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Abstract: In this paper, we discuss how the clustering analysis technique can be applied to analyze
functional magnetic resonance imaging (fMRI) time-series data in the context of glioblastoma (GBM),
a highly heterogeneous brain tumor. The precise characterization of GBM is challenging and requires
advanced analytical approaches. We have synthesized the existing literature to provide an overview of
how clustering algorithms can help identify unique patterns within the dynamics of GBM. Our review
shows that the clustering of fMRI time series has great potential for improving the differentiation
between various subtypes of GBM, which is pivotal for developing personalized therapeutic strategies.
Moreover, this method proves to be effective in capturing temporal changes occurring in GBM,
enhancing the monitoring of disease progression and response to treatment. By thoroughly examining
and consolidating the current research, this paper contributes to the understanding of how clustering
techniques applied to fMRI data can refine the characterization of GBM. This article emphasizes the
importance of incorporating cutting-edge data analysis techniques into neuroimaging and neuro-
oncology research. By providing a detailed perspective, this approach may guide future investigations
and boost the development of tailored therapeutic strategies for GBM.

Keywords: glioblastoma; functional MRI; GBM imaging; brain activity; BOLD signal; GBM prognosis;
personalized treatment

1. Introduction

Gliomas are primary tumors of the central nervous system (CNS), which, on a global
scale, maintain an unfavorable prognosis despite advancements in diagnostic and thera-
peutic methods over recent decades [1].

This group of tumors is highly heterogeneous, exhibiting distinct biological proper-
ties, prognoses, and treatment strategies. The classification and grading of gliomas have
undergone significant evolution since their initial categorization in 1926 by Bailey and
Cushing [2].

The modern categorization of gliomas based on the WHO Classification of CNS
Tumors was most recently revised in 2021. Since the 2016 edition of the WHO classifica-
tion, gliomas have been classified based not only on histopathologic features but also on
molecular parameters [3]. In the 2021 edition, the classification of diffusely infiltrating
gliomas in adults involves considerations of histology, isocitrate dehydrogenase (IDH)
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mutation status, and other significant molecular changes, leading to the identification of
three primary types.

The focus of this study is on the third type, namely WHO grade 4, IDH-wildtype
glioblastoma (GBM). GBM represents the most prevalent malignant primary brain tumor
in adults. Tumors of this category are typically diffusely infiltrating, characterized by a
high cellular density and pleomorphism, exhibiting mitotic activity, and featuring either
microvascular proliferation, necrosis, or a combination of both [4]. Some other GBMs lack
high-grade histologic features and otherwise contain a specific molecular alteration such as
epidermal growth factor receptor (EGFR) amplification, telomerase reverse transcriptase
(TERT) mutation, or chromosome 7 gain/chromosome 10 loss [5]. Therefore, the WHO
defines GBM as a grade IV cancer that is typically malignant, mitotically active, and
predisposed to necrosis.

To understand the social burden of the disease, the epidemiology of GBM must be
primarily considered. GBM accounts for 14.5% of all CNS tumors and 48.6% of malignant
CNS tumors. It has an annual incidence of about 1/33,330. The prevalence is estimated to
be about 1/10,000. They can occur at all ages, but in 70% of cases, patients are diagnosed at
an age between 45 and 70 years [6].

The treatment of GBM should be based primarily on aggressive resection; partial
exeresis is ineffective and often a source of neurological deficits anyway; surgery is believed
to favorably modify the prognosis if at least 80% of the volume of the tumor is removed [7].
Unfortunately, these conditions are not always achievable, and eloquent areas need to be
well defined by suitable imagining techniques before surgery [8]. In terms of resection, a
recent study analyzed the prognostic value of a glioblastoma surgical grading system based
on residual contrast-enhancing (CE) tumors. Karschnia and colleagues collected data from
1008 patients with newly diagnosed IDHwt glioblastoma treated with radiochemotherapy
and found that patients with a maximal CE resection had better outcomes than those with
a submaximal resection or biopsy. In addition, an extensive resection of a non-CE tumor
was associated with improved survival, defining a new category called “supramaximal
CE resection”. The study suggests that these classification categories could be valuable
for stratification in clinical trials and that the removal of a non-CE tumor beyond the
boundaries of CE could offer additional survival benefits [9].

To date, despite diagnostic and treatment efforts, GBM remains an incurable disease
with a median survival of 15 months [10]. The rise in new functional neurosurgical tech-
niques such as LITT and FUS in certain settings represents an example of the operative
directions aimed at improving the prognoses of these patients [11]. GBM exhibits aggres-
sive behavior largely due to its inherent intratumoral heterogeneity, which includes diverse
cell populations and components of the microenvironment. This heterogeneity influences
key cancer-related functions. Although “tumor heterogeneity” encompasses both intertu-
mor and intratumor differences, GBM in particular shows significant intratumor diversity,
which impacts the prognosis and response to treatment [12]. Our review delves into this
intratumoral heterogeneity, exploring its implications from histomorphology to imaging
alterations. We argue for the need to embrace technological advances to better understand
and address this heterogeneity in the management of GBM.

In fact, the objective of this study is to explore the potential and applications of
clustering techniques applied to functional magnetic resonance imaging (fMRI) time-
series data for the enhanced characterization of GBM. Recent research on neuron–cancer
interaction has revolutionized our understanding of glioma and metastasis, revealing how
tumors infiltrate intricate neuronal networks. Therefore, it is imperative to study tumor-
associated neuronal dysfunction, the impact of cancer treatments on the central nervous
system (CNS), and the interactions between the peripheral nervous system and various
types of cancer. In particular, the role of exosomes in facilitating “wireless communications”
between the nervous system and cancer cannot be overlooked [13]. We suggest that all
these aspects can be effectively assessed with fMRI clustering by establishing an important
bridge between the molecular knowledge of cancer and its clinical impact. The study aims
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to investigate how novel methods, such as clustering, can provide valuable insights into
the diverse patterns within fMRI data associated with GBM to improve the understanding
and characterization of this aggressive brain tumor.

2. Imaging of GBM

Because the presenting signs and symptoms of HGGs are similar to those produced
by other aggressive primary and metastatic brain tumors, the clinical data should be
supplemented with other information [14]. As a required next step, the purpose of neu-
roradiological diagnostics is to establish whether, in each clinical context, there is a brain
tumor or another space-occupying disease, its site, and if the tumor directly infiltrates the
parenchyma (intra-axial) or if it is external to this (extra-axial).

2.1. Traditional Imaging Tecniques

The first exam of choice remains computed tomography (CT). Tumor pathology is
recognized by CT in over 95% of brain cancers. Exceptions are small tumors, such as
micro-neuromas, and rare tumors that, while involving the parenchyma, remain isodense
compared to this [15]. When a CT scan is performed as a first imaging evaluation, the main
radiological findings of a GBM may be a large heterogeneous lesion with a mass effect on
other CNS structures such as the ventricles or the brainstem and a contralateral midline
shift [15].

An MRI scan will still have to be performed as a complementary exam to provide,
in positive cases, a better radio-anatomic demonstration of the tumor already seen in
CT [16]. With CT and MRI, in addition to the tumor lesion, changes in the parenchyma
secondary to the tumor, such as peritumoral edema, the deformation of brain structures,
and secondary hydrocephalus, may be recognized. In both TC and RM, it is necessary
to complete the study with contrast for enhanced characterization. It is already well
known that contrastographic enrichment is not specific to tumors because it is linked to an
alteration of the blood–brain barrier (BBB) that can occur in different pathological situations.
As for cancers, we need to remember how enhancement is quite characteristic in certain
histological types, but this is not an absolute rule, and therefore extreme caution must be
used for diagnosis. Classic examples of contrastographic enhancement are those of GBM
and anaplastic astrocytoma [17]. Although contrast enrichment is not always an indicator
of malignancy, as it is due to the vascular richness of the tumor, it can sometimes be used
as a surrogate marker of disease burden [18] or even to make prognostic evaluations [19].

Moreover, enrichment is not exclusive to glioma but can also occur in meningioma,
a generally benign extracerebral tumor. Therefore, in this setting, differentiating menin-
giomas with atypical conventional MRI findings from malignant intra-axial tumors can be
difficult. Calculating regional cerebral blood flow (rCBV) ratios and constructing signal
intensity–time curves may contribute to the differentiation of meningiomas from intra-axial
tumors [20]. Other diseases may exhibit similar enrichment patterns to cancers; such
examples are brain abscess or metastasis [21,22].

By considering visible density changes in CT and signal changes in MRI and correlating
these findings with clinical data, high levels of accuracy can be achieved in the diagnosis
already in vivo, but absolute certainty can only be obtained with an adequate histological
examination [23].

Recently, numerous artificial intelligence (AI) models have been developed to extract
additional information from standard imaging prior to and following surgery. This supple-
mentary information can be utilized for diagnostic, treatment, and prognostic reasons [24].

2.2. MRI Modalities for GBM Characterization

Nowadays, the gold standard for the radiographic characterization of GBM remains
MRI. Standard MRI protocols for the study of GBM must include native T1-weighted (T1w),
contrast-enhanced (T1-CE), T2-weighted (T2w), and T2-fluid-attenuated inversion recovery
(T2-FLAIR) sequences.
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Over the last decade, advanced MRI modalities have been increasingly utilized to fur-
ther characterize GBMs more comprehensively and to better choose management options.
These include multiparametric MRI sequences, such as higher-order diffusion techniques
such as diffusion tensor imaging (DTI) and MR spectroscopy (MRS). fMRI and tractography
are increasingly being used to identify eloquent cortices and important tracts to minimize
postsurgical neurological deficits [23].

According to the excitation sequence used for MRI, typical findings of GBM could be
summarized as follows (Table 1). The axial gradient echo (GRE) image depicts multiple
foci of hypointense signal “susceptibility artifacts” compatible with intratumoral blood
products [25]. The axial FLAIR-weighted image demonstrates heterogeneous mass with
a surrounding infiltrating signal abnormality, a “FLAIR envelope”. A “FLAIR envelope”
is typically a manifestation of a combination of tumor infiltration and edema [26]. In
the T1-CE axial image, there is heterogeneous irregular peripheral enhancement with a
central nonenhancing area, consistent with necrosis. The introduction of higher-order
diffusion techniques marks a significant advancement in guiding precise surgical strategies.
One such technique, diffusion tensor imaging (DTI), utilizes the anisotropic nature of
water molecule diffusion, particularly along the preferred direction, influenced by factors
like fiber density, diameter, myelin integrity, and extracellular space characteristics [27].
Anisotropy, quantified through a tensor, is reduced in conditions like axonal damage or va-
sogenic edema. DTI employs specific parameters to calculate spatial variations, generating
images that can be overlaid on anatomical ones. This method enables the reconstruction
of white matter fiber courses in three dimensions, providing a 3D representation of tracts
superimposed on morphological images [28]. Magnetic Resonance Spectroscopy (MRS)
also differentiates hydrogen nuclei in brain tissue based on chemical bonding. MRS obtains
spectra identifying macromolecules, and their concentrations aid in distinguishing cell
populations and disease features. Peaks in the spectra correspond to unique resonance
frequencies, while integral values reflect molecule concentrations in the clinical region.
Specifically, the integral of each peak reflects the concentration of the molecule in the region
of clinical interest [29]. The proton spectrum of brain parenchyma features three crucial
peaks: choline (linked to cell membrane synthesis), creatine (reflecting cellular energy
metabolism), and N-acetylaspartate (indicative of neuron and axon integrity). In brain
tumor studies, the choline peak, typically the first in the spectrum, is significant. This peak,
encompassing choline from various sources, serves as an indicator of membrane turnover
and increases in neoplastic processes or inflammation. The clinical context and additional
imaging features are essential for a precise differential diagnosis [30]. All possible imaging
techniques, and in particular specific MRI sequences, are being integrated into increasingly
standardized protocols in order to make the results obtained in clinical trials reproducible
and comparable. The International Standardized Brain Tumor Imaging Protocol (BTIP)
minimum image acquisition requirements for 1.5 T and 3 T MR systems [31] and the
aforementioned recent update of the Response Assessment in Neuro-Oncology (RANO)
criteria [9] are undoubtedly hallmarks that move in this direction. Both, in fact, suggest
significant improvements for response assessment in glioblastoma cases. These include the
incorporation of a volumetric assessment of response, the use of contrast-enhanced T1 sub-
traction maps to improve lesion visibility, the elimination of qualitative tumor assessment
requirements that do not increase, the shifting of the baseline for response assessment in
newly diagnosed glioblastoma to the postirradiation time point, and the introduction of
“treatment-agnostic” response assessment rubrics. These changes aim to better identify
pseudoprogression, pseudoraponse, and a confirmed enduring response in both newly
diagnosed and recurrent glioblastoma studies, and we also suggest that such a stratification
may also be useful in clustering.
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Table 1. Characteristics of GBM in MRI.

MRI Sequence Characteristics

T1-Weighted Imaging [32]

- Hypointense or isointense appearance
- Enhancement after contrast administration

(ring-enhancing)

T2-Weighted Imaging [33]

- Hyperintense signal intensity
- Presence of peritumoral edema
- Ill-defined, infiltrative borders

FLAIR [26]
- Hyperintense signal, highlighting peritumoral edema
- Improved visualization of tumor boundaries

Diffusion-Weighted Imaging
(DWI) [27]

- Restricted diffusion, high signal intensity within the
tumor

- Useful in distinguishing tumor from surrounding tissues

Perfusion Imaging [34]
- Increased perfusion within the tumor
- Assessment of neovascularization

Magnetic Resonance
Spectroscopy (MRS) [35]

- Elevated choline peak
- Reduced N-acetyl aspartate (NAA) and creatine peaks
- Presence of lactate and lipid peaks

Postcontrast Imaging [36]
- Intense and heterogeneous enhancement
- Central necrosis with a ring-enhancing pattern

Functional MRI (fMRI) [37]
- May provide information on tumor location and its

impact on functional areas of the brain

3D Imaging [38]
- Useful for precise visualization of tumor morphology
- Aids in surgical planning and guidance

3. History of a Revolution

During the late 19th century, Angelo Mosso, an Italian physiologist, invented the “hu-
man circulation balance”, which could noninvasively measure the redistribution of blood
during emotional and intellectual activity. However, the details and precise workings of
this balance and the experiments Mosso performed with it remained largely unknown [39].

The next step in resolving how to measure blood flow to the brain was Linus Pauling’s
and Charles Coryell’s discovery in 1936 that oxygen-rich blood with hemoglobin (Hb) was
weakly repelled by magnetic fields, while oxygen-depleted blood with deoxyhemoglobin
(dHb) was attracted to a magnetic field.

The Blood Oxygenation Level-Dependent (BOLD) signal is an MRI contrast signal
of dHb, discovered in 1990 by Ogawa. In a seminal 1990 study based on earlier work by
Thulborn et al., Ogawa and colleagues scanned rodents in strong-magnetic-field (7.0 T) MRI.
To manipulate blood oxygen levels, they changed the proportion of oxygen the animals
breathed. As this proportion fell, a map of blood flow in the brain was seen in the MRI
scan. They verified this by placing oxygenated or deoxygenated blood in test tubes and
creating separate images. They also showed that gradient echo images, which depend on a
form of loss of magnetization called T2* decay, produced the best images. They changed
the composition of the air breathed by rats and scanned them while monitoring their brain
activity with EEG, showing that these blood flow changes were related to functional brain
activity [40]. Starting from this cornerstone evidence, in the next few years, three studies
were the first to explore using the BOLD contrast signal in humans. Kenneth Kwong
and colleagues, using both gradient echo and inversion recovery echo-planar imaging
(EPI) sequences at a magnetic field strength of 1.5 T, published studies showing the clear
activation of the human visual cortex [41].

BOLD fMRI

In clinical practice, fMRI using the BOLD technique exploits the speed and sensitivity
to paramagnetic effects of Eco-Planar Imaging sequences to evaluate the changes induced
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on the magnetic field through the activation of “eloquent” areas of the brain. When an area
of the brain is activated by a stimulus (task), it increases brain loco-regional blood flow
and, with it, the wash-out of dHb (a paramagnetic substance) in favor of an increase in Hb
(diamagnetic substance); as a result, the signal intensity increases, allowing the functional
analysis software to recognize the activated areas versus the surrounding silent areas.

fMRI has become widely used in neurophysiological research and has enabled extraor-
dinary progress in our knowledge of the brain’s functioning. In a clinical setting, functional
studies are used to highlight the sensorimotor, speech, visual, and memory areas, generally
in patients who must undergo resections of tumors adjacent to eloquent areas. fMRI has
been particularly useful in preoperative neurosurgical planning in all cases where a tumor’s
resection may disrupt eloquent areas or other anatomic–functional areas [42].

Many patients who were once considered unresectable due to the uncertain risk of
neurologic compromise are now candidates for more aggressive resection after functional
mapping [43].

To improve surgical planning, diffusion techniques, including DTI, generate rich white
matter tractography images [44] and can help distinguish between postoperative vascular
damage and residual MRI T1-enhancing tumors.

A frequency domain analysis of fMRI activity provides prognostic information in
patients with GBM and offers a means to noninvasively study the effects of GBM on the
whole brain. Indeed, one study analyzed the alterations in metabolism and brain-wide
effects of GBMs using fMRI. Park et al. compared 189 patients with newly diagnosed
GBM with a matched healthy reference group. The results showed significantly flatter
spectra and a reduced gray matter fractional amplitude of low-frequency fluctuations in
the patients compared with the reference group. The spectral changes were associated with
a global dysregulation of excitatory and inhibitory balance and metabolic demand in a
tumor-affected brain. In addition, clinical comorbidities, particularly seizures, and MGMT
promoter methylation were associated with flatter spectra. The degree of variation in the
spectra was predictive of overall survival [45].

A valuable application of resting-state (rs) fMRI in comprehensive presurgical evalua-
tions and its potential to increase the accuracy of glioma delineation and improve surgical
outcomes are offered by studies exploring the use of presurgical fMRI to detect gliomas,
introducing a novel method based on independent component analysis (ICA) of rs-fMRI.
The research includes data from 32 glioma patients at three centers and additional proof-
of-concept data from 28 patients with nonbrain musculoskeletal tumors. Using a variable
number of total components (TNCs) in individual ICAs, a template-matching algorithm
automatically identifies tumor-related components. The success rates for glioma tissue
detection are impressive: 100%, 100%, and 93.75% for the three centers and 85.19% for
musculoskeletal tumor detection. The study suggests that these high success rates can
be attributed to the ability of BOLD rs-fMRI to characterize abnormal vascularization,
vasomotion, and perfusion caused by tumors [46].

4. Clustering

Grouping objects is required for various purposes in different areas of engineering,
science, and technology; the humanities; medical science; and our daily lives. It is a
technique used in data analysis and machine learning (ML) to group similar data points
based on certain features or characteristics. The task of grouping a set of objects in such a
way that objects in the same group are more similar to each other than to those in other
groups is called clustering [47]. Cluster analysis was developed in anthropology by Driver
and Kroeber in 1932 [48] and introduced into psychology by Joseph Zubin in 1938 [49] and
Robert Tryon in 1939 [50]. It was made famous by Cattell, who used it to classify traits in
personality psychology from 1943 [51].

The main purpose behind the study of classification is to develop a tool or an algorithm
that can be used to predict the class of an unknown object that is not labeled. This tool or
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algorithm is called a classifier. The objects in the classification process are more commonly
represented by patterns. A pattern consists of several features.

Clustering itself is not one specific algorithm, but a general task to be solved. It can
be achieved by various algorithms that differ significantly in their understanding of what
constitutes a cluster and how to efficiently find them. The appropriate clustering algorithm
and parameter settings depend on the individual dataset and the intended use of the results;
it is an iterative process of knowledge discovery or interactive multi-objective optimization.
The classification accuracy of a classifier is judged by the number of test patterns it has
classified correctly [52]. Fraley and Raftery suggested dividing clustering approaches into
two different groups: hierarchical and partitioning techniques [53].

Hierarchical clustering is a clustering approach that aims to build a hierarchy of
clusters. Strategies for hierarchical clustering are of two types: (1) agglomerative: this is a
“bottom–up” approach in which one starts by placing each element in a different cluster
and then gradually merges the clusters two by two; (2) divisive: this is a “top–down”
approach in which all elements are initially in a single cluster that is gradually subdivided
recursively into sub-clusters [54,55].

Partitional clustering is the opposite of hierarchical clustering; in this case, data are
allocated in k-clusters without any hierarchical structure by optimizing some criterion
function [56].

The most commonly used criterion is the Euclidean distance, which finds the minimum
distance between points in each of the available clusters and assigns the points to clusters.
According to the “No Free Lunch” concept given by Wolpert and Macready [57], no
algorithm can be uniformly good under all circumstances.

Table 2 summarizes the main characteristics of these two types of clustering.

Table 2. Characteristics of hierarchical and partitioning clustering techniques.

Characteristic Hierarchical Clustering Partitioning Techniques

Nature of Clusters [58] Creates a tree-like structure (dendrogram). Divides data into
nonoverlapping clusters.

Types [59] Agglomerative and divisive. K-means, Partitioning Around Medoids
(PAM), Fuzzy C-Means (FCM), etc.

Interpretability [52] Provides a visual dendrogram for interpreting
relationships between clusters at different levels.

Generally simpler to interpret but lacks
the hierarchical structure.

Computational Complexity [60] Can be computationally expensive,
especially for large datasets.

Generally more computationally efficient,
especially for large datasets.

In the context of medicine and healthcare, clustering has various applications, con-
tributing to the understanding, diagnosis, and treatment of diseases. One of these is image
segmentation in imaging, a fundamental technique that uses the concept of clustering to im-
prove the interpretation and analysis of complex visual data. Clustering involves grouping
pixels with similar characteristics, thus enabling the segmentation of an image into distinct
regions. This approach proves particularly valuable in the context of brain lesions, where
the identification and precise delineation of specific structures or abnormalities within
images are critical for accurate diagnosis and effective treatment planning [61].

Clustering algorithms play a crucial role in this setting. By dividing an image into
regions with similar pixel intensities or other relevant features, clustering facilitates the
isolation of anatomical structures or pathological findings [62]. This process is critical in
helping healthcare professionals understand normal and pathological morphology, detect
abnormalities, and formulate personalized treatment strategies [63].

The advantages of clustering in medical image segmentation are many. First, it
improves the accuracy of visual interpretation by isolating specific structures, reducing the
risk of oversight. Second, it facilitates a more precise localization of abnormalities, aiding
early diagnosis and characterization [64].
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Despite its advantages, the application of clustering in medical image segmentation
poses challenges. Sensitivity to noise and outliers, determining the optimal number of
clusters, and managing computational complexity are among the issues that researchers
and practitioners continually face. Ongoing research explores the integration of clustering
with deep learning approaches to overcome these challenges, promising more accurate and
efficient segmentation in the future [65].

In conclusion, the use of clustering represents a powerful synergy between data
analysis and healthcare. This methodology provides medical professionals with better
tools for visual interpretation, diagnosis, and treatment planning, contributing to the
advancement of patient care and medical research. As technology continues to evolve, the
integration of clustering techniques is set to play an increasingly integral role in shaping
the future of medical imaging.

The study of functional connectivity is also useful in other settings, such as post-
COVID syndrome, to characterize the organic substrate of COVID-related consciousness
disorder [66].

5. The Role of Clustering fRMI Time Series in GBM

The real challenge in studying GBMs remains the heterogeneity within the spectrum
of these tumors, making it difficult to delineate profiles of tumors with repetitive and
predictable characteristics for practical clinical use [67]. However, several parameters
can be considered to subtype different GBM profiles, such as molecular mutations, the
utilization of clinical data (such as treatment responses, patient survival, and age), the
use of clustering techniques, and others. To ensure that these approaches are validated, it
is then necessary to perform cross-validation to confirm the consistency of the identified
subclasses, for example, by dividing the dataset into training and test sets and subsequently
leveraging machine learning approaches [68].

5.1. Characteristics of Gliomas in fMRI

fMRI can provide valuable information on the functional characteristics of gliomas
and on how their presence modifies peritumoral brain activity, and, again, it provides
useful information in surgical planning, evaluating the response to chemotherapy (CMT)
therapy, in the prognostic evaluation of the patient, and, finally, in the evaluation of the
risk of recurrence. Common features of gliomas in functional MRI include the following:

- Changes in the BOLD signal, which may reflect changes in local neuronal activity and
vascular reactivity in and around the tumor area;

- Functional activity in the resting state: gliomas can modify their activity in the resting
state, leading to alterations in brain networks associated with motor, linguistic, and
cognitive functions;

- Functional activity in response to tasks: gliomas can also influence activation patterns
in response to cognitive and motor tasks, leading to changes in the location and
magnitude of brain activation [37].

Kumar et al. highlight the importance of standardizing the acquisition parameters of
these metabolic techniques to facilitate their use in clinical practice. Their study highlights
that cellular and metabolic alterations in brain tumors begin long before the appearance
of actual lesions or anatomical changes, and these emerging techniques enable the early
detection of such alterations. Although fMRI can provide valuable information on the
functional characteristics of gliomas, it is not generally used to predict tumor behavior,
as these aspects do not directly reflect tumor growth. To obtain such information, fMRI
can and should be combined with other imaging modalities, such as DTI and perfusion
MRI [37].

However, a more recent study from 2023 by Ki Yun Park et al. is proactive in the use of
total brain activity visualized through fMRI for the prognostic evaluation of patients. They
highlight that a flatter spectrum is unambiguously attributable to the global dysregulation
of excitatory and inhibitory balance and metabolic demand in the tumor-bearing brain.
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Furthermore, clinical comorbidities, particularly seizures and MGMT promoter methyla-
tion, were also associated with flatter spectra (p < 0.005). In particular, this study suggests
that a frequency domain analysis of resting-state (rs) fMRI activity provides prognostic
information for patients with GBM and offers a means to noninvasively study the effects of
GBM on the entire brain [45].

5.2. Predicting Responses to CMT and RT through fMRI Clustering

fMRI therefore appears to also play an important role in predicting response to CMT,
by allowing for an assessment of tumor perfusion, angiogenesis, and metabolic activity.
Regions of the tumor that are more metabolically active or have higher blood flow, known
as regions of interest (ROIs), may be more resistant to CMT and may require alternative
treatment strategies. Other factors that may contribute to resistance to CMT include the
presence of hypoxia or necrosis [69].

This has led to the search for various markers which could be predictive of patient
outcomes or treatment response. Several clinical and therapeutic factors, as well as specific
tumor characteristics and histopathological and genetic markers, have been studied as
potential prognostic markers of survival [69].

In a study by Rockne et al., a patient-specific, biology-based mathematical model is
applied for glioma growth and invasion that quantifies the response to radiation therapy
in individual patients in vivo. The authors point out that the response to radiation in
these patients, quantified by both clinical and model-generated measures, could have
been predicted before treatment with high accuracy. Specifically, the net proliferation
rate correlated with the radiation response parameter (r = 0.89, p = 0.0007), resulting in
a predictive relationship that is tested with a “leave-one-out” cross-validation technique.
The results of this study suggest that a mathematical model can create a virtual tumor in
silico with the same growth kinetics as a particular patient and can not only predict the
response to treatment in individual patients in vivo but also provide a basis for evaluating
the response in each patient to any therapy [70].

A simple pattern of GBM growth, calculated at the time of the first postradiotherapy
(RT) MRI scan, may therefore be prognostic for time to tumor recurrence and overall patient
survival [71].

However, it is necessary to remember that it is not so much the size of the GBM that
impacts prognosis but the tumor growth kinetics (TGK). If the tumor proliferates faster, it is
likely to be larger at diagnosis, but at the same time, it will respond more to adjuvant CMT,
leading to longer survival. A predictive model was developed to identify which cluster
a patient would likely fall into based on postRT information, with an accuracy of 90.3%.
Although the tool used is not fRMI, this study confirms that one parameter on which we
can base a prediction of response to therapy is tumor growth kinetics [72].

However, previously, we discussed how an increase in the BOLD signal in fMRI
is associated with a better prognosis. We also mentioned that the BOLD signal reflects
changes in local neuronal activity and vascular reactivity [37] and that tumor growth
kinetics correlate with an increased BOLD signal [72].

If growth kinetics correlate with the probability of response to therapy (either RT or
CMT), we infer that fMRI can predict responses to therapy. The higher the signal in BOLD,
the greater the hope that the patient will respond to treatment. Therefore, the use of fMRI is
proposed for stratifying GBMs according to neuronal activity in different clusters to predict
responses to treatment.

5.3. Clustering Genetic Mutations and Advanced Imaging in Glioblastoma Multiforme (GBM) for
Personalized Treatment Strategies

Techniques such as functional diffusion mapping (fDM) have been used to track
treatment responses in gliomas and have demonstrated the ability to predict responses to
both CMT and targeted therapies [73].
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Knowing today that genetic mutations of a tumor correlate with the aggressiveness of
that tumor and the kinetics of proliferation, we can think of also including in the different
clusters of GBM the underlying genetic mutation, which then not only can help us to
predict the probability of responses to therapy but also what the best therapy is to achieve
the most personalized therapy possible [74].

Bearing in mind, however, that GBM is characterized by profound intratumoral het-
erogeneity and thus correlates in a complex manner with tumor growth kinetics visualized
in fRMI, this aspect is still a limitation today [75].

MRI can also be used to guide a biopsy or surgery, both preoperatively and postop-
eratively. By mapping functional areas of the brain, fMRI can help surgeons plan tumor
resections while preserving critical brain functions such as language and motor skills. In
addition, fMRI can be used to assess changes in brain function after surgery, providing
information about a patient’s recovery and potential long-term prognosis [74].

Another use of MRI, both classic and functional, is the early evaluation of the response
to treatment. MRI, with the aid of spectroscopy, can detect metabolic changes within tumor
tissue, such as alterations in choline, N-acetylaspartate, and creatine levels, which may
indicate an early response to treatment. Whole-brain spectroscopic MRI biomarkers can
be used to identify infiltrating margins in GBM patients, potentially indicating an early
response to treatment [37].

A study by Pope et al. suggests that ADC histogram analyses can potentially serve as
a valuable tool for predicting tumor responses to anti-angiogenic therapy, particularly in
newly diagnosed GBM patients. The use of an ADC histogram analysis may enable a more
personalized approach to treatment, allowing doctors to identify patients who are most
likely to benefit from bevacizumab therapy based on tumor characteristics [76].

5.4. fMRI and Clustering Algorithms for Improved Diagnosis and Treatment Stratification

Despite the uncertainty in the reliability of the role of fMRI in predicting relapse,
several studies have described the reliability of fMRI in the diagnosis of relapse. Khan et al.
report a pilot study that investigated the efficacy of restriction spectrum imaging (RSI)
in distinguishing between tumor recurrence and treatment effects in patients with GBM
undergoing radiation–temozolomide (RT/TMZ) therapy, achieving a sensitivity of 84% and
a specificity of 86% in detecting tumor recurrence, with a positive predictive value of 95%
(a high probability of correctly identifying true positives) and a negative predictive value of
60% (suggesting that although negativity of the RSI may not definitively exclude recurrence,
it is nevertheless valuable in evaluating the absence of tumor cells). The potential benefits
of RSI include increased sensitivity in detecting tumor recurrence and treatment effects, as
well as an improved correlation with histopathological findings. The implications for the
clinical management of GBM patients undergoing RT/TMZ therapy include the potential
for RSI to serve as a valuable tool for differentiating between treatment effects and tumor
recurrence. This could lead to more informed decision making and better clinical outcomes
for patients [77]. The identification of these parameters listed so far is necessary but not
sufficient for delineating GBM profiles. To achieve this, the use of appropriate clustering
methods is necessary, such as k-means or other clustering algorithms. The most commonly
used algorithms in medicine include k-means, hierarchical clustering, DBSCAN (Density-
Based Spatial Clustering of Applications with Noise), Spectral Clustering, and Gaussian
Mixture Models (GMMs) [52].

K-means clustering, in particular, can be leveraged to segment medical images of the
brain obtained from fMRI to help identify different regions of a tumor or distinguish tumor
lesions from healthy tissues; classify tumor subtypes by analyzing molecular data and
radiomic features; assess treatment response; and ultimately identify biomarkers associated
with specific tumor characteristics or treatment responses. These biomarkers could be used
to personalize therapies based on a tumor’s characteristics [78–80].
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6. Future Directions

This study aims to be an opportunity for reflection for scientists and a point of arrival
for scientific research, as it is now clear that fMRI can provide additional and nontrivial
data, compared to other methods for imaging, about tumor behavior [81]. In fact, by
providing parameters regarding tumor perfusion, angiogenesis, and metabolic activity,
which can indirectly be predictive indices of responses to CMT and RT, it turns out to be a
tool that can be used for the global prognostic assessment of patients [82].

Research in the near future will probably be directed towards the integration of fMRI
with other advanced imaging techniques, such as diffusion imaging and MR spectroscopy,
which could improve the precision of the localization and characterization of lesions.

Another research direction could be the in-depth study of neuroplasticity in patients
with GBM and therefore the brain’s ability to adapt to structural changes induced by a
tumor and posttherapy outcomes, which could be studied to develop targeted rehabilitation
interventions. Our study also hopes to be a solid starting point for future scientists who,
starting from this evidence, can strengthen the statistical significance of the data provided
by fMRI. We propose that in the future, by starting from the already known mutational
profiles of various GBMs and studying the behavior of each of them through fMRI, we can
identify imaging parameters that can, by themselves, help doctors outline personalized
therapies for patients [83].

7. Issues and Limitations

fMRI is a powerful technique; however, it has some limitations and challenges. It has
a limited temporal resolution, typically of the order of seconds. To capture a change in
brain activity, the phenomenon must persist for at least a few seconds; otherwise, it is not
captured at all, making it difficult to distinguish very fast neural events [84].

At the same time, it naturally has spatial limitations, as it cannot capture the activity
of individual neurons but only that of contiguous groups of neurons [85].

An important limitation is inherent in the rationale on which fMRI is based: the signals
detected are determined by changes in blood flow, oxygenation, and volume. Therefore,
it is difficult to distinguish between specific neuronal activity and associated vascular
changes [86].

There are also procedural limitations: fMRI is sensitive to subject movements, and
even small movements can introduce artifacts into the data. Furthermore, access to fMRI
facilities can be limited, especially in certain regions or institutions [87].

Other limitations pertain specifically to the use of parameters obtained from fMRI.
Despite the awareness of the importance of fMRI and the valuable information it provides,
it is currently not possible to identify the precise profiles of GBMs with repetitive and
predictable behaviors through fMRI. There are still no specific biomarkers related to changes
in BOLD signals that, on their own, can uniquely predict a tumor’s behavior. One idea
could be to identify repetitive and predictable behaviors through fMRI and associate them
with the specific mutational profiles of GBM; however, it is important to keep in mind that
different mutations coexist simultaneously in a tumor mass [67].

This heterogeneity may represent a limit to the identification of a “typical tumor” and
its use as a prediction model.

Additionally, the k-means algorithm itself has some limitations; for example, it as-
sumes that clusters have a spherical shape and similar sizes; however, in fMRI data, clusters
might have more complex shapes or vary in sizes, leading to suboptimal results. The
choice of the number of clusters, which is often arbitrary, can also significantly influence
k-means results. fMRI data can exhibit considerable variability among subjects. Improper
handling by the k-means algorithm might group subjects into clusters reflecting individual
differences rather than common patterns. fMRI data are often multivariate, involving
multiple brain regions and voxels [88].

Interpreting the clusters obtained from k-means can be complex, especially in fMRI
data, where the clusters may not directly correspond to known anatomical structures or
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brain functions. K-means assumes that data points within the same cluster are homoge-
neous. However, in fMRI data, brain regions can have complex subpopulations, and this
assumption may not always hold. To address some of these limitations, various strategies
can be employed, such as using more advanced clustering algorithms, more accurate data
preprocessing, and cross-validating results. Additionally, the integration of statistical ap-
proaches and machine learning techniques could help overcome some of the challenges
associated with fMRI data analysis [89,90].

8. Conclusions

The study of GBM is highly complicated due to its high heterogeneity and aggres-
siveness. This heterogeneity makes precise tumor characterization and the definition of
predictable tumor behaviors challenging. Over the years, scientists have sought molecular,
radiomic, clinical, and laboratory parameters to categorize potential tumor subtypes for
better study.

In this study, we review the use of clustering algorithms in the context of GBM.
The rationale for using such algorithms is to subtype groups of GBM, allowing for a
better understanding of tumor complexity for personalized treatment, therapy response
monitoring, disease progression monitoring, and recurrence monitoring.

The use of clustering algorithms, specifically k-means, in GBM research aims to
identify, characterize, and distinguish various subpopulations of tumor cells to enhance the
understanding, management, and treatment of this complex brain neoplasm. However, we
emphasize the importance of integrating advanced analytical methods in neuroimaging,
such as diffusion imaging and MR spectroscopy, to obtain a more informative perspective
that could guide future investigations and lead to the development of targeted therapeutic
strategies for GBM. At the same time, we highlight how clustering analyses of fMRI
time series can offer promising results in improving discrimination between different
GBM subtypes.
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