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Abstract: Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is
a novel technique to investigate cortical physiology in health and disease. The cerebellum has
recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports
published recently. However, EEG responses obtained by cerebellar stimulation vary considerably
across the literature, possibly due to different experimental methods. Compared to conventional
TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical
difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone
coils are used, resulting in contamination of responses by electromyographic activity and sensory
potentials. Understanding technical difficulties and limitations is essential for the development of
cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies,
highlighting limitations in experimental design and potential issues that can result in discrepancies
between experimental outcomes. Lastly, we propose a possible direction for academic and clinical
research with cerebellar TMS-EEG.
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1. Communication between the Cerebellum and Cerebrum

The cerebellum, often associated primarily with motor control, encompasses a broader
range of functions than commonly acknowledged. Beyond its role in coordinating move-
ment, the cerebellum plays a crucial part in regulation of emotion [1–4], speech [5–7],
cognitive function [4,8–10], motor preparation [11], and motor learning [12–15]. This multi-
faceted involvement stems from the cerebellum’s ability to modify information received
from the cerebral cortex and return processed signals [16]. The intricate network between
the cerebral cortex and the cerebellum includes widespread projections from various cor-
tical areas, encompassing the frontal, parietal, temporal, and occipital lobes [17–19]. The
communication between these two regions relies primarily on two neural pathways [16,20].
The first, known as the cerebello-thalamo-cortical (CTC) tract, includes the dentato-thalamo-
cortical (DTC) tract and projections from Purkinje cells located in the cerebellar cortex to
the dentate nucleus [21]. The DTC tract, originating from the dentate nucleus and termi-
nating in contralateral hemispheres via the contralateral ventral thalamus, serves as the
primary relay for transmitting signals processed by the cerebellum [9]. Simultaneously, the
projections from Purkinje cells modulate the activities of the DTC tract, contributing to the
overall coordination of activity within the circuit [22]. The second pathway, the cortico-
ponto-cerebellar (CPC) tract, relays cortical efference to the pons and then the contralateral
cerebellum [16,23]. Together, these projections establish a close circuit that not only governs
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motor coordination but also contributes significantly to non-motor functions, highlighting
the cerebellum’s integral role in diverse cognitive and motor processes [5,8,9,12,20,24,25].

Investigating the connectivity between the cerebellum and the cerebrum involves
various methods, with neuroimaging tools and neurophysiological techniques being com-
monly employed. Functional MRI (fMRI) is a widely used tool, offering high spatial
resolution [26] to explore connectivity between cerebellar substructures and specific cortical
areas under different experimental conditions [27,28] or during complex tasks like motor
learning [29,30]. However, its low temporal resolution [26] limits its ability to capture early
neural activities. Other emerging methods for investigating cerebellar–cortical connectivity
are magnetoencephalography (MEG) or high-density electroencephalography (EEG); these
provide accurate time resolution, at the expense of limited spatial interpretation of neural
generators [31,32].

Transcranial magnetic stimulation (TMS) has emerged as a useful tool to investigate
the CTC pathway. TMS studies on cerebellar physiology often involve measuring changes
in motor evoked potentials (MEP) recorded by surface electromyography (sEMG) using
the cerebellar–motor cortex inhibition (CBI) protocol [33–35]. The CBI protocol entails
conditioning MEPs evoked from the motor cortex with a single TMS pulse applied over
one cerebellar hemisphere, usually via a double cone (DC) coil, with a 5–7 ms interstimulus
interval (ISI) [33,36–38]. By combining it with neuromodulation protocols such as repetitive
TMS (rTMS), transcranial direct electric stimulation (tDCS), and transcranial alternative
electric stimulation (tACS), the CBI protocol can assess synaptic plasticity mechanisms in
the cerebellum [39]. CBI can be probed either at rest or during behavioral tasks involving
motor learning [40–42] or cognitive tests [43]; these applications are useful to shed light
on how the cerebellum responds to sudden changes in motor feedback [44], cognitive
processing [45], and visual learning [43]. However, one limitation of CBI is that it relies on
MEP recording and it only tests connectivity between the cerebellum and the primary motor
cortex (M1). Other non-invasive brain stimulation techniques, such as paired associative
stimulation [46–48] or cerebellar repetitive TMS [49], may also be useful for indirectly
probing connectivity between the cerebellum and non-motor cortex. Alternatively, this
issue may be overcome by the combination of TMS and neuroimaging tools, which would
allow for direct investigation of more widespread connections between the cerebellum and
cerebral cortex and associated non-motor functions of the cerebellum.

2. Introduction to TMS and EEG Co-Registration

The development of transcranial magnetic stimulation and EEG co-registration (TMS-
EEG) has emerged as a powerful tool in electrophysiology and neuroscience research [50–53].
TMS-EEG involves recording EEG activity evoked by TMS pulses to an area of the cortex
or cerebellum. These signals can then be analyzed in the time domain (TMS-evoked poten-
tials (TEP)), and frequency domain (TMS-induced oscillations). These electrophysiological
readouts provide extensive insights into the physiology of stimulated or remote cortical ar-
eas [54,55]; they also represent useful biomarkers for neurological diseases [56,57] and for the
assessment of the effects of drugs [58,59] or non-invasive brain stimulation techniques [60].
Common target areas for TMS-EEG include M1 [61–67], the dorsolateral prefrontal cortex
(DLPFC) [64,68–70], and premotor areas [71,72], where consistent and reproducible results
have been reported [73].

Despite the many research applications of this technique, the interpretation of TMS-
EEG signals can be made difficult by electrical artifacts and cranial muscle activation
induced by coil discharge, as well as by auditory and somatosensory input generated
by TMS. The first is caused by the TMS click, which activates the auditory system via
air- or bone-conducted sound [74,75] and generates an auditory evoked potential (AEPs)
mostly consisting in a vertex negativity occurring around 100 ms and a positive wave
at 180–200 ms with [76,77]. Notably, AEPs can be minimized or abolished with the use
of masking noise [50,78], ear defenders [76,79], and a layer of sponge underneath the
coil [50,56,78,80]. Contamination of TMS-EEG responses by somatosensory evoked poten-
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tials (SEP) is more controversial, but it is likely that only contraction of craniofacial muscle
and activation of free cutaneous nerve endings in the scalp may be able to induce EEG
responses, and that these are represented by a N100/P200 complex, reflecting a saliency-
related multimodal response, rather than specific activation of the primary somatosensory
cortex [76,81]. Additional ways to control for sensory activation in the context of TMS-EEG
include comparison with so-called realistic sham conditions, which mimic the sensory
stimulation of TMS but do not activate the cortex transcranially [82–84], or the removal of
saliency-related vertex potentials via independent component analysis (ICA) [85,86].

The cerebellum has recently gained attention as a new target for TMS-EEG [86–90].
This interest arises from the limitations of functional MRI (fMRI) in providing sufficient
temporal resolution to study rapid communication between hemispheres and the cere-
bellum [26], and of the classical CBI paradigm, which only assesses connections between
cerebellum and contralateral M1. Cerebellar TMS-EEG (Figure 1) provides the potential to
observe changes in the entire cortex with high temporal resolution and reasonable spatial
resolution using high-density EEG, but it presents specific experimental challenges that
differ from TMS-EEG over M1 [91,92]. This review aims to introduce available reports on
cerebellar TMS evoked potentials (cbTEPs) and discuss current limitations and potential
applications in this emerging field.
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3. First Studies Investigating Cerebellar TMS Evoked Potentials

Early exploratory studies of cbTEPs were conducted at the single-channel level. In
1992, Amassian and colleagues observed early evoked potentials at 3.5 ms over one frontal
channel (F3) and 8–13 ms over central regions (C3 and C4) following single-pulse cerebellar
TMS. The stimulation was applied with a flat 50 mm figure-of-eight (F8) coil over the
junction region between neck and head, at 45◦ away from the longitudinal axis of the
neck [93]. Subsequent studies by Iramina and colleagues reported lateralized cbTEPs com-
ponents with longer latencies, such as N10, P25, and N50, over F3 or F4 after contralateral
single-pulse cerebellar TMS using a 70 mm F8 coil. Additionally, a P50 wave located at
the vertex was found when TMS was applied 2 cm above the inion, but not dependent on
the TMS [94–96]. Due to the small number of recording electrodes and the inconsistencies
in latencies and polarity of cbTEPs, it is difficult to conclude the topography of cerebellar
projections engaged by TMS from these early studies.

More recent studies have used high-density EEG, with 64 or more electrodes, to record
responses following cerebellar TMS in more detail. After stimulation of the I1 location (left
of the inion) with a 70 mm F8 coil, one study by Arimatsu and coworkers [97] revealed
a negative potential with 40–50 ms latency over the ipsilateral parietal region, with a
corresponding positive wave over the contralateral parietal areas. A further report by
Iwahashi and colleagues described positive deflections peaking around 20 ms in the frontal
ipsilateral and contralateral parietal regions after cerebellar TMS targeted 3 cm left of
the inion [98]. Notably, this study was the first to apply ICA for the rejection of TMS-
induced artifacts. However, none of these reports addressed the issue of EEG responses
due to sensory activation and they lacked sham stimulation conditions. In 2017, Du and
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coworkers compared cbTEPs obtained by stimulation, with a 70 mm F8 coil, placed over
five different locations including the prefrontal cortex, vertex, left primary motor cortex,
left primary auditory cortex, and cerebellum; the cerebellar target corresponded to the
vermis and bilateral crus I/II. Although the spatial sampling was limited by the use of only
11 recording electrodes, the authors reported a frontal positive deflection at 18 ms, a frontal
negative deflection at 25 ms, a frontal positive deflection from 40–80 ms, a central-frontal
negative deflection from 110 to 130 ms, and a central positive deflection peaking around
190–220 ms [99]. Importantly, a sham coil auditory control condition was used in this
experiment and produced vertex N100 and P200 peaks.

4. Recent Research on Cerebellar TMS Evoked Potentials

More recent work on cbTEPs has applied more rigorous methodology, such as a
systematic use of noise masking to suppress AEPs generated by the click of the coil [75,76].
Fernandez and coworkers showed that cerebellar activation induced by a 70 mm F8 coil is
not sufficient to generate measurable EEG responses, even with high intensities (90% of the
maximal stimulator output) [88]. However, the same group showed that a contralateral
parietal negative deflection around 42 ms could be obtained by stimulation of the lateral
cerebellum using a DC coil with a fixed stimulation intensity (60% MSO); this wave was
not attributed to sensory activation, as it was not present in a sham control condition [88].
This observation aligns with previous literature indicating that cerebellar–brain inhibition
(CBI) could not be produced by F8 coils [37–39].

Sasaki and colleagues [100] assessed EEG responses and CBI following single-pulse
cerebellar stimulation with a DC coil and an F8 coil and added a “realistic” sham condition
which included magnetic stimulation of the shoulder. As they were interested in how a
stimulus to the cerebellum altered the TEP evoked by TMS over the motor cortex, they did
not analyze the effect of cerebellar TMS alone. However, the figures in the paper appear to
show a contralateral parietal positive deflection around 47 ms and a contralateral frontal
positive deflection between 68 and 115 ms. No effective MEP inhibition was found when
CBI was performed with an F8 coil over the cerebellum. Different from previous research,
a later report by Gassmann and colleagues [89] employed a small, 50 mm flat F8 coil to
stimulate the lateral cerebellum with a lower intensity, based on RMT from M1 (i.e., 75–76%
MSO on average). A further difference with previous work is that cbTEPs were obtained
by subtracting sham responses from real TMS, while applying supramaximal electrical
stimulation to both, in an attempt to saturate somatosensory responses. CbTEPs in this
work were represented by a contralateral frontal positive deflection around 25 ms and a
contralateral parietal negative deflection around 45 ms, compared to the sham condition.
Lastly, the cbTEPs obtained with stimulation of the lateral cerebellum by a DC coil in the
study by Fong and coworkers consisted of contralateral frontal positive (80 ms, P80) and
negative (110 ms, N110) deflections. These components were replicated by stimulating
both cerebellar hemispheres and in different experimental sessions; importantly, a task-
induced visuomotor adaptation correlated changes in the P80 and the degree of motor
learning [86], thus providing evidence for a link between specific components of cbTEPs
and cerebellar physiology.

5. Cerebellar TMS Evoked Responses in the Frequency Domain

The literature on TMS-evoked responses assessed in the frequency domain is limited,
but a few studies have explored this aspect. Schutter and colleagues [101] found increased
theta power on a single EEG channel (AFz), between 200 and 4000 ms after a single TMS
pulse over the vermis of the cerebellum, compared with sham and occipital stimulation.
Du and colleagues [102] reported increased bilateral phase-locking value between F3
and F4 in the theta to gamma frequency range for 2 s after single-pulse cerebellar TMS
over the midpoint between both cerebellar hemispheres, corresponding to crus I/II. This
prefrontal synchrony was associated with GABA concentration detected by magnetic
resonance spectroscopy (MRS) and correlated with performance in cognitive memory
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tasks. This study suggests that cerebellar TMS can influence functional connectivity in
the prefrontal cortex across different frequency bands. The most recent work assessing
cerebellar responses to TMS in the frequency domain is that of Gassmann and colleagues,
who found increased left frontal theta power from 50–250 ms, decreased occipital alpha
power from 250–550 ms, increased left hemispheric prefrontal power in the high-beta
frequency band from 50 to 190 ms, and diffusely increased gamma power from 50–260 ms
after single-pulse lateral cerebellar TMS, compared to sham stimulation, again using a
sham method entailing saturation of somatosensory responses (see above) [89]. This study
provides further insights into the frequency-specific changes induced by cerebellar TMS
and highlights the complex dynamics of cortical responses in different frequency bands.

6. Discussion
6.1. Current Knowledge about EEG Responses to Cerebellar TMS

Table 1 lists the main findings mentioned in the previous paragraphs. Despite some
inconsistencies observed across studies, some components of cbTEPs following TMS on
cerebellar hemispheres have been at least partly reproduced, i.e., a P25, N45, and P80. A
contralateral frontal P25 was identified in two studies using different methods [89,95], but
was not confirmed elsewhere [86,88,100]. Similarly, a contralateral parietal N45 has been
obtained in only two studies [88,89], but was not seen in other work [86,90,100], and in a sin-
gle patient with damage to CTC connections [90]. A P80 has been consistently observed in
experiments using DC coils at the intensity reaching the CBI effect [86,100], and its physio-
logical relevance is supported by its relationship with visuomotor adaptation [86]. However,
the absence of this component when stimulation is performed with low intensity [88] or F8
coils [88,89,100] suggests that it is highly dependent on experimental conditions.

Table 1. Summary of findings in studies assessing cbTEPs. F8: 70 mm figure-of-eight coil. DC: 110 mm
double cone coil. sF8: 50 mm figure-of-eight coil. Asterisks indicate that findings were qualitatively
assessed but not further analyzed. * indicates that these is only observations, not statistical results.

Study Findings Coil

Single channel Studies

Amassian, 1992 [93] 3.5 ms at F3, 8–13 ms at C3/C4 sF8

Iramina, 2002 [94] P50 on Cz F8

Iramina, 2003 [95], 2004 [96] N10, P25, N50 at F3/F4 F8

Du, 2017 [99] Frontal P18, N25, P40–80, N100, central P200 F8

High-density EEG studies

Arimatsu, 2007 [97] Ipsilateral parietal N20, contralateral parietal P40 F8

Iwahashi, 2009 [98] Ipsilateral frontal and contralateral parietal P20 F8

Fernandez, 2021 [88]
Contralateral parietal N42 DC

No significant findings F8

Sasaki, 2022 [100]
Contralateral positive deflection 68–105 ms * DC

Contralateral positive parietal deflection at 47 ms * F8

Gassmann, 2022 [89] Contralateral frontal P25 and parietal N45 sF8

Fong, 2023 [86] Contralateral frontal P80-N110, correlated with
motor learning DC

In the frequency domain, an increase in neuronal oscillations over the frontal regions
has been a consistent finding across three studies, albeit with variations in frequency
bands and time windows, possibly due to differences in intensity and stimulating sites.
Of particular note is the study by Du and colleagues [102], suggesting that cerebellar
stimulation-induced bilateral prefrontal synchrony correlated not only with working mem-
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ory and motor coordination performance, but also with Glutamine and GABA levels.
Further research is essential to explore and elucidate the intricacies of cortical neuronal
oscillations induced by cerebellar TMS.

The use of behavioral tasks involving the cerebellum and of patients with cerebellar
lesions represents classical methods to understand the physiological and pathophysiolog-
ical relevance of TMS markers of cerebellar function. This was originally done for CBI,
when the cerebellar origin of the phenomenon was verified by applying it in patients with
cerebellar stroke and ataxia [33,103–105]. Behavioral experiments have provided evidence
to link long-term depression (LTD) of parallel fiber–Purkinje cell synapses induced by vi-
suomotor adaptation [106] with CBI [40,41]. In addition, SEP components, such as the N18
or N24, have been used to probe the effect of motor learning on sensorimotor integration
in the cortico-cerebellar network [107]. On similar grounds, Fong and coworkers found
an increase in prefrontal P80 of cbTEPs after visuomotor adaptation, providing insights
into the dynamics of cerebellar processing during motor learning through connections with
cortical areas outside M1 [86]. New avenues for cbTEPs may be represented by behavioral
tasks involving error processing; it has recently been reported that single-pulse cerebellar
TMS influences the error-related negativity in go/no-go tasks [108]. Although this study
does not primarily focus on cbTEPs, it underscores the broader potential of cerebellar
TMS-EEG in neuroscience and behavior research.

A fundamental question about cbTEPs revolves around their physiological meaning.
Given that cbTEPs represent a cortical response obtained by stimulation of a remote
structure, their nature likely differs from TEPs recorded at the stimulation site [51,53].
Conceptually, cbTEPs can be viewed as cortical post-synaptic potentials caused by the
activity of CTC projections. The main output from the cerebellum is relayed by the dentate
nucleus, which projects tonic facilitatory signals to the cortex via the ventral thalamus. In
CBI, cerebellar stimulation activates cerebellar Purkinje cells, leading to inhibition of the
dentate nucleus and subsequent, phasic suppression of cortical excitability [109]. Based on
this assumption, cbTEPs components should at least in part reflect inhibitory post-synaptic
potentials. Currently, there is no definitive answer to the nature of cbTEPs. Fong and
coworkers suggested that the prefrontal P80 and, potentially, N110, might be a form of
excitatory rebound phenomenon following stimulation of cerebellar Purkinje cells. This
prolonged latency may also indicate that the P80 is not related to somatosensory input
since cerebellar motor learning modulates much earlier components of the SEP [110]. Yet,
more evidence is required to support and refine this hypothesis [86,92]

6.2. Discrepancies between EEG Responses to Cerebellar TMS across the Literature

We have highlighted above that there are significant discrepancies between the cbTEPs
found by different research groups. Several factors may have contributed to this, the most
likely being the different methods employed, such as TMS coil type, stimulation intensities,
and solutions to suppress artifacts or sensory EEG responses.

The first crucial factor is the choice of TMS coil. The CBI protocol in which the
cerebellum is stimulated with a DC coil is well established [33,103]. The DC coil is thought
to activate Purkinje cells, leading to inhibition of tonic facilitatory output from the dentate
nucleus of the cerebellum [109]. In contrast, cerebellar TMS with an F8 coil has mostly
been considered ineffective in suppressing MEPs through CBI [36–38,100], although pulses
applied with F8 coils over the cerebellum can still reduce M1 excitability by activating
peripheral somatosensory inputs [109,111]. This difference between coils is supported by
other observations. The depth of stimulation by the DC coil is deeper than that of the
F8 coil, as confirmed by electric field measurements and modelling [86,112]. Thus, the
evidence suggests that for single pulse cerebellar TMS, stimulation with the DC coil can
activate the anterior cerebellum and contribute to the modulation of motor responses. In
contrast, there is still no direct evidence showing where the F8 coil stimulates and whether
it can produce neurophysiological responses in either anterior or posterior portions of
the cerebellum. Fernandez and colleagues did not find significant TEPs when subtracting
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responses obtained from sham stimulation from those following cerebellar stimulation with
a 70 mm F8 coil at 90% MSO [88]. Despite these findings, Gassmann and coworkers were
able to elicit a contralateral P25 when stimulating the lateral cerebellum with an F8, 50 mm
coil at 75% MSO. It is to be noted that a similar component was observed previously when
TMS was applied 2 cm above the inion, a spot where the cerebellum is not preferentially
activated [95,96]. As mentioned above, a contralateral P80 was observed only when the
lateral cerebellum was stimulated with a DC coil with an intensity able to elicit CBI [86,100].
One reason why the same component was not observed by Fernandez and coworkers,
despite the use of the same DC coil, might be due to the lower stimulation intensity (fixed
at 60% MSO) in the absence of CBI assessment [88]. Another issue concerning stimulation
is the targeting site, which varies among studies, including areas close to the neck [93],
occipital areas [95,96], the cerebellar vermis [99,102], and lateral cerebellar sites optimal
for CBI [86,88,89,97,98]. Overall, although the effects of coil type and stimulation site on
cbTEPs still need to be systematically addressed, it is possible that by varying these factors,
it is possible to activate different sets of cerebellar projections to cortex and thus to obtain
cbTEPs with different spatial and temporal features.

A further methodological aspect pertains to the simulation of the E-field generated
by TMS, the importance of which was emphasised by Gassmann and coworkers [89].
However, the relationship between the E-field induced by TMS and induced neuronal
firing is not simple, due to the interaction between the direction of the induced electric
field and the neuronal orientation at the target site, and should not replace physiological
measurements [26,92]. Modelling studies, as well as direct E-field measures, show that DC
coils induce stronger and deeper E-fields compared to F8 coils [86,112]. Considering the
greater effectiveness of DC coils compared to F8 coils in eliciting CBI [37–39], the results
imply that CBI is more easily elicited with stronger and deeper E-fields such as those
produced by DC coils.

The methods to eliminate or reduce artefacts and sensory responses caused by TMS
present another potential issue in the mentioned studies. These confounds were not consid-
ered in research before 2009. As knowledge about how sensory input can contaminate TEPs
emerged, the need to suppress the TMS click by using a masking noise and ear defenders
has become clear [50,56,75,78]. However, it is challenging for subjects to wear ear defenders
during cerebellar TMS, especially with DC coils [86]. At least two studies have shown that,
in this experimental setting, completely suppressing the TMS click is not possible by only
playing a masking noise through earphones, as indicated by the presence of a multimodal
vertex N100/P200 [86,88]. Another possible confound is represented by somatosensory
input, which is particularly large during cerebellar TMS due to local muscle contraction and,
similar to the TMS click, may result in a multimodal vertex N100/P200 complex [81,86].
There is no routinely applicable method to suppress local muscle twitch and activation of
free nerve endings during TMS [81]; therefore, most studies have devised sham conditions
mimicking the somatosensory activation by TMS and compared them with real stimula-
tion. However, the exact nature of stimulation varied, including electrical stimulation of
muscles surrounding the stimulation site [86,88], combined magnetic stimulation of the
shoulder and electrical stimulation of the neck [89], or the use of a sham coil [99]; the latter
is imperfect, as common sham coils produce insufficient somatosensory input compared
with active TMS coils [82,113]. An original solution to control for confounding factors was
devised by Gassmann and colleagues, who applied supramaximal electrical stimulation in
both real and sham conditions, with the objective of saturating SEPs, and then subtracted
the second from the first to reveal the TEP [83,89]. However, this method may alter the
spatiotemporal features of the evoked potential due to large unnecessary somatosensory
inputs [83,92,114]. A different approach to dealing with possible EEG responses due to
sensory input is their offline removal by ICA. This procedure has been applied in some
reports to reduce vertex potentials evoked by auditory stimulation [70,85,86] and may
theoretically be effective in reducing somatosensory responses as well, due to their spatial
and temporal overlap [81]; however, further validation is needed before considering this
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method fully applicable. At present, there is still no optimal solution to control artifacts
and sensory-evoked potentials in the context of cerebellar TMS. Therefore, an adequately
designed control condition remains to be found.

7. Conclusions

The study of cbTEPs is still a nascent field, and the development of new technologies
for the suppression of artefacts and sensory responses remains a critical challenge for
further research. While TMS-EEG measurements on the cortex have proven to be robust
and reproducible, current findings related to cbTEPs are characterised by discrepancies in
both time and frequency domains. Therefore, the establishment of consistent, optimised,
user-friendly, and replicable protocols is essential for advancing both academic and clinical
research in this area [91,92].

8. Perspectives

To gain more insights into cbTEPs, future studies might benefit from integrating
behavioral assessments and patient-based models. Such multidisciplinary approaches
hold the potential to unveil a deeper understanding of cbTEPs and pave the way for their
broader application in neuroscience and clinical research.
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