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Abstract: As games have been applied across various fields, including education and healthcare,
numerous new games tailored to each field have emerged. Therefore, understanding user behavior
has become crucial in securing the right players for each type of game. This study provides valuable
insights for improving game development by measuring the electroencephalography (EEG) of game
users and classifying the frequency of game usage. The multimodal mobile brain-body imaging
(MOBI) dataset was employed for this study, and the frequency of game usage was categorized into
”often” and ”sometimes”. To achieve decent classification accuracy, a novel bimodal Transformer
architecture featuring dedicated channels for the frontal (AF) and temporal (TP) lobes is introduced,
wherein convolutional layers, self-attention mechanisms, and cross-attention mechanisms are in-
tegrated into a unified model. The model, designed to differentiate between AF and TP channels,
exhibits functional differences between brain regions, allowing for a detailed analysis of inter-channel
correlations. Evaluated through five-fold cross-validation (CV) and leave-one-subject-out cross-
validation (LOSO CV), the proposed model demonstrates classification accuracies of 88.86% and
85.11%, respectively. By effectively classifying gameplay frequency, this methodology provides
valuable insights for targeted game participation and contributes to strategic efforts to develop and
design customized games for player acquisition.

Keywords: deep learning; electroencephalography; gaming industry; classification; Transformer

1. Introduction

The introduction of video games has demonstrated a consistent upward trend, as evi-
denced by recent literature [1]. Furthermore, rapid advancements in computing technology
have led to significant changes in the gaming industry [2], transforming games from mere
forms of entertainment into significant tools in education, medicine, work management,
and simulations [3]. In order to design a game that aligns with specific objectives, it is
essential to objectively measure and analyze users’ cognitive actions during gameplay and
reflect them in game design. Previously, game experiences were primarily assessed through
subjective evaluations, such as questionnaires [4]. But efforts are being made to measure
and analyze more objective biometric data [5]. In this paper, we aimed to conveniently
acquire electroencephalography (EEG) data using a portable EEG device and enhance the
accuracy of analysis using a deep learning model. EEG measured during gameplay can
also be used to determine whether the game was “often” or “sometimes” used in the past.
In other words, it is possible to classify whether a specific game is frequently used, serving
as an objective indicator to determine interest in the game.

Recent research has specifically examined the effects of video games on mental health
and cognitive development, revealing that video games have diverse impacts on cognitive
abilities across various age groups. For example, it has been found that children who engage

Brain Sci. 2024, 14, 282. https://doi.org/10.3390/brainsci14030282 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14030282
https://doi.org/10.3390/brainsci14030282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0009-0003-2530-078X
https://orcid.org/0000-0002-6490-9825
https://doi.org/10.3390/brainsci14030282
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci14030282?type=check_update&version=1


Brain Sci. 2024, 14, 282 2 of 13

frequently in video gaming demonstrate improved cognitive abilities, including impulse
control and working memory [6]. These findings are significant because they highlight
the potential of video games as cognitive development tools during crucial developmental
stages. Moreover, video games have shown promise in therapeutic contexts, particularly in
improving attention spans among children diagnosed with attention deficit hyperactivity
disorder (ADHD) [7]. This indicates that when video games are appropriately designed
and utilized, they can serve as supplementary treatments for managing and potentially
alleviating symptoms linked to ADHD. Research focusing on older adults suggested that
video gaming improved cognitive functions in individuals in their 60s to levels similar to
those in their 20s, and these effects lasted for up to six months after gameplay cessation [8].
Comparative studies of the brains of avid gamers, experienced in games such as “Starcraft”
and “Warcraft”, compared with those with minimal gaming exposure, indicated heightened
frontal lobe activity and enhanced learning capabilities in gamers during testing [9].

However, excessive video gaming can lead to addiction, significantly affecting health,
academic performance, and social life. This is partly due to the role of dopamine, a neuro-
transmitter linked to pleasure and motivation [10]. Normally, dopamine boosts learning,
memory, and motor skills [11]. Achievements trigger dopamine release, rewarding and
motivating continued activity [12,13]. Conversely, excessive dopamine from activities like
gaming can cause addiction. The striatum, crucial for learning and behavior, releases more
dopamine during gaming, which may contribute to addictive patterns [14,15]. Further-
more, dopamine is implicated in various psychological disorders such as ADHD, autism,
bipolar disorder, Parkinson’s disease, and schizophrenia, where an overactive dopamine
system is common [16,17]. This highlights the complex effects of dopamine on behavior
and psychological health. In light of these discussions, it becomes evident that video games
embody a dual nature. This dichotomy reveals that, beyond temporary gratification, video
games significantly enhance cognitive skills, foster creativity, and aid in the development
of social competencies. Such positive outcomes hinge on the type of video games played
and the frequency of engagement, thus challenging the conventional perception of gaming
as inherently harmful. This nuanced understanding underscores the importance of a bal-
anced approach to video gaming, recognizing its potential as a beneficial tool when used
judiciously and in the appropriate contexts.

We utilized the globally acclaimed video game Minecraft, a sandbox game celebrated
for its popularity and versatility, having sold over 100 million copies since its release [18].
Minecraft has served not only as a source of entertainment but also as a medium for
creativity, learning, and social interaction [19]. Exploration in virtual environments like
Minecraft enhance hippocampus-related memory, fostering children’s thinking and cre-
ativity [20]. The open-ended nature of the game also encourages innovative thinking,
problem-solving, and collaborative learning, making it an increasingly popular educa-
tional tool worldwide [21]. Additionally, numerous studies have demonstrated that video
gameplay can enhance task performance abilities in attention and perception tasks [22,23],
including enhancing creativity, problem-solving skills, object detection abilities, visual-
motor coordination, and spatial attention [24,25]. Therefore, classifying children based
on gameplay frequency can provide insights into their cognitive, social, and emotional
development [26]. Moreover, in order to further improve the gaming experience, assessing
players’ cognitive states is crucial, for which EEG, measurable through wearable sensors,
has been utilized. Alongside other neurophysiological tools, such as functional magnetic
resonance imaging (fMRI) and magnetoencephalography (MEG), EEG plays a vital role
in elucidating complex brain functions [27]. EEG stands out for high temporal resolution,
offering significant advantages for precise and real-time monitoring of neural activities [28].

Our aim was to conduct a comprehensive analysis of gamers by distinguishing their
gameplay frequency, utilizing a sophisticated deep learning model based on EEG. The
proposed model separates and individually trains electrodes located in the frontal and
temporal lobes using a convolutional neural network (CNN), recognizing that data from
different brain regions offer unique insights. The Transformer module, employing self-
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attention and cross-attention mechanisms, extracts channel-wise global features for EEG
data classification. This classification of EEG patterns between frequent and infrequent
gamers is crucial for understanding user preferences and gameplay styles, informing game
development and design, and exploring the potential of video games in cognitive therapy.
This study suggests a new paradigm where regional EEG data-based user analysis helps
games transcend mere entertainment, serving as tools for cognitive enhancement.

The expected contributions are as follows: (1) Our model advances neuroscientific
approaches by proposing a new architecture that considers brain functions based on
the location of EEG channels. The unique structure of this model treats channels as
independent entities according to which brain regions they were acquitted from, enabling
a nuanced analysis of cognitive and perceptual dynamics related to gaming activities.
(2) The integration of convolutional layers, self-attention mechanisms, and cross-attention
mechanisms within the region-dependent bimodal Transformer architecture represents
a significant methodological advancement. This architecture facilitates the extraction
of both local and global features and effectively utilizes the frontal and temporal lobe
channels. Therefore, our approach not only brings about performance enhancements but
also provides a clear direction for future research in applying complex neural network
architectures to neuroscientific data.

The remaining paper is organized as follows. In Section 2, we describe the dataset used
in the experiments, outline the preprocessing steps, and elucidate the proposed bimodal
Transformer classification model. In Section 3, we present the classification results of the
proposed model for the game frequency categories “sometimes” and “often”, and compare
its accuracy with other models. The experimental results are discussed in Section 4. The
conclusions are presented in Section 5.

2. Materials and Methods
2.1. EEG Dataset

We used the multimodal mobile brain-body imaging (MOBI) dataset introduced by
Ravindran et al. [29] in our study. This dataset includes data from two sessions: a 20 min
Minecraft gameplay session and a 1 min resting interval. EEG data were collected using
a Muse EEG headband, operating at a sampling frequency of 220 Hz. The Muse EEG
headband features four active electrodes and employs a reference electrode positioned at
the central forehead area, denoted as Fpz. EEG recordings were obtained from four channels
using electrodes TP9, AF7, AF8, and TP10 at a sampling rate of 220 Hz. As illustrated in
Figure 1, the even-numbered channels, AF8 and TP10, represent electrodes located in the
right hemisphere of the brain, and the odd-numbered channels, AF7 and TP9, correspond
to electrodes situated in the left hemisphere of the brain. AF7 and AF8 are situated in the
frontal lobe, whereas TP9 and TP10 are located in the temporal lobe. Our focus in this study
was on EEG data recorded during the 20 min Minecraft gameplay session.

Figure 1. Block diagram for EEG-based gameplay frequency classification.
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Our research aimed to analyze the EEG signals captured during Minecraft gameplay
sessions to develop an efficient classification scheme for individuals based on the distinct
characteristics of their EEG signals. The primary goal was to explore potential changes in
EEG patterns related to gameplay frequency. Specifically, we aimed to differentiate the
frequency of Minecraft gameplay using the collected EEG data.

Table 1 presents the information of the EEG dataset for our experiments. The EEG data
were obtained from 86 participants, consisting of 66 males and 20 females, aged between 6
and 16 years, with an average age of 8.8 and standard deviation of 2.40. Each participant’s
EEG data were meticulously labeled according to their gameplay frequency for research
purposes. Among these participants, 62 were categorized as “often” gamers, and the
remaining 24 were classified as “sometimes” gamers.

Table 1. Information of the EEG dataset for our experiments.

Information of the EEG Dataset for Our Experiments

Number of participants 86
Number of males 66

Number of females 20
Age of participants 8.8 ± 2.40

Class Played game often/sometimes
EEG device Muse EEG headband

Recording EEG channel TP9, AF7, AF8, TP10 (4 channel)
Sampling rate 220 Hz

2.2. Preprocessing

During the preprocessing stage, the raw EEG data collected via wireless headsets
were inherently noisy, posing challenges to extracting meaningful information. EEG data
can be affected by various artifacts, necessitating a preprocessing phase to enhance signal
quality. We employed a fourth-order Butterworth band-pass filter with a passband of
1–50 Hz, a common denoising method, to address noise interference [30]. This filter
effectively removed artifacts caused by biological movements. Following filtration, the
data underwent downsampling. The signals were segmented into 2 s window frames,
which were then inputted into the proposed model for further analysis. The length of each
segment was calculated using the following formula:

Length of each segment = {seconds} × {sampling rate} (1)

2.3. Bimodal Transformer Structure Featuring AF and TP Channels of EEG Data

The proposed model is a composite of convolution integrated with self-attention and
cross-attention mechanisms, designed to leverage both local and global features in EEG data
for accurate classification. Figure 2 illustrates the overall structure of our proposed model.

In the proposed methodology, convolution operations are applied to the AF and TP
channels, with deliberate attention to both channel and temporal dimensions. The data
from these distinct channels contain local information of the raw EEG data. The convolution
mechanisms not only extract localized information but also reduce the resolution of the
feature maps, streamlining the computational load for the subsequent self-attention layer.
This approach also enables the effective extraction of global information from feature maps
already rich with localized content. Following these operations, the cross-attention process
extracts relational similarities between feature maps along the channel and temporal axes.
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Figure 2. Overview of proposed bimodal Transformer architecture with regional EEG data.

2.3.1. AF and TP Channel Convolution

The initial processing involved preprocessing raw EEG signals and configuring the
1D signals from two TP channels and two AF channels into segments of 220 length, sub-
sequently structuring the input shape into a 2D signal in the format of {length of each
segment, number of channels} for model input. As a foundational step, we divided the
channels associated with the frontal lobe (AF7 and AF8) and temporal lobe (TP9 and TP10)
to facilitate individual convolution operations. Figure 3 illustrates the convolution proce-
dures independently performed on the channel and temporal axes for each of the channels
within the frontal and temporal lobes. The temporal block consists of 11 layers, comprising
a combination of convolutional kernels and max pooling operations. Specifically, it includes
32 kernels of size 20× 1 and 3 sets of 64 kernels of size 3× 1 paired with 2 × 1 max pooling.
Additionally, the block contains 2 sets of 64 kernels of size 3 × 4, each followed by a
2 × 1 max pooling operation. In contrast, the channel block comprises 9 layers structured
around 64 kernels of size 1× 4, followed by 2 × 1 max pooling. This setup is complemented
by 3 sets of 64 channels of size 3 × 1, each accompanied by a 2 × 1 max pooling operation.
The block concludes with a single 2× 1 max pooling layer. This differentiation in processing
highlights the complexity and region-specific functionalities of the brain. The frontal lobe,
crucial for strategic thinking, problem-solving, decision-making, and emotional response
regulation, is particularly relevant in gaming contexts requiring swift thinking and strategic
actions [31]. Specifically, the right frontal cortex, a part of the frontal lobe, is known to
be involved in regulating positive emotions, which are crucial for maintaining a positive
gaming experience and making strategic decisions [32]. The left frontal lobe plays a crucial
role in higher cognitive functions, including language processing, problem-solving, mem-
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ory tasks, and the regulation of social behavior and decision-making [33]. Similarly, the
temporal lobe, essential for auditory processing and memory retention, plays a vital role in
navigating the complex dynamics of gaming [34]. The left temporal lobe is associated with
the learning and retention of verbal materials, while the right temporal lobe is involved in
the processing of non-verbal materials [35].

Figure 3. Convolution process distinguished by channel and temporal axes for AF and TP channels.

This approach acknowledges the distinct functionalities of the brain regions and their
significance in gaming scenarios. By applying convolution operations separately on the
channel and temporal axes, the model facilitates precise feature extraction tailored to each
axis. This method enhances the ability of the model to extract relevant features, leveraging
the unique contributions of both the frontal and temporal lobes to the gaming experience.

2.3.2. Self-Attention and Cross-Attention Mechanisms

The self-attention block performs a 32-dimensional 1 × 1 convolution operation on
the query, key, and value components. Subsequently, a multi-head attention mechanism
with 4 heads is employed, followed by establishing a residual connection with the feature
map from before the self-attention operation. The self-attention mechanism deployed in
our experiments is characterized by 4 heads, 128 dimensions rate. For the TP axis, the
self-attention process constructs query, key, and value vectors through dense layers from
the TP input tensor. Subsequently, it performs a matrix multiplication between the query
and the transposed key, applies a softmax function, and then carries out another matrix
multiplication with the value. Similarly, the self-attention mechanism for the AF axis
follows the same procedure with the AF input tensor.
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By dissecting features derived from convolutions across different dimensions of the AF
and TP channels, the model fosters interactions among these independent features, promot-
ing a multimodal understanding rather than a singular interpretation. Consequently, the
model output embodies both local and global inductive biases, fundamentally enhancing
its generalization. This dual inductive bias arises from considering localized data while in-
corporating insights from a global perspective, significantly augmenting the generalization
capabilities of the model. Additionally, the concurrent use of self-attention mechanisms
and CNN leads to notable enhancements in memory efficiency.

After the self-attention block, a cross-attention block is implemented, mirroring the
structure of the self-attention mechanism. In this setup, the queries from the AF and TP
channels are crossed, enabling an interactive attention mechanism across various channel
features. In our experiments, the cross-attention mechanism on the TP axis utilizes the
output tensor from the TP’s self-attention, processed through dense layers, as the query.
Meanwhile, the key and value are derived from the output tensor of the AF’s self-attention,
also processed through dense layers. Conversely, the cross-attention mechanism on the
AF axis employs the output tensor from the AF’s self-attention as the query and uses the
processed output tensor from the TP’s self-attention for the key and value. This bidirectional
cross-attention approach facilitates a nuanced exchange of information between the TP and
AF axes, enhancing the model’s ability to capture complex interdependencies within the
data. This cross-attention approach facilitates more comprehensive and nuanced feature
integration between the distinct channel representations from different regions. This is
particularly beneficial when collectively analyzing aspects from disparate domains. The
essence of cross-attention lies in discerning correlations between different channels, as
observed in this study between the AF channels in the frontal lobe and TP channels in
the temporal lobe. By examining specific points within a channel, cross-attention infers
correlations with the entirety of the channel, facilitating an understanding of the interactions
of specific EEG patterns with the overall EEG pattern over time.

Therefore, this model demonstrates superior capability in recognizing and classifying
complex EEG patterns more effectively. In addition to channel-specific understanding,
cross-attention extracts correlation information to discern interactions and relationships
between different channels, enabling the model to analyze more intricate EEG patterns.
Therefore, through a more precise analysis facilitated by cross-attention, the model can
derive more reliable results concerning EEG data.

3. Results

To evaluate the efficacy of our proposed approach, we employed five-fold cross-
validation (CV) and leave-one-subject-out cross-validation (LOSO CV) methods. The
five-fold CV involves dividing the entire dataset into five equal parts, using each part as
test data and the remaining parts as training data, and repeating this process five times
to derive the average results of each experiment. LOSO CV uses each subject’s data once
as test data and the data from all other subjects as training data. Performance metrics,
including accuracy, precision, recall, F1 score, and area under the curve (AUC) of the
receiver operating characteristic (ROC) curve, were utilized to assess the efficacy of the
model. The AUC serves as a widely accepted metric for test accuracy evaluation, with a
value close to 1 indicating excellent performance. The terms TP, TN, FP, and FN represent
true positive, true negative, false positive, and false negative, respectively. Accuracy,
precision, recall, and F1 score are computed using Equations (2)–(5), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
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F1–score = 2× Precision× Recall
Precision + Recall

(5)

3.1. Classification Results of the Proposed Model Comparing to Existing Models

This study utilizes the MOBI dataset [29] to evaluate our proposed model against evalu-
ated models such as Ravindran et al. [29], EEGNet [36], BPR-STNet [37], and CoSleepNet [38]
through the five-fold CV and LOSO CV methods. The comparative models are as follows:

• Ravindran et al. [29] is designed with separate spatial and temporal convolutions.
• EEGNet [36] features a compact and efficient CNN architecture with depthwise sepa-

rable convolutions.
• BPR-STNet [37] is a neural architecture designed for the identification and classification

of EEG data. It employs depthwise separable convolutions for efficient and effective
feature extraction from spatiotemporal signals.

• CoSleepNet [38] introduces a cutting-edge hybrid architecture that combines CNN
and long short-term memory (LSTM) networks, specifically designed for the automatic
classification of EEG sleep stages.

The five-fold CV and LOSO CV results are presented in Tables 2 and 3, comparing the
proposed model with the evaluated models. Table 2 presents a comparative evaluation of
the proposed model with other existing models using the average results of the five-fold
cross-validation. This comprehensive comparison distinctly highlights the superior perfor-
mance of our proposed model over other established methods. An analysis of the results
revealed that our model achieved the highest classification accuracy of 88.86%. In contrast,
the Ravindran et al. [29], EEGNet [36], BPR-STNet [37], and CoSleepNet [38] exhibited
lower accuracies, achieving 81.83%, 76.60%, 79.32%, and 78.75%, respectively. This stark
contrast highlights the superior predictive performance of our proposed model compared
with the other models assessed. Collectively, the performance indicators corroborate the
superior efficacy of the proposed model.

Table 2. Five-fold cross-validation classification results for the proposed model compared to the
evaluated models.

Model Accuracy (%) F1 Score (%) Precision (%) Recall (%)

Proposed model 88.86 85.81 86.03 87.67
Ravindran et al. [29] 81.83 78.81 77.48 80.64

EEGNet [36] 76.60 73.01 73.02 73.00
BPR-STNet [37] 79.32 73.53 74.41 73.91
CoSleepNet [38] 78.75 72.86 71.23 76.25

Table 3. Leave-one-subject-out cross-validation classification results for the proposed model com-
pared to the evaluated models.

Model Accuracy (%) F1 Score (%) Precision (%) Recall (%)

Proposed model 85.11 83.29 81.75 84.89
Ravindran et al. [29] 77.63 74.63 74.01 75.27

EEGNet [36] 75.80 72.24 72.45 72.03
BPR-STNet [37] 76.16 72.75 72.71 72.78
CoSleepNet [38] 75.53 74.08 69.02 79.95

Table 3 illustrates a comparative evaluation between our proposed model and existing
models using the LOSO CV method. In this approach, we utilized 86 participants, forming
a training set from the data of 85 participants and using the remaining participant for
testing. This procedure was meticulously repeated 86 times to ensure each participant
was tested individually. The results from the LOSO CV demonstrate that our proposed
model achieved an accuracy of 85.11%. The accuracy of our model shows an improved
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performance compared to other models. These findings underscore the superior predic-
tive capability of our model, highlighting its effectiveness in accurately classifying EEG
data. This demonstrates our proposed model’s superior predictive performance over the
evaluated models, with overall performance metrics proving its effectiveness.

Figure 4 presents a comparison of the ROC curves for the proposed model and the
evaluated models. The ROC curve serves as a graphical representation to evaluate the
performance of binary classifier systems, depicting the trade-off between the true positive
and false positive rates, thereby providing insights into the sensitivity and specificity of the
model. Specifically, Figure 4A reveals an AUC score of 0.95 for the five-fold ROC curve of
the proposed model, while Figure 4B shows an AUC of 0.93 for the LOSO CV ROC curve
of the proposed model. These outcomes indicate superior performance, with scores closest
to the ideal value of 1 among all comparative models. The proximity of these scores to the
ideal value signifies the proposed model’s outstanding ability to differentiate between true
positives and false positives. Higher AUC scores denote the enhanced capability of the
model to accurately distinguish between classes, underscoring the exceptional performance
of the proposed model.

Figure 4. Comparison of ROC curve for the proposed model and the evaluated models: (A) Five-fold
CV ROC curves. (B) LOSO CV ROC curves.

Statistical Analysis according to the Classification Results

Figure 5 presents a statistical analysis of performance discrepancies between the
proposed model and evaluated models, employing the non-parametric Mann–Whitney U
test to assess the results from both the five-fold CV and LOSO CV.

For the five-fold CV presented in Figure 5A, we analyzed the accuracy per fold for
our proposed model compared to Ravindran et al. [29], EEGNet [36], BPR-STNet [37], and
CoSleepNet [38]. For the LOSO CV depicted in Figure 5B, we assessed the accuracy for
each of the 86 participants, comparing our model against Ravindran et al. [29], EEGNet [36],
BPR-STNet [37], and CoSleepNet [38].
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Figure 5. Mann–Whitney U Test results for accuracy comparisons between the proposed model and
evaluated models: (A) Comparison of five-fold CV accuracy between the proposed model and other
models. (B) Comparison of LOSO CV accuracy between the proposed model and other models.
* (star) denotes statistically significant differences between the proposed model and other models
(p < 0.01).

Our findings indicate that the proposed model demonstrated statistically significant
accuracy improvements over all evaluated models in both the five-fold CV and LOSO CV
results (p < 0.01). The statistical significance, indicated by p-values less than 0.01, strongly
validates the superior performance of our proposed model in terms of accuracy. This
emphasizes its potential efficiency and reliability in classification tasks across different
validation methodologies.

4. Discussion

In the modern landscape of video game research, integrating neurophysiological
data, particularly EEG recordings, into user behavior analysis presents a groundbreaking
approach to comprehending the intricacies of gaming engagement. This study leverages
EEG data recorded during gaming sessions to classify the frequency of gameplay among
users using the dataset amassed by Ravindran et al. [29]. Our investigation validates the
premise that EEG data, providing rich insights into brain electrical activity, significantly
enhance the precision of predicting gameplay frequency. This provides a robust framework
for analyzing player behavior from a neuroscientific perspective.

This model achieved a notable improvement compared to the accuracy of other evalu-
ated models. Previous studies have primarily conducted research using CNNs with EEG
signals [39,40]. We have advanced this approach by proposing a new architecture that
considers brain functions according to the position of the EEG channels. Our architecture
uniquely combines convolution layers with self-attention and cross-attention mechanisms,
significantly enhancing the predictive accuracy of the model. The significant improvement
in predictive performance is attributed to the innovative architecture of our model, which
seamlessly integrates convolutional layers with self-attention and cross-attention mecha-
nisms. This fusion not only leverages the feature extraction capabilities of the CNN but
also exploits the attention mechanisms’ dynamic feature prioritization, thereby enhancing
the interpretability and predictive accuracy of the model.

Our model is structured to treat the AF and TP channels as separate entities, reflecting
their distinct roles in cognitive processing and auditory functions, respectively. This design
is crucial, considering the frontal lobe’s association with decision-making, problem-solving,
and cognitive control, and the temporal lobe’s involvement in memory and auditory pro-
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cessing. This differentiation is particularly significant in gaming contexts where cognitive
and perceptual processes are highly engaged. Moreover, empirical findings support the
emphasis on these specific brain regions, indicating that skilled players demonstrate in-
creased activity in these areas during intense gameplay, underscoring their pivotal role in
gaming performance and engagement.

To implement this approach, our preprocessing pipeline segregates EEG data into
AF and TP channels before independently applying convolution operations to each chan-
nel. This process facilitates feature extraction along both the channel and temporal axes,
enabling a comprehensive analysis of EEG signals. Subsequently, the extracted features
undergo synthesis through self-attention mechanisms, which assign greater weight to
more pertinent features. This is followed by cross-attention mechanisms that assess the
interplay between the frontal and temporal lobes. This sophisticated analysis framework
accommodates the inherent individual variability in EEG data and significantly improves
the generalization capabilities of the model across diverse user populations.

The implications of our findings extend beyond theoretical contributions to practical
applications in game design and development. By elucidating the neurophysiological
underpinnings of gameplay frequency, our model sets the stage for games to dynamically
adapt to the cognitive and emotional states of the player, enhancing user engagement and
personalizing the gaming experience. Furthermore, the insights gleaned could inform the
design of neurofeedback games, where real-time brain activity influences game dynam-
ics, providing a novel approach to sustaining player interest and engagement through
personalized gameplay feedback.

Limitations and Future Research

We designed an EEG classification model with high classification accuracy by con-
sidering the independent yet correlated characteristics of the frontal and temporal lobe
channels in EEG signals. However, our study has several limitations. Firstly, for real-
world applications in resource-constrained cases such as embedded systems, constructing a
lightweight model is necessary. To this end, linear attention can be used as a substitute for
the quadratic attention module, and it is necessary to use optimized kernel sizes depending
on the classification application.

Additionally, the limited sample size we employed might restrict the applicability
of our findings across diverse demographics and gaming habits. We plan to recruit a
larger, more diverse participant pool in future studies, aiming to encompass a broader
age range and various gaming experiences across different cultural backgrounds. This
approach is crucial for validating the predictive reliability of our neuroscientific model
across various populations, thereby gaining deeper insights into the relationship between
gaming behavior and its neurophysiological correlates. Moreover, integrating techniques
like variable-frequency complex demodulation (VFCDM) will allow for a more detailed
exploration of the dynamic aspects of EEG signals [41]. This enhancement in our analytical
precision will enable us to more distinctly identify varying brain states. Leveraging this,
we plan to study cognitive states during gameplay across a diverse array of genres, from
strategy and puzzles to action-adventure and role-playing games.

5. Conclusions

This study introduces a novel system for effectively classifying the frequency of video
gameplay among users by leveraging EEG data and a deep learning bimodal Transformer
model. Our approach involves the integration of convolution, self-attention, and cross-
attention mechanisms into a bimodal Transformer model, specifically designed to analyze
regional EEG data. We recognize the distinct roles that different brain regions play in
cognitive processes and behavior patterns, hence treating the AF and TP lobe channels as
separate domains to account for their functional differences. By analyzing the correlation
results of these channels, our proposed model achieved impressive classification accuracies
of 88.86% with five-fold CV and 85.11% with LOSO CV, surpassing the performance of
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previously reported models. Importantly, our research has broader applications beyond
the specific games studied here and can be a valuable tool for assessing the educational
effectiveness of games used for educational purposes.
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