for the Riemannian feature extraction of
EEG signals. This allows the transformation of EEG signals into points on the Riemannian
manifold and facilitates feature extraction and classification analysis using the geometric
structure of the manifold.

x and y represent EEG signals from the two channels, with N as the window length or
time point of the signals. Preprocessing EEG signals had a signal mean of zero by filtering
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the direct components; therefore, the CM between both channels can be obtained using
Equation (1).

Cov(x, y) =
1
N ∑N

i=1(xiyi) (1)

Let the preprocessed EEG trials be Xi ∈ RK∗N , i = 1, . . . , t; K is the number of
electrodes, t is the total number of trials. The corresponding CM for Xi can be determined
using Equation (2):

CMi =
1

N − 1
XiXT

i (2)

T is the transpose operation of the matrix.
We used the oracle approximating shrinkage [48] regularization method to ensure

that all covariance matrices were regularized (in the symmetric positive-definite form).
The shape of the CM corresponding to each EEG trial depended on the number of signal
channels. There were K signal channels for each EEG trial; thus, the shape of the CM
was (K, K). The number of rows and columns in this matrix equals the number of signal
channels, representing the correlations and variances between each channel. The series of
SPD CMs are denoted as sym+ =

{
CM ∈ RK×K, xTCMx > 0, CM = CMT , ∀x ∈ RK and x

is a non-zero vector.
CMs naturally belong to the Riemannian manifold rather than the Euclidean space [48].

Transformative operations are required to apply operations suitable for Euclidean space.
However, using the original CMs as features for classification is challenging because

they reside on the Riemannian manifold RM, not in Euclidean space. The features extracted
from the Riemannian tangent space have better discriminative properties and are easier to
handle than the original Riemannian space features [49]. This is primarily due to their linear
properties and enhanced discriminability. In tangent space, traditional linear methods such
as the Euclidean distance and linear classifiers can be directly applied, as the space is linear,
and linear operations have simpler expressions. Additionally, the projection operations in
the tangent space highlight the differences between the sample classes, improving feature
discriminability. In contrast, the original Riemannian space may have smaller differences
between sample classes, leading to lower discriminability of the features. We will utilize the
transformation from the CM ∈ sym+ at the Riemannian space—RM of CMs to the tangent
space—TS to address this issue. Figure 4 illustrates the two-dimensional Riemannian
manifold and tangent spaces.
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Based on singular value decomposition, the operation logm is denoted as logarithm of
a matrix [50], and the Riemannian space point CMi to the tangent space can be described
as in Equation (3):

Si = logCM(CMi) = CM
1
2 (logm(CM−

1
2 CMiCM−

1
2 ))CM

1
2 (3)

Inversely, the projected tangent space points can be transferred into the Rieman-
nian space using the exponentialmap, denoted as expm, which can be described as in
Equation (4):

CMi = logCM(Si) = CM
1
2 (expm(CM−

1
2 SiCM−

1
2 ))CM

1
2 (4)

The distance between CM and CMi are denoted as δR(CM, CMi) in Figure 4.
Features extracted from the Riemannian tangent space have better discriminative

properties and are easier to handle than the original Riemannian space features. This is pri-
marily due to their linear properties and enhanced discriminability. The Euclidean distance
and linear classifiers can be directly applied in the tangent space because the space is linear,
and linear operations have simpler expressions. Additionally, the projection operations in
the tangent space highlight the differences between the sample classes, improving feature
discriminability. In contrast, the original Riemannian space may have smaller differences
between sample classes, with lower feature discriminability. The features of this study are
the tangent-space CMs. Therefore, from Equations (3) and (4), the original Riemannian
space CMRM

i = CMi can be transformed into tangent-space CMTS—using Equation (5),
known as the log-Euclidean mean covariance [17].

CMTS = expm
[

1
t ∑t

i logm
(

CMRM
i

)]
(5)

The set of Riemannian tangent features in each frequency band could be obtained
using CMTS

i ∈ RK×K, where i = 1, . . . , t. There are further domain adaptation and classifi-
cation requirements; therefore, we flattened each trail feature from the two-dimensional
Riemannian tangent features—CMTS

i ∈ RK×K as CMTS f latten
i ∈ RF×1, F = K ∗ K. The

workflow for feature extraction using the filter bank and Riemannian methods is illustrated
in Figure 5.
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3.2. Adversarial Domain Adaptation

This study mainly focused on Riemannian tangent space features for feature inter-
polation and analysis, which can be obtained as described in Section 3.2. Features from
one of the three sensory modalities can be recognized as the target domain to fulfill the
cross-sensory emotion recognition requirements. Thus, the features of the remaining two
sensory modalities were recognized as the source domains, for instance, when the features
from audio sensory modalities constituted the target domain. Conversely, those from
the visual and audio-visual sensory modalities constituted the source domain. Reducing
the discrepancy between the source and target domains and making the source-domain
features proximal to those of the target domain are crucial to domain adaptation. Therefore,
we employed an adversarial domain adaptation approach to achieve domain adaptation
from the source to the target domain.

Adversarial domain adaptation evolved from generative adversarial networks
(GANs) [51] and addressed domain adaptation challenges. GANs consist of generator
and discriminator networks trained in an adversarial manner to generate realistic data
samples. Adversarial domain adaptation leverages the adversarial training concept of
GANs to address domain adaptation, which involves transferring knowledge from a source
domain with labeled data to a target domain. Adversarial domain adaptation has two key
components: a feature extractor and a domain discriminator. The feature extractor learns
the shared representation of the input data, whereas the domain discriminator differentiates
the source from the target domains based on the learned features. Adversarial domain
adaptation involves minimizing the distribution discrepancy between the source and target
domains through a feature extractor, making the features more similar across domains.
Simultaneously, the domain discriminator maximizes the distribution discrepancies to
distinguish the domains. Adversarial training helps feature extractors generate domain-
invariant representations, enabling knowledge transfer and performance improvement
in the target domain. Hence, adversarial domain adaptation builds upon the adversarial
training concept of GANs and extends it to address domain adaptation challenges. Mini-
mizing feature distribution discrepancy and maximizing domain discrimination facilitate
knowledge transfer from a labeled source domain to an unlabeled target domain, enabling
adaptation and improved performance in the target domain.

The original GAN algorithm was first introduced in 2014 [51]. The main idea was a
minimax process with two elements: generator—G and discriminator—D. The generator
can create real-like fake data by inputting random noise into the generator. The discrimina-
tor distinguishes between the generated real-like fake data and the real data. This minimax
process aims to train the generator to produce real-like fake data to trick the discriminator
into recognizing the generated data as real. In the domain adaptation field, the feature
adaptor replaces the original generator by inputting the source-domain features into the
adaptor to generate source-domain features that are target domain-like from the domain
adaptor. The proposed adversarial domain adaptation framework comprises a feature
adaptor and a discriminator.

With the loss function L, the entire minimax process based on the original GAN for
adversarial domain adaptation can be described as follows:

LminAD maxDS = Exa∼Xa [ log(DS(xa))] +Er∼zr(r)[ log(1 − DS(AD(r)))] (6)

In Equation (6), Xa represents the target-domain features and DS(xa) represents the
discriminator for calculating the x probability of the target domain distribution. The input
source-domain features are zr; AD(r) is an adaptor used with the input r source-domain
features, outputting the targeted domain-like features.

The features from the target and source domains were extracted using the Riemannian
tangent space methods. Previous research has indicated that the original GAN loss is
vulnerable to collapse during training sessions. Meanwhile, the emotion-corresponding
labels in this study were pleasure and displeasure, regardless of sensory modality. Feature
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adaptation can fit each emotion label corresponding to the target domain rather than the
emerged target domain. Inspired by Wasserstein generative adversarial networks [52]
and adding label information as conditions, the proposed adversarial domain adaptation
framework is indicated in Figure 6.
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The detailed structures and parameters of the proposed domain adaptor and discrimi-
nator are presented in Tables 2 and 3, respectively.

Table 2. Adaptor structure.

Detailed Parameters in the Adaptor

Layer Kernel Size Output Shape Activation Function Batch Normalization

Input - 961 - -

Reshape - 961 × 1 - -

Conv1D 3 961 × 32 Leaky ReLU YES

Conv1D 3 961 × 8 Leaky ReLU YES

Flatten - 7688 - -

Dense - 961 Tanh -

Table 3. Structure of discriminator.

Detailed Parameters in the Discriminator

Layer Kernel Size Output Shape Activation Function Batch Normalization

Input - 961 - -

Dense - 32 Leaky ReLU -

Reshape 2 32 × 1 - -

Conv1D 2 32 × 32 Leaky ReLU YES

Conv1D 2 32 × 64 Leaky ReLU YES

Flatten - 2048 - -

Fully connected - 256 Leaky ReLU -

Fully connected - 64 Leaky ReLU -

Dense - 1 Sigmoid -
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The min-max problem for the proposed adversarial domain adaptation process is
described by Equation (7).

LwminAD maxDS = −Exa∼Xa [DS(xa|ya)] +Er∼zr(r)[DS(r|yr) ] + λEx̂∼X̂

[
(∇x̂DS(x̂)yr)2 − 1)2] (7)

The last term in Equation (7) is a penalty element. The data point was sampled from
a straight line between the target domain Xa and the adapted source domain XAD is X̂,
where xa denotes the data from Xa. The hyperparameter λ controls the trade-off between
the target domain and the gradient penalty.

The detailed parameters and functional components of the adaptor are listed in Table 2,
with one dense layer, one reshaped layer, and two convolutional layers. The leaky ReLU
function had a good performance in GANs [53,54]. Therefore, we chose a leaky ReLU
activation layer, followed by a dense layer and the first convolutional layers. We chose a
tanh activation layer attached to the last deconvolutional layer for the final adaptor output.
In each convolutional layer, batch normalization was introduced to increase the solution
speed of the gradient descent and avoid overfitting.

The detailed parameters and functional parts, specifically explaining each layer, are
described in Table 3. A leaky ReLU activation layer followed each convolutional layer,
and batch normalization was performed after each convolutional layer. The final output
of the discriminator uses the sigmoid function. The kernel size for each convolutional
layer in the adaptor was three, and the convolutional layer in each adaptor was two, based
on previous GAN-related studies [55–57]. After implementing the proposed adversarial
domain adaptation networks, the adapted source-domain features could be obtained, and
the target and source-domain features were cross-sensory features used together to train
the classifiers.

3.3. Classification Strategy

After executing domain adaptation, the adapted source and target-domain features
were used with the corresponding bands. The adapted source and target-domain features
are recognized as Riemannian domain target features; therefore, the SVM with polynomial
kernels had a considerable discriminative performance for these specific features [58].
Therefore, we explored polynomial kernel SVMs for each band feature to obtain trained
SVM classifiers for emotion recognition. Moreover, six trained SVMs corresponded with
the six bands to ensemble the six SVMs’ results into final emotion recognition outputs. The
proposed classification strategies are illustrated in Figure 7.

The target and adapted source features for each band constituted the training data
corresponding to each SVM classifier. After the training session, six SVMs were trained for
each of the six bands.

Each predicted output with the trained SVMs is identical to each label. Therefore,
the transformational relationship between the six SVM outputs and the final classifi-
cation result cannot be adjusted using the training set directly. Inspired by the blend-
ing of stacked methods for ensemble learning [59], we introduced a validation set for
blending the transformative relationship between the six SVM outputs into the final
classification result.

A set of validation data was explored to ensemble the six SVMs. A set of predicted
validation data labels was obtained by inputting the validation target features from each
band into each corresponding SVM. The predicted validation data labels are denoted as
Lbandj

i , j = 1, . . . , 6, i = 1 . . . nv; nv is the number of trials for the validation set. The Lbandj
i

is the input feature for the meta-learner and the real validation labels serve as the input
label information for the meta-classifier.
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Two classifiers were used for the blending methods. The basic classifiers obtained
the predicted multiple outputs from the original input features, and a meta-classifier for
receiving multiple outputs from basic classifiers and providing the final classification results.
In this study, the basic classifiers were SVMs. A logistic regression (LR) model was selected
as the meta-classifier for the final susceptibility prediction because of the effectiveness of
simple linear models [60]. Therefore, LR was trained to ensemble the outputs from the six
SVMs. In the test session, emotion recognition results for the test data were obtained by
inputting the filter bank Riemannian feature from the target and adapted source features
for the proposed trained SVM-meta learner framework. Based on Sections 3.1–3.3, the
training process of proposed FBADR could be described as Algorithm 1.

Algorithm 1 Training process of proposed FBADR

1. Filter bank
Determine sub-bands EEG signals banks Xi|bandj ∈ RK∗N , j =1. . .6 from filter bank method.

2. Riemannian method
Compute the covariance matrix for each sample CMi|sub from Equation (2).
Compute the CMTS as Riemannian tangent space features from Equation (5).

3. Adversarial domain adaptation
Determine adapted source-domain feature XAD from Equation (7).

4. Ensembled SVM classifier training
Train SVMs with target and adapted source feature and labels from band 1 to band 6.
Determine Lbandj

i by inputting the validation target features into trained SVM correspondingly.

Train meta learner with Lbandj
i and real validation labels.
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4. Experimental Results and Discussion
4.1. Experimental Description

The experiment can be described in three sessions: feature extraction, adversarial
domain adaptation, and classifier training and validation, as illustrated in Figure 8. For
example, the target domain EEG was considered audio sensory, and the source-domain
EEG as visual and audio-visual sensory. All experiments were executed on Windows 10
and Python 3.6, with an Intel i7-10875H CPU and an NVIDIA RTX, the 2080s GPU.
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Feature extraction was performed using the MNE 1.2.1, SciPy 1.5.4, and NumPy 1.23.5
libraries. In the feature extraction session, the target domain EEG first underwent six
bandpass filters to obtain a target domain EEG with six bands. Then, based on the well-
known transfer learning metric for cross-subject on EEG decoding—Leave-One-Subject-
Out [61]—we chose “Leave-One-Sensory-Out.” Specifically, we used one sensory modality
as the target domain and the other two as source domains for each subject. The target
domain data were split into a training, validation, and test set of 60%, 20%, and 20%,
respectively, coordinated with each band’s EEG data. The training, validation, and testing
sets were used for Riemannian feature extraction. The source-domain EEG served only as
training data and was passed through filter banks and Riemannian feature extraction.
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Adversarial domain adaptation frameworks were built and executed based on Ten-
sorFlow1.13.1; the Adam optimizer [62] with Learning rate = 0.001 was used for network
optimization. In the adversarial domain adaptation session, the source-domain features
were adapted using the proposed adversarial domain adaptation methods coordinated
with the extracted features from the target domain training set. The target and adapted
source features from each band were obtained from an adversarial domain adaptation
session. For each target sensory modality subject, 100 training epochs with a batch size
of 32 were used to train the framework. After completing the training session, a trained
adaptor was used to generate the adapted source domain features.

In the classification session, the frameworks were realized using Scikit-learn to build
the SVM and meta-classifier LR. Using GridSearchCV in subjects 01, 02, and 03, SVM
parameters were adjusted as C = 0.001, kernel = ‘poly′, gamma = 10, and the LR-
based meta classifier was used under the default parameters. In training and validating
the classification session, the target and adapted source features from each band served
as training features for each SVM. Emotion labels (pleasure or displeasure) constituted
the training label information. Subsequently, six SVMs were trained through stacked
ensemble methods using LR classifiers trained by inputting the classification results of
the six SVMs from the validation set of target-domain features as input features. The real
label information of the validation set of target-domain features was used as training label
information. An ensemble of six final classification outputs was built. Finally, the testing
set features were used with six trained SVMs to obtain the classification outputs, which
underwent the trained LR, and the classification results from the testing set were obtained.
We used five-fold cross-validation methods to obtain the final classification results for each
subject in each target sensory modality. Specifically, for five-fold cross-validation, each
subject’s target-domain features were randomly shuffled while maintaining the proportion
of the label information. The shuffled data were divided into five equal subsets. For each
subset, three of the remaining four constituted the training set, and one was the validation
set. This subset was used as the test set. The allocated training, validation, and test sets
were used for domain adaptation and classification, and classification results were obtained.
This process was repeated five times until each subset was used as the test set. Therefore,
all the subjects’ target-domain features were included in the model evaluation.

4.2. Adversarial Riemannian Methods Validation

The proposed adversarial domain adaptation method aimed to align the source-
domain features to the target domain. The training process loss of the adaptor and discrim-
inator for 20 subjects × 3 sensory modalities × 6 filter banks = 360 training sessions; the
loss during the training session is indicated in Figure 9 to illustrate the validation of the
proposed adversarial domain adaptation.
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We fitted and highlighted the average loss curve for all 360 training sessions. Figure 9
indicates that the adaptor and training losses converged to zero under 100 training epochs.
Hence, the purpose of minimum-maximum training for domain adaptation was confirmed.

Moreover, we compared the target and original/adapted source-domain features to
investigate the domain alignment from the proposed adversarial domain adaptation meth-
ods by visualizing two-dimensional t-stochastic Neighbor Embedding [63], as illustrated in
Figure 10.
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Figure 10. Visualization of target-domain features and original/adapted source-domain features.
Red points were target domain features; green points were source domain features. For (a–f), The left
subfigures are target domain features and original source domain features, the right subfigures are
target domain features and adapted source domain features. From the target domain features (a):
sub01; audio; 1–4 Hz, (b): sub04; audio-visual; 4–8 Hz, (c): sub17; visual; 8–13 Hz, (d): sub11; visual;
13–20 Hz, (e): sub05; audio; 20–30 Hz, (f): sub10; audio-visual; 30–50 Hz, the source domain features
were the corresponded subject, filter banks and the rest of two sensory conditions.

Red points indicate the target-domain features; green points represent the source-
domain features. For (a), (b), (c), (d), (e), and (f), the left subfigures are the target and
the original source-domain features, and the right subfigures are the target and adapted
source-domain features. Figure 10 reveals the success of domain adaptation by compar-
ing the target and original/adapted source-domain features. Via the proposed meth-
ods, the source-domain Riemannian features have been adapted with the target domain
Riemannian features.
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4.3. FBADR Emotion Recognition Results

The cross-sensory emotion recognition results were obtained using the proposed
FBADR methods (Figure 11). Meanwhile, for a comparative study, the classification results
of Riemannian methods (RIE), which use Riemannian feature extraction without filter
banks and domain adaptation, adversarial domain Riemannian methods (ADR), filter
bank Riemannian methods (FBR), and Riemannian feature extraction with the proposed
adversarial domain adaptation, were used. RIE and ADR did not have multibank features;
therefore, we used only SVM for classification, and the FBR classification strategy was
the same as that of the proposed FBADR. The emotion labels with the proportion of
pleasure : unpleasure = 1 : 1 for binary emotion recognition; thus, the accuracy could be
utilized for model evaluations. The accuracy can be determined using Equation (8):

CC =
TP + TN

TP + FN + TN + FP
(8)
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fication results for each subject with the target domain as audio, visual, and audio-visual are (a–c),
respectively; (d) is the average accuracy of 20 subjects and three sensory modalities, the text in (d)
indicate the average± std of the accuracies.

We classified pleasure as true positive (TP) and classified displeasure as true negative
(TN), false positive (FP), or false negative (FN).
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The proposed FBADR methods had the best classification results in cross-sensory
emotion recognition, with an average accuracy of 89.01%± 5.06% (Figure 11). RIE, ADR,
and FBR had average accuracies of 71.11%± 11.31%, 79.47%± 6.80% and 84.79%± 7.83%,
respectively. Additionally, the average computational cost in training and test sessions
for RIE, ADR, FBR, and FBADR was 0.03 s, 1.22 s, 0.21 s, and 7.87 s for each subject.
Compared with RIE, the FBADR mainly increased computational cost due to the neural
networks-based domain adaptation training with sub-bands of approximately six-times
repetitive operations, resulting in a better EEG decoding result. Figure 11a–c reveal that
FBADR performed best with audio, visual, and audio-visual sensory modalities as the
target domains. One-way analysis of variance (ANOVA) was used to determine the
significant differences between each method, and a p-value of < 0.001 for RIE-FBR, RIE-
ADR, RIE-FBADR, ADR-FBADR, and FBR-FBADR pairs are denoted as *** in Figure 11d.
The filter bank and adversarial domain adaptation methods can also improve cross-sensory
emotion recognition.

Meanwhile, in order to assess the impact of various SVM kernels on the performance
of the proposed FBADR method, we incorporated different types of kernels including poly-
nomial, linear, and radial basis function (RBF) kernels into the SVM framework. Specifically,
for the implementation of FBADR, we utilized SVMs with polynomial, linear, and RBF
kernels, setting the parameters as C = 0.001 and gamma = 10. The outcomes obtained from
employing these three distinct kernels are outlined in Table 4.

Table 4. Average classification from different SVM kernels of proposed FBADR.

Kernel Mean Accuracy

Linear 72.49%± 9.85%

RBF 81.91%± 8.25%

Polynomial 89.01%± 5.06%

The results from Table 4 indicated that the polynomial kernel-based SVM classifier
performed best in the Riemannian feature-based classification task [58].

4.4. Baseline Methods Comparison

The cross-sensory EEG emotion recognition is an emerging challenge in the EEG aBCI
field; therefore, no related studies exist. To obtain a comprehensive performance evaluation,
we chose six recently published EEG decoding frameworks for comparative study:

KNN [64], an EEG emotion recognition method that utilized entropy and energy, was
calculated as features after being divided into four frequency bands using discrete wavelet
transform and a K-nearest neighbor (KNN) classifier. Frequency band features from the
Gamma band were used as a baseline.

EEGNET [65], an end-to-end EEG decoding framework based on neural networks, has
been widely adopted in emotion recognition, motor imagery, and other BCI fields. ICRM-
LSTM [17], a model for EEG-based emotion recognition by combining the independent
component analysis (ICA), the Riemannian manifold (RM), and the long short-term memory
network (LSTM).

PCC-CNN [13], an EEG Emotion recognition framework with Pearson’s correlation
coefficient (PCC)-featured images of channel correlation of EEG sub-bands and the CNN
model to recognize emotion.

DANN [66], a transfer learning-based EEG emotion recognition framework with adver-
sarial domain adaptation neural networks for an cross-subject EEG emotion
recognition framework.

WG-DANN [67], a transfer learning-based EEG emotion recognition framework,
consists of GANs-like components and a two-step training procedure with pre-training
and adversarial training with Wasserstein GAN gradient penalty loss for cross-subject EEG
emotion recognition framework.
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All the baseline results were the target domain as one sensory modality and the source
domain as the other two for each subject, with the same five-fold cross-validation training
strategy as in the proposed FBADR. The input data for the baseline methods were proposed
using the workflow described in Section 2.2. The original algorithms from the baseline
methods did not contain a domain adaptation process (KNN, EEGNET, ICRM-LSTM, PCC-
CNN), and the training data were used directly as original features from the source and
target domains. The baseline methods only required the training and testing sets; therefore,
the training data we used comprised 80% of the target and all of the source-domain data.
The testing data included 20% of the target domain data, implemented with five-fold
cross-validation, similar to the proposed FBADR classification strategy. As EEG emotion
recognition mainly focuses on improving the classification accuracy of EEG-based emotion
recognition BCI systems, we compared the classification accuracy of the cross-sensory EEG
data for the proposed FBADR and baseline methods. The classification accuracy of the
baseline comparison is presented in Figure 12. The EEGNET was reimplemented from
https://github.com/vlawhern/arl-eegmodels (accessed on 15 June 2023), and the rest of
the baseline methods were reimplemented based on original papers.
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20 subjects and 3 sensory modalities; the text in (d) are average± std of accuracy.
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Figure 12 reveals that the proposed FBADR method had the best classification results
in the context of cross-sensory emotion recognition compared to the baseline methods,
with an improvement of approximately 5% in average accuracy of the best performance of
the baseline methods and a lower standard deviation. A one-way ANOVA was used to
determine the statistical difference between each method, and a p− value o f < 0.001 for
the pairs of FBADR to the six baseline methods is denoted as *** in Figure 12d. The average
accuracy and statistical difference between the proposed FBADR and baseline methods in
the experiments indicated the viability of the proposed FBADR method for cross-sensory
emotion recognition.

By employing the filter bank ensemble approach, it is possible to decompose the
original signal into different frequency sub-bands, aiding in capturing information from
various frequency ranges [68]. Under emotional stimuli, the brain’s responses to different
frequencies might vary, potentially relating to emotion regulation and sensory processing.
Implementing filter-bank ensemble techniques better captures these frequency-specific vari-
ations, thereby enhancing sensitivity to emotion-related changes. Furthermore, integrating
the decoding outcomes from the filter bank ensemble through ensemble learning allows
us to attain improved results. The covariance matrix-based Riemannian tangent methods
offer a robust approach for capturing emotion-related changes, particularly effective due
to its ability to model the spatial relationships and interactions between different brain
regions, which are crucial in conveying emotional responses [69]. By leveraging adversarial
domain adaptation, it is possible to execute adversarial transfer of features between differ-
ent sensory inputs, enabling the model to better adapt to diverse data distributions. This
aids in mitigating the impact of distribution [67,68] disparities among audio, visual, and
audio-visual sensory, thereby bolstering the model’s generalization ability in cross-sensory
EEG emotion recognition. In addition, by amalgamating explanations from these three
facets, our model harnesses the synergy of Filter Bank feature extraction, Riemannian meth-
ods, and Adversarial Domain Adaptation to effectively capture and differentiate between
emotion-related and sensory-related changes, resulting in a state-of-the-art performance in
cross-sensory EEG emotion recognition.

The novelty of this study lies in its novel utilization of Filter Bank Riemannian fea-
tures in conjunction with adversarial domain adaptation. This combination introduces a
perspective methodology to cross-sensory EEG emotion recognition. By amalgamating
the explanations above, our model leverages the synergistic interplay of filter bank feature
extraction, Riemannian methods, and adversarial domain adaptation to effectively capture
and differentiate emotion-related and sensory-related variations. This, in turn, leads to
state-of-the-art decoding results in cross-sensory EEG emotion recognition. Simultaneously,
ensemble learning with the adapted filter bank Riemannian features helps attenuate the
influence of individual-specific frequency band variations potentially caused by cultural,
experiential, and background factors, resulting in a reduced standard deviation. In sum-
mary, this study significantly advances EEG-based emotion recognition by introducing a
comprehensive framework that transcends the limitations of sensory-centric approaches.
Through a combination of innovative techniques and various evaluations, the FBADR
method not only achieves remarkable accuracy improvements but also ensures reliable
performance in complex cross-sensory contexts.

4.5. Robustness Verification

Gaussian noise was introduced into the experimental data to further validate the
robustness of cross-sensory emotion recognition based on the proposed FBADR. Specifically,
with the average power of the original data as Psignal , the average power of noise as Pnoise,
the signal-to-noise ratio (SNR) can be obtained using Equation (9)

SNR = 10log10

(Psignal

Pnoise

)
(9)



Brain Sci. 2023, 13, 1326 21 of 25

Normally distributed Gaussian noise and the probability density function can be
represented by Equation (10):

f (x) =
1√
2π

e(
x2
2 ) (10)

Coordinated with Psignal, the Pnoise varied with SNR = 30 dB, 20 dB, 10 dB, 1 dB,−0.1 dB,
with the lower signal-to-noise ratio representing a higher power ratio in the noised signals.
The temporal presentation of the noised signals is indicated in Figure 13.
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Figure 13. Temporal presentation of the noised signals; data are from the first 5 s of sub 01 audio-
happy condition with 1–50 Hz filtered. (a) Original data without noise. (b) Noised data with
SNR = 30 dB. (c) Noised data with SNR = 20 dB. (d) Noised data with SNR = 10 dB. (e) Noised
data with SNR = 1 dB. (f) Noised data with SNR = −0.1 dB.

We used the proposed FBADR on the five-group noisy cross-sensory data, and the
average classification accuracies for the original data and the five-group noisy cross-sensory
data are shown in Figure 14.
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Figure 14 indicates that with the noised data of SNR = 30 dB, 20 dB, 10 dB, 1 dB, and
− 0.1 dB, the average accuracy reached 88.77%, 88.66%, 88.53%, 87.30% and 81.83%,
respectively. For further statistical analysis a one-way ANOVA was used to determine
the statistical difference between the accuracy of the original data and the five-group
noised data; p− values were determined from the five pairs as follows: original—SNR :
30 dB = 0.83, original—SNR : 20 dB = 0.75, original—SNR : 10 dB = 0.70, original—
SNR : 1 dB = 0.12, original—SNR : −0.1 dB = 2.9× 10−10. A p − value o f < 0.001,
denoted as *** in Figure 14, was considered significant. The robustness of the proposed
methods could ensure high cross-sensory recognition performance under SNR ≥ 1 dB,
making it viable for real-time EEG-aBCI application.

5. Conclusions

We introduced a novel framework to address the challenge of cross-sensory EEG
emotion recognition in multimodal emotion stimulation as three sensory modalities:
audio/visual/audio-visual with two emotion states: pleasure or unpleasure. To accomplish
this, we conducted self-designed experiments involving multimodal emotion simulations
to acquire cross-sensory emotion EEG data. Our proposed approach—filter bank adversar-
ial domain adaptation Riemann method—leverages Riemannian tangent space methods
and filter bank techniques to effectively extract features from cross-sensory emotion data.
A key innovation of our study is applying adversarial domain adaptation to mitigate do-
main differences in cross-sensory situations, enhancing emotion recognition performance.
Specifically, we employed adapted features from the source and target domains to train
the ensemble SVM classifiers. This integration of adversarial learning and ensemble learn-
ing methodologies successfully addressed the challenges associated with cross-sensory
EEG emotion recognition, enabling the accurate binary classification of pleasurable and
unpleasurable emotions.

We analyzed comparative classification results and demonstrated that our proposed
FBADR framework achieved a state-of-the-art performance in cross-sensory emotion recog-
nition, attaining an average accuracy of 89.01%± 5.06%. Notably, this level of accuracy
was the highest among comparable approaches, accompanied by a low standard deviation.
Furthermore, we assessed the robustness of our framework by introducing Gaussian noise,
which indicated that the framework was highly resilient to noise interference.

Overall, our study contributes to the field of EEG emotion recognition by offering
a comprehensive framework that effectively addresses the challenges in cross-sensory
scenarios. Incorporating adversarial domain adaptation and ensemble learning techniques
with filter-banked Riemannian features enables accurate emotion classification, while its
robustness strengthens its potential for real-world applications.
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