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Abstract: Cerebral small vessel disease (CSVD), which is a group of pathological processes affecting
cerebral microvessels, leads to functional loss in the elderly population and mostly presents as
cognitive impairment and gait decline. CSVD is diagnosed based on brain imaging biomarkers,
but blood biomarkers are of great significance for the early diagnosis and progression prediction
of CSVD and have become a research focus because of their noninvasiveness and easy accessibility.
Notably, many blood biomarkers have been reported to be associated with CSVD in a relatively
large population, particularly serum neurofilament light chain (NfL), which has been regarded as a
promising biomarker to track the variation trend in WMH and to predict the further status of white
matter hyperintensities (WMH) and lacunar infarcts. And neuro-glio-vascular unit structure and
blood–brain barrier function have been proposed as underlying mechanisms of CSVD. The article
starts from the neuroimaging markers of CSVD, including recent small subcortical infarcts (RSSI),
white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMB), enlarged perivascular
spaces (EPVS), cerebral atrophy, and the combined small vessel disease score, and attempts to
systematically review and summarize the research progress regarding the blood biomarkers of CSVD
that form the changes in the neuro-glio-vascular unit structure and blood–brain barrier function.

Keywords: cerebral small vessel disease; blood biomarkers; review

1. Introduction

Cerebral small vessel disease (CSVD), which is a group of pathological processes
affecting cerebral microvessels, leads to functional loss in the elderly population and
mostly presents as cognitive impairment and gait decline [1]. CSVD is diagnosed on
the basis of neuroimaging markers, including recent small subcortical infarcts (RSSI),
white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMB), enlarged
perivascular spaces (EPVS), cerebral atrophy, cortical superficial siderosis, cortical cerebral
microinfarct, and the combined small vessel disease score [2]. The emerging neuroimaging
findings of CSVD have accelerated the understanding of CSVD pathophysiology and
brought opportunities for prevention and treatment ever closer. Notably, some blood
markers, such as neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP),
have not been included in the diagnosis of CSVD due to the weak evidence base. However,
blood biomarkers are of great significance for the early diagnosis and progression prediction
of CSVD and have become a research focus because of their noninvasiveness and easy
accessibility.

The neuro-glio-vascular unit structure and blood–brain barrier function have been
proposed as underlying mechanisms of CSVD. Pathology studies of CSVD mechanisms
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describe the concept of the “neuro-glio-vascular unit”, which is formed by neurons, en-
dothelial cells, and glial cells; it contributes to the blood–brain barrier (BBB) function [3]
and is important in understanding the pathogenesis of CSVD [1]. Previous MRI studies
have demonstrated that BBB dysfunction increases with the increasing WMH burden [4,5]
and thus predicts future WMH expansion [6] and incident lacunes [7]. Therefore, changes
in the neuro-glio-vascular unit structure and BBB function may play a crucial role in the
genesis and development of CSVD.

Based on the aforementioned background, the article starts from the neuroimaging
markers of CSVD, including RSSI, WMH, lacunes, CMB, EPVS, cerebral atrophy, and the
combined small vessel disease score, and attempts to systematically review and summarize
the research progress regarding the blood biomarkers of CSVD that form changes in the
neuro-glio-vascular unit structure and blood–brain barrier function.

2. Search Strategy

We systematically searched the literature in the PubMed and EMBASE databases
up to July 2023, using keywords or MeSH terms (“blood biomarkers”; “Cerebral Small
Vessel Diseases”; “Leukoaraiosis”; “microbleed”; “enlarged perivascular space”; “recent
small subcortical infarct”; “Atrophy”; “lacune”; and “Cerebral Small Vessel Diseases
burden”). There was no limitation on the literature language or publication type. Two
authors formulated the inclusion criteria, and all discrepancies were resolved through
discussions or by asking a third reviewer. The studies meeting the following criteria were
included in the systematic review: (a) they enrolled participants with age-related and
vascular risk-factor-related small vessel diseases; (b) they evaluated CSVD neuroimaging
markers, including RSSI, WMH, lacunes, CMB, EPVS, cerebral atrophy, and the combined
small vessel disease score; and (c) they concerned blood biomarkers, correlated with
neuro-glio-vascular unit structure and blood–brain barrier function. The exclusion criteria
were: (a) they enrolled participants with multiple sclerosis (MS) and other diseases whose
neuroimaging feature was white matter damage that was different from that of WMH in
CSVD; (b) they did not discuss arteriolosclerosis-related cerebral small vessel diseases, such
as inherited or genetic small vessel diseases, inflammatory and immunologically mediated
small vessel diseases, venous collagenosis and post-radiation angiopathy, and non-amyloid
microvessel degeneration in Alzheimer’s disease; and (c) they did not involve original
research.

Finally, 49 studies were considered eligible for this review, and the important data
items were collected (Table 1).

Table 1. Blood biomarkers with CSVD neuroimaging markers.

Year Author Sample Participants Blood Biomarkers Neuroimaging Markers

2009 Giuseppe Licata [8] 46 lacunar stroke TNF-α, IL-6, IL-1β RSSI

2011 Elisa
Cuadrado-Godia [9] 127 lacunar stroke vWF, ox-LDL RSSI

2012 C.L. Satizabal [10] 1841 elderly participants aged
65 to 80 years IL-6, CRP WMH, RSSI, brain

atrophy
2013 Zachary A. Corbin [11] 405 acute ischemic stroke MMPs, F2-isoprostane WMH
2014 Jin-biao Zhang [12] 568 hypertension eGFR, Cystatin C CMB
2014 Mitchell S.V. Elkind [13] 1244 lacunar stroke CRP RSSI

2015 Jiyang Jiang [14] 327 elderly participants aged
70 to 90 years MIC-1/GDF15 WMH

2015 Charlotte
Andersson [15] 3374 Framingham Offspring GDF15, ST2 WMH, brain atrophy

2015 Arnab Datta [16] 45 lacunar stroke proteomic RSSI

2015 Andrea
Vilar-Bergua [17] 972 hypertension N-glycome Profile WMH
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Table 1. Cont.

Year Author Sample Participants Blood Biomarkers Neuroimaging Markers

2015 Stewart J. Wiseman [18] 65 lacunar stroke
inflammation and

endothelial activation
biomarkers

RSSI

2016 Yuek Ling Chai [19] 324 CIND; AD GDF15 WMH, RSSI, lacune

2016 Amelia K. Boehme [20] 1244 lacunar stroke IL-6, amyloid A, TNFR1,
CD40L, MCP1 RSSI

2017 Li Yang [21] 56 lacunar stroke Lipidomic RSSI
2017 Yanan Zhu [22] 315 CIND; AD t IL-6, IL-8, TNF-α WMH, RSSI, lacune
2017 Thomas Gattringer [23] 579 RSSI NfL WMH, RSSI

2017 Ki-Woong Nam [24] 2875 people with a health
check-up NLR WMH

2018 Huimin Fan [25] 389 lacunar stroke Homocysteine RSSI

2018 Huang Guoxiang [26] 408 noncritically ill
hospitalized patients Cystatin C WMH

2018 Jacek Staszewski [27] 123 CSVD
vascular and systemic

inflammation
biomarkers

WMH, lacune

2018 Daniela Pinter [28] 78 RSSI NfL RSSI

2018 Simon R. Cox [29] 593 elderly participants aged
73 to 76 years S100β WMH

2018 Esther M.C. van
Leijsen [30] 487 CSVD Aβ WMH, CMB, lacune

2018 Weimin Wei [31] 346 hypertension BNP WMH, CMB, RSSI

2018 Yanan Zhu [32] 310 CIND; AD HGF WMH, CMB, RSSI,
lacune

2020 Emer R. McGrath [33] 1603 Framingham Offspring GDF-15, NT-proBNP WMH, brain atrophy
2020 Yan Sun [34] 1029 CIND NfL WMH

2020 Peng Xu [35] 12 lacunar stroke miR-133, IL-6, IL-8, CRP,
TNF-α RSSI

2021 Larisa A. Dobrynina [36] 70 CSVD NR2ab WMH, lacune

2021 Yi Qu [37] 496 CIND NfL WMH, CMB, RSSI,
CSVD burden

2021 Alison E Fohner [38] 1362 elderly participants aged
65 years or older

NfL, total Tau, GFAP,
UCH-L1 WMH

2021 Bibek Gyanwali [39] 434 CIND NT-proBNP, hs-cTnT,
GDF-15

WMH, CMB, RSSI,
lacune

2021 Joan
Jiménez-Balado [40] 24 hypertension proteomic WMH

2021 Yuek Ling Chai [41] 384 CIND; AD OPN WMH, brain atrophy

2021 Andres da
Silva-Candal [42] 624 hypertension or

diabetes w TWEAK WMH

2022 Sanne Kuipers [43] 494

Vascular Cognitive
Impairment, Carotid

Occlusive Disease, heart
failure

OLINK cardiovascular
III panel WMH, CMB, RSSI, EPVS

2022 Nagato Kuriyama [44] 214 people with check-up
for dementia MR-proADM CMB

2022 Stuart J. McCarter [45] 712 elderly participants Aβ40, Aβ42, t-tau, NfL CMB
2022 André Huss [46] 42 CSVD NfL, GFAP WMH

2022 Yuan Wang [47] 879 CSVD NLR WMH, CMB, RSSI,
CSVD burden

2022 Ding-Ding Zhang [48] 960 participants aged
35 years or older

systemic, endothelial,
and media-related

inflammation
biomarkers

WMH, CMB, EPVS,
lacune

2022 Arnab Datta [49] 62 lacunar stroke proteomic RSSI

2022 Qianwen Qiu [50] 158 people with a health
check-up cortisol WMH, CMB, EPVS,

lacune, CSVD burden
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Table 1. Cont.

Year Author Sample Participants Blood Biomarkers Neuroimaging Markers

2022 Thomas Gattringer [51] 162 RSSI GFAP
WMH, CMB, RSSI,

EPVS, lacune, CSVD
burden

2023 Joyce R. Chong [52] 208 CIND; AD NfL WMH, CMB, lacune,
brain atrophy

2023 Kaung H. T. Salai [53] 206 CIND TNF-R1 WMH, CMB, RSSI
2023 Ke-Jin Gao [54] 230 CSVD exosomes WMH, CSVD burden
2023 Lu Liu [55] 213 CMB Lp-PLA2 CMB

2023 Shao-Yuan Chuang [56] 720 elderly participants aged
50 years or older NLR WMH, CMB, lacune,

CSVD burden

RSSI: recent small subcortical infarcts; CSVD: cerebral small vessel disease; CIND: cognitive impairment no
dementia; AD: Alzheimer’s disease; MIC-1: macrophage inhibitory cytokine-1; NfL: neurofilament light chain;
GFAP: glial fibrillary acidic protein; UCH-L1: ubiquitin carboxy-terminal hydrolase L1; GDF15: growth differenti-
ation factor-15; CRP: C-reactive protein; IL: interleukin; NT-proBNP: N-terminal pro-B-type natriuretic peptide;
OPN: osteopontin; TNF: tumor necrosis factor; MMP: matrix metalloproteinase; NLR: neutrophil-to-lymphocyte
ratio; NR2ab: Anti-N-methyl-D-aspartate (NMDA) glutamate receptor antibodies; hs-cTnT: high-sensitivity
cardiac troponin T; TNF-R1: TNF-Receptor 1; Aβ: Amyloid-β; BNP: brain natriuretic peptide; HGF: hepato-
cyte growth factor; TWEAK: tumor necrosis factor-like weak inducer of apoptosis; MR-proADM: mid-regional
pro-adrenomedullin; Lp-PLA2: lipoprotein-associated phospholipase A2; vWF: von Willebrand factor; ox-LDL:
oxidized LDL cholesterol; MCP1: monocyte chemoattractant protein 1.

2.1. Correlation between Biomarkers and WMH

White matter hyperintensities (WMH), the most studied CSVD neuroimaging marker,
represents demyelination, axon loss, and gliosis [1]. Recent studies have shown the signifi-
cant association between WMH and the dysfunction of endothelial cells and neurons; this
is possibly caused by the blocking of oligodendrocyte precursor cell maturation, which
impairs myelination and myelin repair [57].

2.1.1. Endothelial Dysfunction-Related Biomarkers

Endothelial failure in CSVD is involved in inflammation, cerebral hypoperfusion, and
BBB dysfunction.

Inflammation Some studies have suggested that the neutrophil-to-lymphocyte ratio
(NLR) is significantly associated with WMH Fazekas scores and WMH volume [24,47,56],
which indicates that NLR may possibly serve as a potential biomarker for WMH. NLR, a
marker of the inflammatory response, represents neutrophil aggregation and cytokine re-
lease and activation, leading to endothelial dysfunction and white matter damage [58]. In a
cohort study, people with high NLR levels had increased odds of atherosclerosis, suggesting
that NLR may be a significant feature of atherosclerotic vessels, which may lead to hypop-
erfusion and worsening WMH volume progression [24]. Additionally, interleukin-6(IL-6) is
associated with WMH volume (p = 0.01) in a dose-dependent manner [10]. Cystatin C con-
centration is significantly associated with the severity of WMH (OR = 2.14; p = 0.000) [26],
and the platelet factor-4 (PF-4) remains associated with the risk of WMH progression
(OR = 12.4; p = 0.01), even after adjusting for clinically relevant variables (mean arterial
pressure, CSVD score, age, sex, and CSVD clinical manifestations) [27]. IL-6, Cystatin C,
and PF-4, which are involved in diverse inflammatory processes, are associated with WMH;
this has further supported the hypothesis regarding the crucial role of inflammation in
WMH mechanisms. Osteopontin (OPN), an extracellular phosphoprotein in response to
stress and injury, is upregulated under hypoxic conditions [59], cerebral ischemia [60], and
inflammation-associated neurological disease. A recent study has reported the positive
correlations between OPN and WMH [41], which are possibly due to the potential neuropro-
tective effect of OPN [61] and the compensatory response of OPN towards WMH-associated
vascular damage and inflammation. Furthermore, a community-based cross-sectional study
has shown that the endothelial-related biomarkers, including E-selectin, p-selectin, inter-
cellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), CD40 ligand,
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lipoprotein-associated phospholipase A2, chitinase-3-like-1 protein, and total homocysteine
(tHCY), are associated with WMH volume (p = 0.008) [48], suggesting that endothelial
dysfunction may be the bridge between inflammation and WMH.

Many researchers have focused on growth differentiation factor-15 (GDF15), which
is believed to be a marker of impaired endothelial function [62]. Higher levels of GDF-15
are significantly associated with the larger WMH volumes [15,19] and poorer cognitive
performance [33]. A study has further explored the association between WMH microstruc-
ture and GDF15 in a community-based elderly population, concluding that the serum level
of MIC-1/GDF15 has a negative association with the average FA value, especially in the
corticospinal tract, corpus callosum, superior longitudinal tract, cingulate, and thalamic
anterior posterior radiation [14]. The exact mechanism underlying the association of GDF15
with WMH is still a controversial issue. Elevated GDF15, observed in inflammation in
damaged tissues [63], may be a marker of a proinflammatory environment that promotes
the progression of WMH and the subsequent dementia.

Cerebral hypoperfusion Researchers infer that Aβ may play a role in CSVD pathogene-
sis due to the important effect of Aβ (amyloid β) on hypertension [64]. A prospective cohort
study has demonstrated that Aβ is significantly associated with severe WMH (p < 0.05),
and it is further reported that plasma Aβ40 is associated with follow-up WMH progression
(p < 0.05) [50]. The plasma Aβ may enhance endothelium-dependent vasoconstriction and
lead to cerebral hypoperfusion, resulting in WMH [65]. Another study has reported that
the brain natriuretic peptide (BNP) level is independently associated with WMH (β = 0.722;
95% CI, 0.624–0.819), with an adjustment for clinically relevant variables [31], which may
be explained by the possibility that BNP causes a reduction in cerebral blood flow, leading
to neurovascular unit dysfunction and WMH.

BBB dysfunction The serum cortisol level has been shown to be associated posi-
tively with WMH severity (OR = 1.221, p < 0.001) and cognitive impairment (β = −0.154,
p = 0.001) [50]. An increasing amount of evidence suggests that higher serum cortical levels
can downregulate endothelial nitric oxide synthase (eNOS) expression and deactivation
and impede nitric oxide (NO) actions, contributing to endothelial and BBB dysfunction [66].
Thus, plasma constituents and the dysfunctional clearance of metabolites leak from tissues
and eventually lead to demyelination and gliosis [1]. A study has reported the signifi-
cant association between the soluble tumor necrosis factor-like weak inducer of apoptosis
(sTWEAK) and WMH (p < 0.0001) [42]. sTWEAK, a cytokine closely related to endothelial
dysfunction, has been proven to change the permeability of the BBB. Researchers infer that
sTWEAK contributes to WMH, possibly by inducing the over-expression of proinflamma-
tory cytokines and disrupting the structure and function of the BBB [67]. In addition, the
elevated level of antibodies against the NMDA receptor NR2 subunit (NR2ab) is associated
with the Fazekas scale of WMH [36]. NR2ab, located in the endothelium of the cerebral
arteries [68], potentially leads to excitotoxicity processes that cause damage to the BBB’s
integrity [69].

2.1.2. Neurons Dysfunction-Related Biomarkers

Neurofilament light chain (NfL), a neuron-specific and sensitive structural protein [70],
is released into CSF and blood following demyelination and axonal damage. Some re-
searchers have regarded plasma NfL as a potential biomarker that can provide valid
information about neuroaxonal damage in the central nervous system. Two studies have
shown a positive correlation between plasma neurofilament light (NfL) and WMH in
non-dementia elderly participants. Notably, a higher baseline plasma NFL concentration is
associated with the accelerated progression of WMH; in particular, higher NfL change rates
can predict faster WMH progression in the future [34,37]. Similarly, a longitudinal large
cohort study has shown that the concentration of log2 (NfL) is significantly associated with
the severity and progression of WMH in the follow-up scan [38]. These findings warrant
further studies which investigate the potential of plasma NfL as a biomarker to track the
variation trend in WMH and to predict the further status of WMH.
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2.2. Correlation between Biomarkers and EPVS

Perivascular spaces are fluid-filled spaces, where CSF becomes slower and irregular
with the increase in arteriolar pulsatility [1]. Researchers have suggested that endothelial
dysfunction may impair normal perivascular fluid flushing and the removal of waste by
increasing interstitial fluid, which leads to the appearance of enlarged perivascular spaces.

Endothelial Dysfunction-Related Biomarkers

Inflammation A study has found that NLR is positively associated with enlarged
perivascular space (EPVS) (p = 0.017); this indicates that the inflammatory response is
involved in EPVS [47]. The possible mechanism is borrowed from multiple sclerosis,
which explains why inflammatory cells enter the perivascular space and trigger a series of
inflammatory reactions following endothelial cell damage [71].

BBB dysfunction A recent study has described serum cortisol as an independent
predictor of moderate to severe EPVS (OR = 1.219, p < 0.001) [50]. An elevated serum
cortisol level may impair the structure and function of endothelial cells and the BBB,
which contributes to the accumulation of amyloid proteins and the failure of protein
elimination [72] and consequently leads to EPVS.

2.3. Correlation between Biomarkers and Lacunes (of Presumed Vascular Origin)

Studies have shown that the formation of lacunes may be related to the injury of
endothelial cells and microglia, representing inflammation, cerebral hypoperfusion, and
BBB dysfunction.

2.3.1. Endothelial Dysfunction-Related Biomarkers

Inflammation Some researchers have suggested that local inflammation may contribute
to the development and neurological deficits in the so-called ischemic forms of small
vessel disease, such as lacunar lesions. And the significant associations between blood
inflammatory biomarkers and lacunes, such as OPN [41], homocysteine, and IL-6 [27],
provide more evidence of the crucial role of inflammation in lacunes.

Cerebral hypoperfusion Plasma Aβ40 is positively associated with lacunes, and
both may predict incident lacunes in the future [30], suggesting that Aβ, a biomarker
of endothelium-dependent vasoconstriction and cerebral hypoperfusion, may play a crucial
role in the development and progression of lacunes.

BBB dysfunction A study has investigated the possibility that an elevated NMDA
receptor NR2 subunit (NR2ab) level is related to the number of lacunes (less than 5)
(p = 0.039) [36]. The dysfunctional BBB may better explain the potential role of these
receptors and the way that they lead to the appearance and development of lacunes [73].

2.3.2. Microglia Dysfunction-Related Biomarkers

In patients with CSVD, microglia are of vital importance in maintaining cerebral vas-
culature integrity [74]. Tumor necrosis factor-receptor 1 (TNF-R1)-mediated signaling is
critical to the regulation of inflammatory responses; it is proposed that it is more reliable
than TNF itself because it is detectable for prolonged periods [75]. A recent study has
demonstrated that soluble TNF-Receptor 1 (sTNF-R1) is significantly associated with la-
cunes (OR = 6.91, p < 0.001) [53]. This may be explained by the fact that microglia migrate to
the ischemic regions, such as lacunes, and by the secretion of chemical attractants, including
TNF, which starts the recruitment of inflammatory cells and facilitates the neuroinflam-
matory reaction. Additionally, the researchers infer that TNF-R1 may have a protective
effect on the process of lacunes, in which the upregulation of sTNF-R1 can improve the
increases in infarct volume after middle cerebral artery occlusion, according to data from
mouse models [76].
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2.4. Correlation between Biomarkers and CMB

CMB lesions may represent hemosiderin-laden macrophages in perivascular tissue,
which is consistent with the vascular leakage of blood cells [2]; therefore, the researchers
have focused on the endothelial dysfunction.

Endothelial Dysfunction-Related Biomarkers

A study has demonstrated that the mid-regional pro-adrenomedullin (MR-proADM)
level is associated with the occurrence of cortical CMBs and the number of CMBs (p < 0.01).
Furthermore, a higher MR-proADM level is associated with increased odds of having
≥3 CMBs, after adjustment for clinically relevant variables (OR = 2.04, p = 0.039) [44].
Firstly, the MR-proADM, a marker of vascular endothelial dysfunction, is associated with
CMB, possibly through cerebral vascular vulnerability and cerebral arteriolosclerosis and
microinfarctions. In addition, elevated MR pro-ADM levels may be regarded as a secondary
response to endothelial injury caused by CSVD, which is accompanied by the pathological
deposition of amyloid protein [77].

Another study has suggested that high plasma lipoprotein-associated phospholipase
A2 (Lp PLA2) may be a potential and specific biomarker to predict cognitive impairment
in CMB patients (ROC = 0.693, p < 0.0001), and the number of CMBs significantly medi-
ates the relationship between Lp PLA2 and cognitive decline ((indirect effect = −0.017,
p = 0.031) [55]. In the central nervous system, Lp-PLA2 induces the loss of pericytes,
facilitated by the promotion of oxidative stress and immune responses, which disrupts
the blood–brain barrier and allows harmful substances and blood cells to leak into the
brain. Therefore, the BBB dysfunction may be involved in the occurrence of CMB, which
ultimately leads to the development of cognitive impairment.

In addition, some researchers have focused on the relationship between CMB and
the biomarkers of the heart and kidneys. A study enrolling patients with hypertension
and CMB has shown that after adjustment for clinical confounding factors, the estimated
glomerular filtration rate (eGFR) (OR = 1.95, p < 0.05) and the urinary albumin/creatinine
ratio (UACR) (OR = 2.25, p < 0.01) are independently associated with the prevalence of deep
or infratentorial CMBs, while CysC is independently associated with CMBs in the deep
or infratentorial (OR = 2.59, p < 0.01) and lobar regions (OR = 1.57, p < 0.05) [12]. Another
study has explored the possibility that patients with higher N-terminal probrain natriuretic
peptide (NT proBNP) levels have a greater rate of incident CMBs during a mean follow-up
of 2 years (OR = 2.26, p < 0.05) [39]. Hypertension partially explains the association between
eGFR, UACR, CysC, plasma NT-proBNP, and incident CMBs as hypertension results in
damage to the end organs, such as the brain, heart, and kidneys.

2.5. Correlation between Biomarkers and RSSI

The recent small subcortical infarcts (RSSI) refer to neuroimaging evidence of recent
infarction in the territory of one perforating arteriole. The exact underlying mechanism
of RSSI is still a controversial issue and may be associated with endothelial and astrocyte
dysfunction and neuron injury [1].

2.5.1. Endothelial Dysfunction-Related Biomarkers

Cerebral hypoperfusion A study has shown that high-sensitivity cardiac troponin T
(hs-cTnT) is associated with cortical infarction events (OR = 73.84, p < 0.05), independently
of demographics and cardiovascular risk factors [39], and possibly results from atrial fibril-
lation or left ventricular dysfunction, accompanied by cardio-embolism and inflammation.
Lacunar infarction is independently associated with BNP levels (β = 0.635, p < 0.001), after
adjustment for clinical confounding factors [31]; the explanation for this is that the increase
in BNP levels may indicate blood stasis, a well-known condition of thrombosis, resulting
from the common concurrent drivers of CSVD, such as diabetes mellitus, hypertension,
and hyperlipidemia [78]. In addition, elevated cardiac biomarkers levels may represent
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left ventricular dysfunction, contributing to decreased cardiac output and subsequently
affecting cerebral perfusion and RSSI [79].

2.5.2. Astrocytes Dysfunction-Related Biomarkers

Glial fibrillary acidic protein (GFAP), the signature intermediate filament of astrocytes,
has been proposed as a potential biomarker in various neurodegenerative disorders includ-
ing Alzheimer’s disease [80]. Higher baseline serum GFAP (sGFAP) levels have been found
in RSSI patients compared to those of controls (187.4 vs. 118.3 pg/mL, p < 0.001) [51], with
no correlation of the sGFAP levels with the time from symptom onset to baseline blood
sampling within 13 days, which indicates that sGFAP is a sensitive marker for acute small
ischemic infarcts and is rapidly released into the blood. Blood–brain barrier dysfunction
and alterations of the glymphatic system, two promising mechanisms of CSVD, may ac-
celerate GFAP drainage into the blood in RSSI patients, resulting in GFAP being rapidly
detected [1].

2.5.3. Neurons Dysfunction-Related Biomarkers

A prospective study has indicated that NfL is positively associated with RSSI at the
baseline (73.45 vs. 34.59 pg/mL, p < 0.0001); furthermore, it has a significant association
with the time from a stroke symptom onset to blood sampling (p < 0.0001) [23]. Similarly,
another study has found that a higher change rate of NfL can predict the occurrence of
lacunar infarcts in the follow-up (OR = 1.99, p < 0.001), even after adjusting for demo-
graphics, vascular risk factors, cognitive function, and APOE
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representing hypoperfusion of a specific region, may lead to axonal damage of neurons
when the neurofilament is released rapidly and detected in the CSF and blood. These
findings show that NfL may be a potential and sensitive marker for the assessment of RSSI
occurrence and progression and may even benefit the monitoring of treatment responses
and prognosis.

2.6. Correlation between Biomarkers and Brain Atrophy

Brain atrophy is defined as a lower brain volume, which is not related to a specific
macroscopic focal injury such as trauma or infarction [1]. Because of the limited studies,
the mechanism of brain atrophy is obscure, but may be partially due to the inflammation
and axonal degeneration caused by WMH.

Higher IL-6 levels are reported to be significantly associated with lower gray matter
(p = 0.001), hippocampal volumes (p = 0.012), and increasing CSF volumes (p = 0.002), while
the associations are similar but weaker for CRP (lower gray matter, p = 0.014; hippocampal
volumes, p = 0.23; and increasing CSF volumes, p = 0.067). These findings suggest that
inflammation may be involved in brain atrophy in the elderly population [10]. Previous
studies have demonstrated that the inflammatory state may participate in the processes of
vascular and degenerative diseases and may appear earlier than clinical and neuroimaging
manifestations [81].

And there is a significant association between an elevated GDF15 level and decreased
total volume of the brain (β = -0.38, p < 0.001) and hippocampus (β = -0.003, p < 0.05) [33],
although its pathophysiology is largely unexplored. GDF15, synthesized by lesioned
neurons, plays a crucial role in inflammation in injured tissues [82]. Normalizing GDF15
function may result in the slowing of neuronal loss, possibly by protecting against stress-
induced apoptosis [83], suggesting that GDF15 may be a potential therapeutic target to
modulate the risk of brain atrophy.

In addition, it has been shown that an elevated OPN level is associated with cerebral
atrophy, including central atrophy (OR = 22.2, p < 0.05), cortical atrophy (OR = 46.4, p < 0.05),
and medial temporal lobe atrophy (OR = 49.3, p < 0.05), after adjustment for age, gender,
education, hypertension, diabetes, and heart disease [41]. Previous studies have paid more
attention to the effect of OPN on AD, reporting that the elevation of OPN is observed in
the brain and CSF, as well as the plasma of patients with AD [84]. The association between
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increased OPN levels and brain atrophy in AD suggests that OPN elevation may be a
response to neurodegeneration, possibly through the clearance of pathogenic proteins.

2.7. Correlation between Biomarkers and Combined Small Vessel Disease Score

Notably, all the neuroimaging markers of CSVD are strictly inter-related, which sug-
gests that the combined small vessel disease score may better capture the general charac-
teristics of CSVD. However, the amount of current research on the combined small vessel
disease score is limited. Serum cortisol may be an independent and significant predictor of
the total CSVD burden (OR = 1.288, p < 0.001), after adjustment for age and sex [50]. And
a large cohort study has found that participants with a moderate to severe CSVD burden
have higher plasma NfL levels compared to controls (OR = 1.71, p = 0.001) at the baseline,
and the change rate of NfL has a predictive value for the progression of the CSVD burden
in the follow-up (OR = 1.38, p = 0.011) [37].

3. Discussion

The test of blood biomarkers offers a noninvasive alternative and a method to monitor
the severity and track the progression of CSVD neuroimaging markers. Emerging findings
point to the role of the blood biomarkers related to neuro-glio-vascular unit structure
and blood–brain barrier function in CSVD, which are possibly involved in the processes
of inflammation and cerebral hypoperfusion. Earlier studies have focused on endothe-
lial dysfunction-related biomarkers, such as CRP, IL-6, and NLR, which reflect systemic
inflammation and are widely reported in various non-central nervous system diseases.
Notably, some recent studies have explored and assessed blood biomarkers related to
neurons and glial cells, the crucial components of the central nervous system, such as
NfL and GFAP. Furthermore, several prospective studies have demonstrated the potential
predictive value of NfL and GFAP for the progression of CSVD neuroimaging markers and
clinical manifestations, especially cognitive decline. Therefore, more sensitive and specific
blood biomarkers associated with the central nervous system are worthy of exploration
and verification in populations with CSVD.

In addition, most researchers who explore specific biomarkers based on prior assump-
tions overlook the fact that CSVD is recognized as being increasingly diverse and that
it is probably affected by various and unknown factors. Approaches without previous
assumptions, such as omics techniques, might be more appropriate in the exploration
of new biomarkers for CSVD, but they are rarely used in the current literature. Joan
Jiménez-Balado has used a proteomic approach to find 41 proteins significantly expressed
in participants with WMH progression compared to matched controls. Furthermore, neu-
tral ceramidase (ASAH2) is negatively associated with the progression of WMH in the
follow-up (p = 0.01) [40], which was not reported in the past. ASAH2 prevents the ac-
cumulation of ceramides through the sphingolipid metabolism hydrolyzing ceramides
pathway [85], which has been shown to be associated with AD neurological pathologies,
and consequently affects cognitive function [86]. In addition, Ke-Jin Gao has isolated and
identified exosomes from the plasma, finding that miR-320e is an independent predictor of
moderate to severe WMH (OR = 0.452, p = 0.006) with the potential to be a novel biomarker
for CSVD [54]. MiR-320e has been extensively reported in inflammation and oxidative
stress injury, and it plays an important role in various ischemic diseases [87]. However, the
relationship between miR-320e and CSVD was first revealed, possibly through targeting
matrix metalloproteinase-9 (MMP-9) and reducing the extracellular matrix damage, which
consequently leads to BBB dysfunction [88]. Accordingly, omics techniques expand the
scope of blood biomarkers in CSVD patients and provide clues for further studies that
explore the mechanisms of diseases.

The exploration of the blood biomarkers will provide more evidence related to the
pathophysiology and mechanism of CSVD. However, the research in humans has identified
several manifestations of CSVD, including dysfunctional blood flow and interstitial fluid
drainage, especially in the glymphatic system, which may impede the clearance of metabo-
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lites from tissues. And researchers have regarded cerebral amyloid angiopathy (CAA) and
several monogenic small vessel diseases as protein elimination failure angiopathies [1,89].
Therefore, we should pay more attention to blood biomarkers related to the cerebrospinal
fluid (CSF) circulation and glymphatic system, the vital pathway for waste clearance from
the neural tissue to maintain normal brain function [90].

Several limitations should be considered when interpreting the results. Firstly, most
blood biomarkers can be observed in several disorders, indicating that these biomarkers
lack specificity for CSVD diagnosis. Secondly, there is a significant variation in the included
studies, with heterogeneity in the criteria of the participants and the potential for pub-
lication bias, owing to the observational nature of most studies. Thirdly, the changes in
blood biomarkers over time are not assessed and most of studies are cross-sectional, which
impedes the further exploration of the longitudinal association between blood biomarkers
and CSVD neuroimaging markers. Further prospective studies are required to provide
evidence for causality.

4. Conclusions

Many blood biomarkers have the potential to be used in the assessment of the severity
of CSVD and in the monitoring of the progression of CSVD. More future studies are needed
to investigate the longitudinal evaluation of these blood biomarkers for diagnosis and
prognosis in CSVD patients. Moreover, studies with a relatively large population-based
cohort would be required to confirm the clinical utility of these biomarkers.
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