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Abstract: Considerable evidence has argued in favor of multiple neural systems 
supporting human category learning, one based on conscious rule inference and one based 
on implicit information integration. However, there have been few attempts to study 
potential system interactions during category learning. The PINNACLE (Parallel Interactive 
Neural Networks Active in Category Learning) model incorporates multiple categorization 
systems that compete to provide categorization judgments about visual stimuli. 
Incorporating competing systems requires inclusion of cognitive mechanisms associated 
with resolving this competition and creates a potential credit assignment problem in 
handling feedback. The hypothesized mechanisms make predictions about internal mental 
states that are not always reflected in choice behavior, but may be reflected in neural 
activity. Two prior functional magnetic resonance imaging (fMRI) studies of category 
learning were re-analyzed using PINNACLE to identify neural correlates of internal 
cognitive states on each trial. These analyses identified additional brain regions supporting 
the two types of category learning, regions particularly active when the systems are 
hypothesized to be in maximal competition, and found evidence of covert learning activity 
in the “off system” (the category learning system not currently driving behavior). These 
results suggest that PINNACLE provides a plausible framework for how competing 
multiple category learning systems are organized in the brain and shows how 
computational modeling approaches and fMRI can be used synergistically to gain access to 
cognitive processes that support complex decision-making machinery. 
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1. Introduction 

An abundance of evidence has accumulated in support of the idea that there are multiple neural 
systems in the brain that support learning of visual categories. While category learning is often thought 
to rely upon conscious, goal-directed processing, there is also a significant contribution from implicit, 
non-conscious processes. In visual categorization, the difference in processes can be seen in comparing 
the conscious deduction of category membership, e.g., “that must be a cat because it has whiskers,” and 
the implicit learning that occurs so that after experiencing many examples of category members, a new 
stimulus is automatically identified as a cat. The distinction between these two processes is well-captured 
by the experimental categorization work contrasting rule-based (RB) and information-integration (II) 
category learning approaches described by Ashby, Maddox and colleagues [1–5]. In this work, simple 
experimental manipulations can lead to different categorization strategies being used by participants. 

A general model describing the hypothesized neural basis of these two systems is the COVIS model 
(COmpetition between Verbal and Implicit Systems) model [6,7]. In this theory, the RB category 
learning system depends on prefrontal cortex, the head of the caudate of the basal ganglia and the 
medial temporal lobe (MTL) memory system while the II category learning system depends on 
connections between visual cortical areas and posterior regions of the caudate. The RB system depends 
on brain areas that support conscious, verbalizable rules for judging category membership and testing 
hypotheses via feedback about prior predictions. Participants who have learned a category using an RB 
strategy are generally able to verbally describe the rule by which they successfully categorized novel 
stimuli. The II system learns implicitly to partition the visual space following the category boundaries. 
After learning II categories, participants are generally unable to verbalize the rule that partitioned the 
perceptual space. Furthermore, these two systems compete to control the output response to report 
category membership, reflecting that learning can happen in both systems but a category judgment will 
depend on one system or the other. 

Here a model based on the COVIS theory is described that provides candidate mechanisms for 
resolving competition between RB and II category learning systems, handling trial-by-trial feedback to 
the competing systems and attempting to capture individual participant strategy switching. The Parallel 
Interactive Neural Networks Active in Category Learning (PINNACLE) model is used to test 
theoretical predictions about category learning system interactions in the brain reflected in fMRI data 
and also used to guide fMRI data analysis. One of the essential challenges of this approach is that we 
hypothesize multiple competing systems operating in the human brain, but elements of the underlying 
processing are operating outside of awareness and only one response is made to provide information 
about the hidden processes. Functional neuroimaging provides for the possibility of revealing these 
hidden processes by using a computational model that makes specific predictions about the current 
mental state of each participant on each trial. 

Prior computational modeling approaches pioneered by Maddox and Ashby have demonstrated that 
individual behavioral responses in categorization tasks can be used to diagnose whether participants 
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are engaging in RB or II category learning strategies (e.g., [2]). In those modeling analyses, behavior 
was compared to predictions of an RB and II model separately to determine which model best 
accounted for the data. This allows the modeling approach to characterize the strategy of individual 
participants and identify participants who might initially (or persistently) use a sub-optimal strategy or 
choose randomly. This approach has helped to identify differences in the operating characteristics of 
these two systems, which has been supported by neuropsychological studies and neuroimaging studies. 
Rule-based category learning is sensitive to working-memory capacity and is slowed by dual-tasks that 
reduce available working memory [8]. While high working-memory load dual tasks do not impair II 
category learning, delaying feedback for as little as 2 s interferes selectively with II learning [9]. 
Studies of patients with memory disorders or dysfunction in the basal ganglia (e.g., Parkinson’s disease) 
suggest that RB-learning is impaired by damage to declarative memory systems while basal ganglia 
damage impairs II learning [10]. 

Recently, further evidence about the neural basis of the separate RB and II category learning 
systems has emerged from functional neuroimaging methods. Nomura et al. [11] contrasted neural 
activity associated with successful categorization of RB and II strategies and found differential activity 
in the medial temporal lobe (MTL) and posterior caudate for RB and II category learning respectively. 
The idea that these systems operate in competition with each other is supported by findings such as 
Poldrack et al. [12] in which caudate and MTL activity were inversely correlated in an implicit 
probabilistic category learning task. In a task that focused more on rule learning with no probabilistic 
component, fMRI revealed a similar pattern of opposing activity in the caudate and MTL [13]. 
Participants were asked to acquire a particular rule that required attending to different features of the 
letter stimuli. Using the feedback after each trial, they eventually discovered the rule and then applied 
it to subsequent stimuli. Rule learning relied upon activity in a wide network of frontostriatal areas 
coupled with a decline in hippocampal activity whereas in rule application, there was a rise in 
hippocampal activity. The authors suggest that the antagonism between the striatum and MTL may 
have facilitated the transition between acquisition and application of a rule.  

While the general COVIS theory includes competition between the two category learning systems, 
incorporating competition into a specific computational model raises several challenges about 
resolution of competition on each trial, strategy-switching across trials and handling feedback about 
response accuracy for learning within each system and to influence future competition. The 
PINNACLE model reflects an instantiation of potential mechanisms for these processes based on 
trying to identify the simplest mechanisms consistent with both behavior and fMRI data. The model is 
consistent with COVIS as a framework but does not attempt to account for the full range of 
neurobiological mechanisms potentially engaged in cortico-striatal and MTL-dependent learning. 

The challenge of building an integrated model for both types of category learning is that information 
comes in through a single source, the visual system (controlled experimentally) and a single output is 
made but multiple systems operate on the information in between. The multiple systems model 
hypothesizes that there must be internal states in the brain corresponding to the state of both the RB 
and II systems that are attempting to learn the category. The system that is most consistently successful 
is assumed to eventually control the output behavior, but learning which system is most often correct 
requires an ability to evaluate and resolve competition between the two systems. In addition, 
participants are given feedback about the correctness of the final output, but it is not clear a priori how 
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to handle a single feedback source to multiple components. For example, only the winning (currently 
in control) system could learn via feedback since the feedback is appropriate to the chosen response, 
but this raises a question of how to identify when to switch strategies. For example, participants often 
begin with an RB strategy for an II task and learn to shift to an II strategy over time. Before the 
strategy switch, no behavioral information on learning within the II system is available. A combination 
of computational modeling and fMRI data may provide insight into these covert cognitive processes. 

The PINNACLE model of category learning provides a hypothesized structure for interactions 
between independent RB and II category learning systems. This model is intended to complement and 
extend COVIS by conjecturing additional mechanisms for handling feedback to two separate systems 
and also by resolving potential competition between the two systems for making responses. We test the 
model first by fitting individual participants’ choice behavior in RB and II category learning tasks and 
show that it exhibits learning and strategy switching similar to humans. The second goal of 
PINNACLE is to use trial-by-trial model predictions to test hypotheses about neural system 
engagement derived from fMRI data. By identifying specific trials of interest (e.g., where competition 
between the two systems should be maximal according to the individual participant model fit), 
additional brain regions were identified as likely sources for the neural mechanisms needed to 
instantiate the two parallel models of category learning in the brain. In addition to providing 
hypotheses about the organization of multiple categorization systems within the human brain, this 
approach thus shows how computational modeling and functional neuroimaging data can be integrated 
to harness the inferential power of each approach together. 

2. Model Description 

For visual categories, category structure can be efficiently described as partitioning perceptual 
space and assigning category labels (or motor responses) to regions that encompass a collection of 
similar stimuli. A mathematical description of this approach is the core of the decision-bound theory 
(DBT) of category learning first described by Ashby and Gott [14]. Under DBT, when presented with 
a to-be-categorized stimulus, participants determine in what region the stimulus has fallen and produce 
the associated response. Feedback about the accuracy of the judgment is used to adjust the boundaries 
to improve future categorization performance. In this approach, learning the categories is equivalent to 
identifying the optimal decision-boundary that separates the categories in the perceptual space. In most 
studies of RB and II category learning, stimuli are constructed in a 2-dimensional space with 
continuous dimensions. An example of 2-dimensional stimulus space and the corresponding category 
bounds is shown in Figure 1.  

Both RB and II category learning can be described by DBT models. A key difference is that for  
RB categories, the decision boundary is typically along a single dimension that allows for a simple 
verbal description of the category rule. A vertical line partitioning the stimulus space is equivalent to a 
verbal rule referencing that value on the key dimension as “less than this value is an A, greater than 
this value is a B.” Tasks that lead to II category learning generally have decision boundaries that 
require integration of information across the dimensions. A diagonal line through the stimulus space 
provides partitioning into two categories, but there is no simple verbal description of the stimuli that 
characterizes this boundary. 
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Figure 1. RB (A) and II stimuli (B). Each point represents a distinct Gabor patch (sine-wave) 
stimulus defined by orientation (tilt) and frequency (thickness of lines). In both stimulus 
sets, there are two categories (red and blue points). RB categories are defined by a vertical 
boundary (only frequency is relevant for categorization) whereas II categories are defined 
by a diagonal boundary (both orientation and frequency are relevant). In both RB and II 
stimuli there are examples of a stimulus from each category. (C) Schematic of a single 
trial. A fixation point is followed by the to-be-categorized-stimulus (either RB or II 
depending on the subject), then a short visual mask that is followed by the feedback. The 
subject responded “category A” or “category B” during the 2 s the stimulus was on the 
screen using hand-held buttons. The length of the inter-trial interval (ITI) was pseudorandom 
and based on between zero and five 4-s “fixation-only” trial periods arranged to maximize 
the separability of the measured hemodynamic response to stimulus trials. 

 

Prior modeling work has shown that DBT descriptions are effective at capturing the process of 
visual category learning [1,2,14]. However, this approach does not provide a framework for 
competition between RB and II models. The PINNACLE model is based on two separate DBT models, 
one for representation of RB learning and one for II learning. These two representations are further 
organized into a system for resolving competition, strategy switching and appropriate handling of 
feedback (see Figure 2). While the organization of these systems in PINNACLE is adapted from 
COVIS, the resolution of competition (and strategy switching) and the methods for handling trial-by-trial 
feedback are specific to the implementation of PINNACLE and derived from our behavioral data 
(Section 3). The representation of both RB and II component category learning systems as simple DBT 
models is meant to reflect the general operation of these components but not the internal processes of 
MTL-PFC interactions (RB) or cortico-striatal (II) circuits. 
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Figure 2. Schematic of the PINNACLE computational model and the accompanying free 
parameters. Stimulus information is fed into the RB and II systems and evaluated 
separately. A categorical decision is made within each system, but the decision node 
adjudicates between the systems according to their relative confidence levels. After a 
response is made, feedback returns to the system that made the response, and in the case of 
negative feedback, the representation is updated. 

 

2.1. DBT Details 

For the purpose of the PINNACLE model, stimuli are represented as points in 2-dimensional space 
reflecting the orientation and frequency of the sine wave gratings. The category representations are 
maintained as the coordinates of a single line that bisects the perceptual space into two regions 
reflecting the two categories (A, B). In addition, a shaping parameter (PS) is used that captures 
perceptual noise and confidence in category label judgments following previous DBT models of 
category learning (e.g., [15]) that have incorporated a similar measure referred to as “perceptual 
noise”. For a given input stimulus, the probability of being in category A is calculated by the distance 
of the stimulus coordinates to the boundary line (Equation 1). Here, the RBbound is a vertical line 
partitioning the space based on the stimulus frequency and the IIint is the intercept defining a diagonal 
line with slope = 1.0 partitioning the category space on both dimensions. In both calculations, the xi 
and yi variables are the current x- and y-coordinates of a stimulus.  

distRB = xi − RBbound

distII = ( 2 / 2) * (xi − yi + II int )
 (1)

The shaping parameter determines the spread of a 3D Gaussian applied to this point and bisected by 
the boundary line. The percent of this distribution that falls in the A section of the perceptual space is 
the probability the stimulus is a member of category A (Equation 2).  

For positive values of z where dist is derived from Equation 1, 
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The constants (a1–4) in this equation were defined in Ashby’s original chapter on probability 
distributions [16]. This probability, p(A), increases as the stimulus is further from the boundary (meaning 
it is more clearly in the A category). For larger values of PS, the spread of the Gaussian distribution is 
wider meaning that more of the distribution crosses the boundary and the estimate of p(A) is reduced, 
essentially reflecting lower confidence. For lower values of PS, more of the distribution falls within a 
single category region and estimates of p(A) are increased, reflecting greater confidence in the judgment.  

For the RB representation in DBT, the category boundary is restricted to being a single vertical line 
(Equation 1). This simplification allows for representation of the RB stimulus conditions used in our 
experimental tasks. A full representation of RB category learning would include processes associated 
with considering and testing a much broader range of hypotheses as well as explicit memory for prior 
stimuli and feedback. The minimalist RB representation used in PINNACLE approximates this for a 
narrow range of hypotheses (ones about the category being based on the frequency of the grating) and 
serves to distinguish judgments made about these kinds of hypotheses from II categorization. 

The II representation is a nearly identical, separate DBT representation in which the category 
boundary is restricted to be a single diagonal line of slope 1.0 (the intercept can vary; Equation 1). 
Like with RB, a minimalist representation is chosen that matches the experimental stimuli and also 
matches the number of free parameters used to represent the range of possible RB categories. A fuller 
representation of II category learning should provide a mechanism for arbitrarily labeling regions of 
perceptual spaces with more dimensions [17]. The simple and limited II representation used here 
should again approximate the narrow range of hypotheses that would account for II category learning 
and serve to distinguish it from RB categorization. A more comprehensive extension of PINNACLE 
would incorporate a flexible model of hypothesis testing as part of the RB module and hypothesize a 
neural mechanism for learning complex and nonlinear II categories through feedback. 

2.2. Learning Details 

Since PINNACLE is fundamentally a model of the learning process, a key component of the model 
is how the parameters of component DBT descriptions change on a trial-by-trial basis. When a 
stimulus is encountered, the current state of the DBT parameters indicates the probability that the 
stimulus is in category A, p(A) (Equation 2). When feedback is provided that indicates the category 
membership of the stimulus, the model parameters are adjusted accordingly (Equation 3).  
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RBupdate = RBlr * | RBcurrent − RBbound |
IIupdate = IIlr * | IIcurrent − IIbound |
PSupdate = PS * PSlr

 (3)

If the stimulus was in the predicted category, i.e., A if p(A) > 0.50; B if p(A) < 0.50, the decision 
boundary is assumed to be correct and PS is reduced, leading to greater confidence of the category 
prediction should any similar stimuli be encountered subsequently. If the stimulus was in the alternate 
category, i.e., the prediction was incorrect, the decision boundary is moved incrementally (RBupdate, 
IIupdate) in the direction that minimizes the error and PS is increased (PSupdate), leading to lower 
confidence in predictions about future stimuli (note that in Equation 3, the direction described as 
calculated by reference to the optimal boundary, which is not available to the model but is instantiated 
as moving away from the current stimulus to produce an identical error-reduction effect). 

For each of the two DBT models (RB, II) we allowed for independent learning rate parameters 
(RBlr, IIlr) for each system for the size of the increment for adjusting the category boundary. Although 
separate shaping parameter values were maintained for each system, only one learning rate parameter 
(PSlr) was needed to fit to behavioral data. 

2.3. System Interaction 

One of the key elements of the PINNACLE model is providing a framework for modeling the 
operation of two simultaneous category learning systems. Since only a single output response can be 
made, it is necessary to hypothesize a mechanism for handling the multiple sources of information; we 
refer to this mechanism as the Decision Module. This is implemented as a simple model that favors the 
more confident system proportional to the ratio of the odds (Equation 4) implied by the confidence of 
the system plus a noise parameter (Equation 5). 

Odds = conf / (1.0 − conf )  (4)

where conf is equal to the maximum RB or II system probability (of A or B). 
To model the decision noise associated with the system selection, a random number (ε) is  

selected from a Gaussian distribution defined by its standard deviation (DMnoise). The system with  
the higher odds value after the addition of the random number (ε) is selected to make the category 
decision (Equation 5). 

max(OddsRB + ε, OddsII) (5)

Both the RB and II systems provide independent predictions on each trial which can differ in 
category and confidence. For example, the RB system may judge a stimulus as p(A) = 0.8 and the 
II system predict p(A) = 0.7. In this case, the RB system is more confident and more likely to drive the 
output response (the fact that the II system prediction is consistent has no effect). As another example, 
the RB system may predict p(A) = 0.8 and the II system predicts p(A) = 0.1. In this case, the II system 
is making a more confident prediction that the correct category is B. The noise added to the decision 
process allowing for occasionally selecting the less confident system (proportional to the size of  
this parameter).  
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Typically, one of the models is making more confident predictions and tends to be consistently 
selected, leading to the expression of either an RB or II strategy across trials. The noise parameter 
(DMnoise) allows for occasional sampling of the other approach, which facilitates strategy switching. 
It is fairly common for participants to start with one strategy, e.g., RB, and after some trials of 
feedback, switch to the other strategy (II, in this case). The primary mechanism for this in the model is 
that when feedback indicates that a response was incorrect, the shaping parameter is increased, leading 
to a general loss of confidence for that model. This lets the other, “off system” model compete more 
effectively on subsequent trials and potentially leads to a strategy change. 

2.4. Feedback 

The Decision Module provides a mechanism for resolving competition that will allow for strategy 
switching based on correct/incorrect feedback on each trial. However, this system raises an important 
question of how feedback should be handled in a multi-system model. On each trial, both systems 
make a prediction, one wins the competition, a response is selected and made and experimental 
feedback is provided for that trial. There is a potential credit assignment problem left open by this 
process, particularly with respect to the “off system” (i.e., the system that provided the prediction not 
used to drive the response). One possibility is that only the active system that drove the response is 
adjusted by feedback. However, if the off system is making consistently accurate predictions, it would 
be more efficient to use the feedback to improve its predictions as well because this would lead to 
more rapid and accurate strategy switching. In addition, it is possible that positive and negative 
feedback might be handled differently in the two types of learning. In hypothesis testing (RB), 
disconfirming evidence is particularly important for changing hypotheses. In contrast, II learning is 
thought to depend on dopamine-gated plasticity in cortico-striatal circuits that might be more sensitive 
to positive feedback (which should produce transiently elevated dopamine levels). Rather than embed 
an assumption about the mechanism for handling feedback, attempts to answer these questions were 
addressed via comparative simulations with a number of different feedback systems in PINNACLE to 
identify which feedback-handling model provided the best account for the behavioral data (Section 3). 

The modeling results are separated into two sections. An initial set of simulations in Section 3 show 
that PINNACLE fits human behavior over two experimental datasets and variants of the model, 
reflecting different assumptions were competitively evaluated to identify the best fitting alternatives 
within the general model architecture. The winning version of PINNACLE was then used to model the 
cognitive state of individual participants on a trial-by-trial basis from two fMRI experiments in 
Section 4. This modeling was used both to enhance the specificity of the fMRI data analysis and also to 
identify neural correlates for hypothesized internal components of the PINNACLE model. 

3. Testing PINNACLE with Experimental Data 

For the first set of simulations, PINNACLE is fit to groups of participants from two prior published 
category learning experiments [11,18]. Both experiments were studies of the neural correlates of 
category learning in which participants learned either RB or II category structures while fMRI data 
were collected. For these initial simulations, only the behavioral data were used to test variations in the 
structure of the PINNACLE model and comparisons were made between groups of participants and 
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groups of PINNACLE simulated runs. In Section 4, PINNACLE was used to predict the cognitive 
state of each participant on each trial in order to enhance the analysis of the fMRI data. 

The first contrast here compared PINNACLE as described above with a simplified system that only 
includes a single learning parameter for both RB and II category learning. This simplified model is one 
possible way to construct a single-system model of category learning, i.e., that categories of both 
boundary-type can be represented, but the learning is essentially identical for both. This simplified 
model does not account for human data as well as the multi-system model of PINNACLE does, 
providing some additional evidence that the multiple system structure of PINNACLE is necessary to 
account for behavior. The second simulation compared different potential feedback mechanisms for fit 
to human behavior to identify if feedback should be returned to both systems on every trial (regardless 
of competition) and if positive/negative feedback should be handled differently. 

3.1. Participants 

In Dataset 1, 34 healthy, native English-speaking, right-handed adults (15 males, 19 females) and in 
Dataset 2, 33 healthy, native English-speaking, right-handed adults (10 males, 23 females) were 
recruited from the Northwestern University community for participation. Reports of general category 
learning performance from both datasets have been published previously [11,18]. All participants gave 
informed consent according to procedures approved by the Northwestern University Institutional 
Review Board and were compensated for their time. Participants were randomly assigned to either the 
RB or II group in both cases. 

3.2. Materials 

In both datasets, stimuli were circular sine wave gratings (Gabor patches; see Figure 1) that varied in 
spatial frequency (thickness of lines) and orientation (tilt of lines) as in Maddox et al. [19]. Participants 
were instructed to place each stimulus into one of two categories and to try to learn these categories 
over time based on the feedback given after each trial. The only difference between the RB and II 
groups was in the boundary that defined the categories. The stimulus space for both the RB and II 
groups can be thought of in two dimensions, spatial frequency on the x-axis and orientation on the y-axis. 
For the RB group, the stimuli were divided into categories based on a vertical decision boundary such 
that category membership depended only on the spatial frequency of the sine wave grating (Figure 1A). 
For the II group, the categories were defined by a diagonal decision boundary that required integration 
of spatial frequency and orientation information (Figure 1B). The stimuli used for the two datasets 
differed in the variance across the category structures with within-category variance being higher in 
Dataset 2 providing a set of stimuli sampled over a wider range of the whole perceptual space. 

3.3. Procedure 

On each trial, a fixation cross was presented for 750 ms followed by a single stimulus that was 
presented for 2 s and during this time, participants indicated to which category they judged the 
stimulus belonged. Stimulus offset was followed by a 500 ms visual mask and feedback for the 
participant’s choice (“Right”, “Wrong”) was shown for 750 ms. Participants were warned (“Time”) if 
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they had not made a response during the 2 s the stimulus was on the screen. A total of 320 categorization 
trials were performed by each participant divided amongst 4 80-trial blocks. An equal number of 
fixation-only trials were pseudo-randomly interspersed between stimulus trials to maximize the 
separability of the measured hemodynamic response. 

3.4. Model Simulation 

To simulate the performance of participants in the RB and II experimental groups, PINNACLE 
received stimulus information in the same trial order as the human subjects. PINNACLE predicted 
category membership, received feedback and updated the representation of the category knowledge on 
each trial. At the beginning of the simulated experiment, like a naïve participant, the model has no 
advance knowledge of the underlying category structure condition to which it has been assigned.  
Non-random starting positions for both the RB and II systems were used according to the average 
dimensions of the first two distinct subject responses. The perceptual shaping parameter was initially 
set at a relatively high value representing the lack of confidence in the initial category boundary. 

In addition, to simulate some of the variability in human performance, after selecting the category 
system to use, the actual category choice reflected the predicted p(A) for that system. Thus, if the more 
confident system indicated p(A) = 0.8, 80% of the time A was chosen for response and 20% B was 
chosen (probability matching, [20]). 

For each run, 100,000 PINNACLE simulations were run with a specific set of initial free parameter 
values. The average accuracy and standard deviation across the group of simulations on each block of 
the RB and II conditions was compared to the human behavior observed in the experiment. Matching 
the data was evaluated as producing the lowest mean squared error across the 8 group mean 
performance points (4 blocks for both the RB and II conditions) and the 8 standard deviation points 
(although the standard deviations were weighted as 0.001 as important as means to emphasize fitting 
overall performance rates). 

A downhill simplex search algorithm [21] was used to identify the best possible set of free 
parameters for each form of PINNACLE compared. The free parameters fit this way included:  
(1,2) learning rates for the category boundary for each of the RB and II systems; (3) learning rate of 
the perceptual shaping parameter; (4) the magnitude of the decision choice noise parameter; and  
(5) the initial value of the perceptual shaping parameter. Only one set of free parameter values was 
identified and was fit for both groups of participants (RB and II conditions) across both experiments, 
even though different category stimulus distributions were used. 

3.5. Simulation 1 

An initial simulation contrasted PINNACLE with the best possible fit of a simplified model that 
only used a single learning rate parameter for both RB and II category learning. Although PINNACLE 
has relatively few free parameters to fit, this first comparison evaluates whether a 4-free-parameter 
model can generally fit human group mean performance data. 

Both PINNACLE and the simplified 4-parameter model were fit to the behavioral data using the 
downhill simplex search to maximize the fit. The best fitting parameter values produce group mean 
performance shown in Figure 3. The 5-free-parameter version of PINNACLE can be seen to much 
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more accurately characterize both RB and II category learning curves across the two experiments. This 
suggests that a simplification of PINNACLE is unlikely to provide an account of human RB/II 
category learning and suggests that accurate human category learning modeling requires separate 
learning rates for the two types of learning. This minimal fitting parameter set does not include 
parameters such as an initial bias towards RB learning to capture that observed tendency [6]. That 
phenomenon may be embedded in the relatively higher learning rate for the RB system obtained by the 
fitting process (Table 1) suggesting that this bias may not require a specific additional parameter. 

Figure 3. Comparison of PINNACLE model fits with a single or separate learning 
parameters. (A) Model accuracy versus RB and II participant group accuracy for the best 
fitting single learning parameter model. The model learns the basic visual category 
learning task, but cannot capture the differences in human RB and II category learning;  
(B) Model accuracy versus RB and II participant group accuracy with two learning 
parameters. This model accurately fits both the learning rate and between-subject 
variability in category learning for both RB and II systems. 

 

Table 1. Comparison of feedback models (A) 4 parameter model fits (B) 5 parameter 
model fits. In the following tables, the data is sorted according to fit value (sum of 
squares), with increasing values indicating worse fits to the data. The version of the 
feedback model corresponds to the model number in Table 2. The result of the 
minimization procedure was a set of parameters: RBlr (learning rate of the RB system),  
IIlr (learning rate of the II system), PSlr (learning rate of the perceptual shaping 
parameter), PS (starting perceptual shaping parameter) and DMnoise (standard deviation of 
the Gaussian noise distribution parameter). 

Feedback Fit value RBlr IIlr PSlr PS DMnoise 
2 14.6242 0.1703 0.0288 0.5382 145932 1.2043 
1 29.0467 0.5203 0.0357 0.3689 99857 7.1001 
6 44.4372 0.0601 0.3661 0.5796 156153 15.5632 
3 50.3389 0.9612 0.3996 0.3906 172913 3.4329 
5 84.9332 0.5259 0.0169 0.2025 176041 7.2375 
4 160.0943 0.8720 0.1061 0.1186 64529 0.2630 
12 178.4442 0.7514 0.1754 0.2840 56990 6.6114 
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8 213.5469 0.0408 0.1129 0.3195 119288 31.2168 
11 263.6949 0.9084 1.0447 0.3700 210546 18.4908 
9 305.5924 0.7797 1.3193 0.4274 201687 43.6479 
7 809.5260 1.5725 0.0318 0.5911 163536 20.0740 
10 1102.3731 0.9352 0.4984 0.4274 209661 38.9850 

Table 2. Different feedback mechanisms for the PINNACLE model.  

Model 
Number 

Description 

1 If the RB system is selected, the RB system gets feedback. If the II system is selected, the 
II system gets the feedback. This is true on both correct and incorrect trials. 

2 Both systems get feedback on every trial. 
3 Feedback only occurs on correct trials and goes to both systems. 
4 Both systems get feedback on every incorrect trial. 
5 If the RB system is selected, both systems get feedback. If the II system is selected, only the 

II system gets feedback. 
6 If the II system is selected, both systems get feedback. If the RB system is selected, only the RB 

system gets feedback. 
7 If the RB system is selected on an incorrect trial, both systems get feedback. Only the II system 

gets feedback on every other trial. 
8 If the II system is selected on an incorrect trial, both systems get feedback. Only the RB system 

gets feedback on every other trial. 
9 If the RB system is selected on a correct trial, it receives feedback. If the II system is selected on 

an incorrect trial it receives feedback. 
10 If the II system is selected on a correct trial, it receives feedback. If the RB system is selected on 

an incorrect trial, it receives feedback. 
11 Feedback only occurs on correct trials and goes to the system that was assigned to the response. 
12 Feedback only occurs on incorrect trials and goes to the system that was assigned to the response.

3.6. Simulation 2 

As noted above, the structure of PINNACLE does not imply a strong hypothesis about which 
possible feedback system should be incorporated into the model. In PINNACLE there are a number of 
different ways that the feedback can affect the internal state of the model. A key distinction among 
methods of processing feedback is whether feedback information is available to both systems. 
Although the RB and II category learning systems make independent predictions about the category 
membership of the presented stimulus, only one response can be chosen by the Decision Module. 
Feedback is based on this response, creating a credit assignment problem, particularly if a strategy 
switch will eventually be needed. A simple approach is to assume that only the system driving the 
response is updated as a result of feedback. That is, both RB and II predict category membership, but if 
the RB system’s response is chosen in the Decision Module, only the RB category representation is 
updated based on feedback to the response. A major alternate approach is that feedback is available to 
both systems. In this second approach, the “off-system” (that did not drive the response) learns 
covertly, improving predictions based on feedback even when it did not directly influence the 
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prediction. The best example of this sort of covert learning is when the RB and II systems 
independently predict the same categorical response and can then utilize the feedback similarly  
(i.e., RB and II predict “A”, receive feedback that the response was correct). We explore the question 
of off-system learning empirically in Section 4 with fMRI data. 

In addition, there is some behavioral evidence that feedback may be handled differently by the RB 
and II systems. For RB learning, a working-memory load impairs the use of feedback, suggesting the 
involvement of prefrontal executive control processes. For II learning, a delay between the stimulus 
and feedback impairs learning, possibly due to the time course of dopamine release to drive 
learning [22,23]. We therefore also considered the possibilities that only either the RB or II system 
could selectively use feedback in the “off-system” state separately. The importance for dopamine in II 
learning (due to its dependence on cortico-striatal circuits) also raises the possibility that positive and 
negative feedback might be handled differently across systems. The role of dopamine in positive 
feedback might mean it is more critical to II learning, whereas the hypothesis testing critical for RB 
learning might be more influenced by negative (disconfirming) feedback. These hypotheses are further 
motivated by the observation that II learning proceeds more quickly when participants are given 
positive feedback [24] and RB learning proceeds more quickly with both positive and negative 
feedback [25]. 

Twelve different versions of the feedback handling mechanism were instantiated following the 
different possibilities of positive and negative feedback and off-system learning (or not) (Table 2). 
Each model was fit optimally to the behavioral data using the same downhill simplex algorithm. Total 
optimal fit to all the participants in both groups was evaluated across all 12 models to identify which 
system best accounted for the behavioral performance. The best fitting model was the mechanism that 
allowed for learning in both systems on all trials regardless of the valence of feedback. In this case, the 
category representations in both systems receive feedback and update accordingly, even if that means 
reinforcing an incorrect category bound. The second best model was the model that assumed 
competition affected feedback such that no learning occurred in the “off-system”. The sum-of-squares 
fit value for the best model was 50% better than the second best model (and all other models were 
considerably worse) (Table 1). 

The better fit of the PINNACLE model that allows learning in the system that did not drive the 
response suggests a specific hypothesis about neural activity associated with category learning. 
Although this learning process is essentially entirely covert, because it does not directly influence the 
outcome of the current trial, this hypothesis could potentially be tested with fMRI to examine the 
neural correlates of activity during category learning. In the next section, we describe how PINNACLE 
was used to identify critical trials to sort an event-related fMRI design to evaluate this hypothesis. 

4. Using PINNACLE Model Fitting to Enhance fMRI Data Analysis 

The first simulations in Section 3 were aimed at identifying the number of free parameters and 
feedback structure that provided the best fit between groups of PINNACLE simulations and groups of 
human participants. For a second set of simulations aimed at incorporating fMRI data, PINNACLE 
was fit to individual participant’s behavior on a trial by trial basis. In this case, PINNACLE provides a 
hypothesis on each trial of the internal cognitive state of the participants with respect to the RB, II and 
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competition resolution systems. This state information can be used to provide novel methods of post-hoc 
trial sorting to test additional hypotheses about the operation of competing category learning systems 
in the human brain. 

4.1. fMRI Acquisition and Analysis 

For both experiments, fMRI data were collected using a Siemens TRIO 3.0 T MRI scanner equipped 
with a transit/receive head coil while participants performed the categorization task. Whole-brain, 
gradient-recalled EPI (35 axial 3 mm slices, 0 gap) were collected every 2 s (TR = 2000; TE = 25 ms; 
flip angle = 78°; 22 cm FOV; 64 × 64 acquisition matrix; resulting voxel size = 3.44 × 3.44 × 3 mm) 
for 330 volumes in each of four scans. For anatomical localization, high-resolution, 3D MP-RAGE  
T1-weighted scans (voxel size = 0.859 mm × 0.859 × 1 mm; 160 axial slices) were collected for each 
participant following the functional runs. 

The functional images were first co-registered through time to correct for motion using a 3D 
alignment algorithm [26]. Voxels with low signal (<100 units, 30% of mean signal) or excessive 
sudden signal change were eliminated (>30% in 2 s) and the EPI data were smoothed (6.9 mm FWHM 
Gaussian kernel). Data were transformed to standard stereotactic space (MNI 305; [27]). Estimates of 
trial-locked evoked activity were made for the period of 4–12 s after stimulus onset to account for 
hemodynamic delay with overlapping responses deconvolved via a general linear model.  

In addition to the whole-brain analysis, the ability to identify anatomical boundaries for two critical 
regions hypothesized a priori to be important for category memory enabled a specific region of 
interest (ROI) analysis in the hippocampus and the caudate. For each participant, ROIs were drawn 
following anatomical boundaries that are visible on structural MRI. The MTL ROIs were drawn using 
boundaries that are described elsewhere [28,29]. The caudate ROIs were drawn according to known 
neuroanatomical boundaries separating the caudate from the surrounding white matter and ventricles. 
Each individual’s ROIs were then aligned using the ROI alignment (ROI-AL) method described in 
Stark and Okada [30]. This method optimizes regional alignment at the expense of whole-brain 
alignment allowing for more precise localization and enhanced statistical power. Of particular interest 
was to test whether these two regions play different roles in RB and II categorization, i.e., whether 
there was significantly different activity associated with successful categorization in the RB and II 
groups. Separate reliability thresholds for contrasts between the participant groups within the ROIs 
were identified by additional Monte Carlo simulations (the MTL ROI volume was 21,500 mm3, the 
caudate ROI was 11,000 mm3; note that this method matches the shape as well as providing a “small 
volume” correction for the ROI volumes). Within the targeted ROIs, an alpha level of 0.05 is met by 
requiring clusters for which each voxel exhibited t(24) > 2.0 to be at least 700 mm3 in volume for the 
MTL, 600 mm3 for the caudate. 

4.2. PINNACLE Fit 

For each participant, a set of free parameters for PINNACLE was identified that provided the best 
fit to participants’ individual behavioral data using maximum likelihood estimation. Starting values for 
the DBT models (category boundaries) were initialized to the average position of the first two stimuli 
encountered. The other PINNACLE parameters were set using the downhill simplex method. On each 
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trial, both the RB and II systems of PINNACLE make predictions about category membership.  
The system that most closely matched the participant’s choice data was assumed to have been 
responsible for the category judgment on that trial. The closer that prediction was to 1.0 for the chosen 
outcome, the better the model prediction on that trial was judged to be. Feedback based on that 
response was used to update the category representations for the next stimuli just described above. In 
this approach, the likelihood of the data given the model is the product of the probabilities of the 
category choices on every individual trial. The downhill simplex search algorithm was used to identify 
the set of free parameters that made the data maximally likely for PINNACLE. Note that this effectively 
sets the free parameters to maximize the fit of the model across all 320 trials of performance 
essentially simultaneously. 

Once the best individual parameters were identified, the model was run with these parameters to 
provide an estimate of the state of the DBT models and Decision Module on each trial for that 
individual participant. These were used to analyze the fMRI data by creating post-hoc sets of trials 
based on conditions where trials clearly reflect the expression of selectively RB or II category use, 
where there should be high levels of competition between systems and to explore neural activity 
associated with the system not driving the output category judgment response. In each of these cases, 
the analysis is depending on the model to characterize trials that cannot be easily distinguished simply 
on the basis of choice behavior. This type of analysis is the primary goal and benefit of combining 
fMRI and computational modeling approaches. 

4.3. Result 1: Best Fitting RB and II Trial Activity 

The fit value for a given block of 80 trials amounts to the sum of the individual trial fits in that 
block. To identify the best examples of RB and II trial activity irrespective of the group the subject 
was assigned, we restricted the analysis to the best fitting blocks of data defined as the top third of all 
blocks. Within these blocks, a contrast of correct RB and II trials identified a number of regions of 
activity similar to those found with DBT-based modeling [18]. That is, trials in which PINNACLE 
predicted the RB system was successfully engaged in learning were compared to trials where the II 
system was successfully learning (Figure 4). A region in the right PFC (Dataset 1) and medial PFC 
(Dataset 2) was more active during correct RB than II trials. The opposite effect was observed in right 
posterior visual association cortex where activity was greater during correct II than RB trials  
(Datasets 1 and 2). The contrast of activity associated with correct RB and II trials should emphasize 
brain regions associated with effective expression of those strategies. In our previous work, the 
contrast between successful and unsuccessful trials found differential activity in the MTL and posterior 
caudate, which was not observed in the current success-only contrast (in best-fitting blocks, there are 
too few unsuccessful trials to examine this contrast). This may reflect covert activity in the “off 
system” (e.g., II system activity during RB trials) that weakens this difference and will be examined 
more directly below. 
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Figure 4. Correct trial activity for the best fitting RB versus best fitting II blocks. In 
Dataset 1 and Dataset 2, a region in right PFC is more active for best fitting RB blocks 
(red) and a region in right posterior visual association cortex is more active for best fitting 
II blocks (blue).  

 

These areas of system-specific cortical activity are consistent with prior hypotheses about the neural 
basis of RB and II category learning. The RB system is thought to rely upon working memory and 
executive attention, functions that are known to engage the PFC and anterior cingulate cortex. These 
regions are also highly interconnected with the head of the caudate, which is hypothesized to play a 
role in RB category learning [10]. Learning in the II system is thought to depend on reciprocal loops 
between striatal and posterior cortical visual regions in which feedback processing the basal ganglia 
influence changes in sensory cortical processing (a ventral temporal region in Dataset 1, superior 
occipital cortex in Dataset 2). In our previous analyses [11,18], the role of the basal ganglia in the 
learning process was observed by contrasting trials on which the II category judgment was successful. 
In the analysis reported here, the best fit blocks tend to have very few unsuccessful trials making that 
contrast ineffective. The question of whether basal ganglia activity differs during RB and II conditions 
depends on whether the off system is covertly attempting to learn the category as well which will be 
considered below (Section 4.5). The cortical regions found here that are thought to contribute to the 
RB and II networks were not identified in previous analyses that focused on group conditions 
(assignment to RB or II category structures) and success-based contrasts between trials [11]. However, 
the fact that participants do not always consistently express the strategy ideal to their condition  
(e.g., participants strategy switch between RB and II at various points regardless of condition) makes 
contrasts based on experimental group assignment vulnerable to loss of sensitivity due to averaging 
strategy use. Using PINNACLE to more precisely assess the trial-by-trial state of the RB and II 
systems to provide more accurate trial sorting appears to lead to increased sensitivity to detecting the 
neural components of the two category learning systems. 

4.4. Result 2: Decision Module Activity 

An important element of the architecture of PINNACLE is the Decision Module that is necessary to 
adjudicate competition between the RB and II systems. We hypothesize that each category learning 
system provides information about the membership of a stimulus to be categorized to a brain region in 
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which the competition between systems is resolved and a motor response is then selected. This brain 
region will be active on virtually every experimental trial and therefore tend not to be identified in 
contrasts based on the categorization strategy or success. However, trials in which there is more 
competition between systems might lead to greater activity in this region due to more neural activity 
being required to resolve which information to rely on to make the response. 

In the following analysis, PINNACLE was used to identify trials where there was greater 
competition between the RB and II systems. The most difficult decision between the RB and 
II systems should occur when both systems are highly confident and make different predictions about 
the membership of the stimulus. We defined high-competition (C) trials as ones in which both RB and 
II systems are >75% confident of category membership with different predictions. Trials in which one 
system is highly confident (>75%) and the other is not typically reflect conditions in which one system 
has come to dominate the strategy and is likely the correct one for the category structure administered 
experimentally. These non-competitive (NC) trials should be very easily resolved within the Decision 
Module and are contrasted with the C trials. Trials in which both systems were confident and 
consistent, or trials where neither system was confident, were left undefined and not included in this 
analysis. These undefined trials typically occur early in training when both systems have reasonable 
models of the category boundary and disconfirming evidence for the incorrect system have not been 
encountered. Across both datasets, C trials varied from 23% to 26% while NC trials occurred on  
41%–42% of all trials. Accuracy and reaction-time, however, was generally similar for both trial types 
across blocks with the exception of accuracy in Dataset 2 (values in Table 3). In Dataset 1, accuracy 
for C and NC trials did not differ across blocks (Block 1: t(24) = 0.58, p = 0.59; Block 2: t(24) = 1.14, 
p = 0.28; Block 3: t(24) = 1.43, p = 0.175; Block 4: t(24) = 1.03, p = 0.32). In Dataset 2 accuracy for C 
and NC trials did not differ in 2 out of 4 blocks (Block 1: t(24) = 1.23, p = 0.24; Block 2: t(24) = 2.26, 
p = 0.04; Block 3: t(24) = 3.1, p = 0.01; Block 4: t(24) = 0.9, p = 0.38). In Dataset 1, reaction-time for 
C and NC trials did not differ across blocks (Block 1: t(24) = 0.87, p = 0.43; Block 2: t(24) = 1.4,  
p = 0.2; Block 3: t(24) = 0.62, p = 0.54; Block 4: t(24) = 0.85, p = 0.41). Likewise, in Dataset 2, 
reaction-time for C and NC trials also did not differ across blocks (Block 1: t(24) = 0.68, p = 0.52; 
Block 2: t(24) = 0.32, p = 0.76; Block 3: t(24) = 0.19, p = 0.85; Block 4: t(24) = 1.41, p = 0.17). 

Table 3. Average accuracy and reaction-time for competition (C) and non-competition 
(NC) trials in Dataset 1 and Dataset 2. 

   Block 1 Block 2 Block 3 Block 4 
Accuracy Dataset 1 C 74% 91% 90% 91% 

  NC 69% 85% 92% 85% 
 Dataset 2 C 80% 83% 87% 80% 
  NC 72% 73% 79% 72% 

RT Dataset 1 C 1.26 s 0.96 s 0.85 s 0.88 s 
  NC 1.23 s 1.01 s 0.84 s 0.86 s 
 Dataset 2 C 1.17 s 1.13 s 1.14 s 1.10 s 
  NC 1.19 s 1.12 s 1.14 s 1.15 s 

Neural activity differences between the C and NC trials were assessed in both experiments and 
shown in Figure 5. Given that the Decision Module is hypothesized to be active on every trial, for each 
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dataset, we restricted the analysis to a functionally defined ROI based on all cross-subject trial-evoked 
activity. This smaller volume allowed for greater sensitivity than is afforded when searching the entire 
brain for trial-evoked activity. The grouped functional ROI was used to mask each individual subject’s 
contrast of competition-related activation. The resulting t-test then used the masked functional dataset 
to isolate significant clusters of activity (t > 3.5, cluster > 300 mm3). The regions shown reflect brain 
regions where C trials evoked more neural activity than NC trials. While there were regions of reliable 
differential activity across experiments (Table 4), the right DLPFC and bilateral motor cortex was 
found to exhibit greater activity for C trials in both datasets. These brain regions reflect candidate areas 
for the neural basis of the Decision Module where competition between the two category systems is 
resolved and the consistent activity observed in DLPFC across datasets indicates this are is likely of 
particular importance to this process.  

Figure 5. fMRI contrast of C vs. NC trial types. (A) For presentation, Dataset 1 was 
thresholded at t > 3.5 with a minimum cluster size of 300 mm3. The peak coordinates of 
activity are (39, 21, 18) and (43, 1, 33); (B) For presentation, Dataset 2 was thresholded at  
t > 3 with a minimum cluster size of 800 mm3 (DLPFC regions in both datasets are evident 
at more stringent t > 4.0 thresholds, the lower thresholds were used to show consistency 
across the replication). The peak coordinates of activity are (48, 3, 33) and (46, 33, 27). 
The consistent regions of activity across studies occur in the right DLPFC which we 
hypothesize corresponds to the operation of the Decision Module on these trials.  

 

Table 4. Cluster information for the fMRI contrast of C vs. NC trial types (Figure 5) in 
Dataset 1 and Dataset 2. 

Anatomical label x y z cluster size (mm3) max T-value 
Dataset 1      

Right Lingual Gyrus (BA19) −27.1 75.5 −8.9 17,141 27.3 
Left Middle Occipital Gyrus (BA19) 33.7 78.2 −8.8 16,328 26.0 
Right Precuneus (BA7) −24.2 63.5 39.8 7625 19.9 
Right Middle Frontal gyrus (BA13) −38.7 −21 18.4 6484 17.2 
Right Inferior Frontal Gyrus (BA6) −42.8 1.4 32.7 4656 15.4 
Left Putamen 21.4 −1.1 10.4 4141 18.5 
Left Inferior Parietal Lobule (BA7) 33.2 56.3 40.7 3875 18.0 
Left Precentral Gyrus (BA6) 41.3 4.6 34 2422 15.0 
Left Caudate −11.3 −1.4 10.5 2266 20.71 
Right Medial Frontal Gyrus (BA6) −0.9 −9.7 45.7 2094 18.8 
Left Cingulate Gyrus (BA23) 0.4 32.3 26 1906 16.6 
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Right Thalamus −7.2 17.8 14.2 1000 19.5 
Left Anterior Cingulate (BA24) 9 −28.9 −2.8 953 −14.5 
Right Precentral Gyrus (BA6) −32.4 10.9 56.7 703 20.3 
Right Thalamus −6.6 20.9 −3.6 531 9.50 
Left Middle Temporal Gyrus (BA39) 47.2 78.7 25.8 531 −16.7 
Left Insula (BA13) 34.3 9.1 15.6 500 10.5 
Right Anterior Cingulate (BA32) −1.1 −40.3 −1.8 312 −14.3 
Left Declive 9.7 74.5 −20.3 312 11.7 

      
Dataset 2      

Left Lingual Gyrus (BA19) 29 73 −9.1 21,797 29.0 
Right Lingual Gyrus (BA19) −33.4 76.4 −5.6 15,016 32.0 
Left Postcentral Gyrus (BA3) 41.9 27.2 53.1 10,672 24.1 
Right Inferior Frontal Gyrus (BA6) −48.4 −2.8 33.2 3641 18.8 
Right Middle Frontal Gyrus (BA6) −40.7 −0.6 55.9 1141 20.2 
Left Middle Frontal Gyrus (BA9) 48.8 −5.8 35.3 1031 17.1 
Right Middle Frontal Gyrus (BA9) −46.4 −33.2 27.2 984 21.8 
Left Superior Frontal Gyrus (BA8) 19.9 −23.3 43.4 844 −11.6 

To accomplish the competition resolution process, the role of the DLPFC on these trials may be to 
actively inhibit one system so that the other system can send activation to the motor system to make 
the appropriate motor plan. This type of inhibitory role of the DLPFC has been previously observed 
using fMRI with task-switching paradigms where one task-response needs to be inhibited to allow the 
other to progress [31]. Damage to prefrontal cortex has been reported to lead to impaired category 
learning, particularly due to difficulty identifying the optimal strategy [32]. Handling predictions of 
multiple category learning systems requires a process like this to be involved in managing the multiple 
sources of information. However, in order to identify neural activity associated with this process it is 
necessary to construct a model such as PINNACLE that embeds specific hypotheses about the  
mental state of each participant on each trial so that trials differentially dependent on this process can  
be contrasted. 

4.5. Result 3: Exploring Off-System Activity 

On each trial, PINNACLE identifies either the RB or II system as winning the competition and 
driving the behavioral response. As noted in Section 3, this raises an interesting question about how 
feedback is handled in the model and specifically whether the “off system” (the category learning 
system that is currently not driving the response) learns from trial feedback. We first investigated this 
question by comparing the fit of different versions of PINNACLE that used different feedback 
mechanisms. It was found that feedback returning to both systems on every trial to allow for updates 
and improved future category judgments provided the best fit to behavioral data. The availability of 
fMRI data during category learning provided another method of further exploring this issue. 

Trials in Dataset 1 and 2 were defined based on whether the off-system correctly predicted category 
membership. As discussed in Section 3, the experimental feedback is tied to the subject’s response, but 
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under the current learning mechanism it is possible for the non-dominant system to acquire category 
knowledge covertly. For example, if an “A” stimulus is predicted to be an “A” both by the highly 
confident RB system and a less confident II system, the RB system of this subject would have received 
feedback that the response was correct. Because the II system also receives feedback, it would also 
update its representation by decreasing the noise around the category bound accordingly. In this 
manner, it is possible for the non-dominant, off-system to effectively learn the categorical boundary 
despite the output response being attributed to the dominant system. This process allows for more 
rapid strategy switching when the suboptimal strategy has come to control the decision processes. If a 
participant is using an RB strategy for an II task, the II system is still learning so that when the RB 
system eventually makes incorrect predictions, the II system can start winning the competition rapidly. 

By analyzing activity in brain regions associated with the off system, we hypothesized that it might 
be possible to identify neural activity associated with this otherwise covert process (off system 
learning). In Dataset 1, there was no evidence of off-system activity either in the MTL or the caudate 
for II or RB subjects, respectively. However, in Dataset 2, perhaps due to the higher variability in the 
category stimulus space, there was evidence of off-system II activity in the caudate ROI for RB 
subjects (Figure 6A) based on contrasting successful and unsuccessful category predictions of the II 
module. Note that there is no external measure of II predictions other than our estimates provided by 
fitting PINNACLE to the behavioral data. The accuracy of the off-system responses for Dataset 2 is 
shown in Figure 6B. The off-system was more accurate when it was associated with the appropriate 
participant group. That is, in RB subjects when the RB system was the off-system, those trials were 
more accurate than when the II system was the off-system. The converse was true for the II subjects. 
This pattern suggests that learning in the off-system leads to better performance when the off-system is 
the eventual optimal system.  

Figure 6. (A) Off system activity in RB subjects. In the RB participant group in 
Experiment 2, trials were marked as correct or incorrect according to the predictions of the 
II system when PINNACLE predicted the RB system was active. Activity within the 
caudate ROI is significantly active in RB participants during II trials when the II system 
was not selected. These posterior caudate regions are consistent with the hypothesized  
“II network”, so the observation of activity here suggests that the II system is operating 
simultaneously with the RB system in these participants; (B) Accuracy of the off-system in 
RB and II subjects. The correct and incorrect designations are based on the off-system’s 
predictions, not the overt feedback to given the subject. 
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Figure 6. Cont.  

 

The data from the RB subjects in Dataset 2 supports the idea that the II system, while not overtly 
responsible for behavior, is not only active in these subjects, but appears to be utilizing the feedback to 
update its category representation. The posterior regions of the body of the caudate that were more 
active for correct than incorrect off-system trials in these subjects are identical to the regions typically 
active during successful on-system II category learning. Concurrent with the success of the RB system 
in these subjects (and corresponding MTL activity), the II system appears to be operating in parallel 
through activity in the posterior caudate body. 

While a similar result was not observed in the MTL when the RB system was the off-system in II 
subjects, this does not rule out the notion that both systems are capable of learning simultaneously. 
However, because off system activity was only observed in one condition in one dataset, this finding 
should be considered preliminary evidence for this phenomenon. The absence of a more consistent 
finding may reflect a weak signal or some variability in trial type sorting, possibly due to the fact that 
the PINNACLE instantiation of the RB model does not allow for as wide a range of hypotheses about 
the category boundary as the participants may have considered. This type of analysis is potentially 
promising as an analytic technique because it provides another way to see a connection from internal 
states of the computational model and evoked neural activity associated with otherwise covert 
cognitive processes. For this approach to work, the model has to provide a highly accurate method of 
sorting neural events and increasing the specificity of the model would likely enhance the approach. 
The caudate activity observed in the off-system provides intriguing evidence that PINNACLE’s 
mechanism of feedback returning to both systems has some neural reality consistent with the 
competitive model fitting described in Section 3.6.  

5. General Discussion 

Categorization can be defined broadly as the act of responding differently to objects and events in 
the environment based on their belonging to separate classes or groups. Objects within a category 
typically share certain behavioral characteristics or physical features. Category learning refers to the 
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cognitive processes that extract similar features from a collection of stimuli to extract the category 
structure and allow for accurate categorization of future novel stimuli. This ability reduces the need for 
a separate response to each object in the world, making behavior more economical. Given the 
important role of categorization in everyday life, it is not surprising that there is a long history of study 
on the underlying cognitive operations that mediate this skill. Because the efficiency gained by 
grouping stimuli into categories to infer likely properties and responses, it is also not surprising that 
the brain contains more than one mechanism for extracting category structure. 

Evidence for multiple category learning systems comes from experimental work, neuropsychological 
studies and more recently from functional neuroimaging studies using fMRI. Each of these approaches 
suggests there is an important difference between category learning depending on the MTL versus 
depending solely on cortico-striatal circuits. However, having multiple systems within the brain 
contributing to a learning process complicates the process of investigating human category learning. 
While experimental tasks can encourage one strategy based on one system, it is clear that participants 
will try multiple strategies and switch strategies during the learning process ([9,10,18,19,33]),  
as we have demonstrated previously on a block-by-block basis [18] and now with PINNACLE’s  
trial-by-trial predictions. 

Using model-based predictions to organize neuroimaging data improves on existing analysis 
techniques by making to possible to isolate activity associated with strategy-specific behavior. Rather 
than grouping activity based on the imposed category structure, this kind of mathematical 
characterization of strategy-use can identify participants who are using a sub-optimal strategy or assess 
how well the appropriate strategy is being utilized. This can be done potentially on a trial-by-trial basis 
to enhance the analysis of physiological data such as fMRI. We identified a number of regions using 
this approach that had not been observed in the success-based fMRI analysis used previously. 
Specifically, PFC and visual association cortex activity was associated with trials that mostly clearly 
reflected the use of RB and II strategies, respectively, based on fit estimates. The PFC regions are 
thought to function in conjunction with the MTL in RB learning. The visual association cortex is 
connected to the posterior body of the caudate and thought to support II learning. The roles of these 
areas in the two category learning systems were first anticipated in the description of COVIS [6]. 
However, the visualization of the additional regions would not have been possible without the 
application of the PINNACLE model (which is based on the COVIS theory) to guide fMRI data analysis. 

The modeling framework of PINNACLE implements an architecture to incorporate two active 
category learning systems in the healthy brain. Both systems are implemented as simple DBT models 
as approximations to the functions of these types of learning. A richer model of human category 
learning could implement computational approaches to RB and II that aim to capture more of the 
processing within these systems: hypothesis testing for RB and a more flexible perceptual space 
labeling system for II. For the analysis here, the simpler models capture the category structures that 
were administered experimentally and the analysis serves to both identify neural components of human 
category learning and also to demonstrate the potential of combined computational modeling and 
fMRI techniques. 

A key element of PINNACLE is to propose a specific computational architecture for integrating the 
two competing category learning component systems. We proposed a convergence area termed a 
Decision Module where competition between the two systems would be resolved and an output 
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response selected. This is a necessary component to a multi-system model that will tend to be 
overlooked in approaches primarily aimed to dissociate the two types of category learning. By using 
the PINNACLE model to identify subsets of trials that should require more involvement of this 
module, we were able to provide a possible neural correlate of this process and simultaneously provide 
some corroborating evidence for it. The dorsal PFC is a highly plausible neural basis of the Decision 
Module because of its general role in cognitive control and a region that can flexibly select, maintain, 
update or transform information in the service of a goal [34,35]. The need for a method for resolving 
competition also raises a related question of how to handle trial feedback in a competitive  
multiple-model system. Simulation analysis to fit human behavior indicated that when feedback is 
available to both systems, the model most closely matches performance. This idea was further 
explored in the fMRI data and preliminary results suggested that in some cases, it is possible to see 
neural correlates of activity indicative of learning in the category learning system not driving the most 
recent behavioral response. 

The application of model-based fMRI analyses has great potential for testing hypotheses about the 
mechanistic underpinnings of the multiple category learning systems that co-exist in the brain. In its 
current state, PINNACLE enabled explorations into RB and II trial-by-trial system engagement, 
system competition resolution, and feedback incorporation. As discussed above, future direction of this 
type of research could include mechanistic improvements to the RB and II systems that better reflect 
the neurobiological properties of the MTL and cortico-striatal systems (see [36]). The question of 
covert learning in the off-system may also merit further investigation. We found models with off-system 
learning to provide the best fit to human behavior and found some evidence for learning in the 
II system even when performing an RB task (with an RB strategy). However, there remain 
complications with handling off-system feedback. For example, it is unclear how to handle a case such 
as when the RB system predicts “A” while the II system predicts “B” but the RB system drives the 
response (“A”), which then turns out to be incorrect. In the current implementation of PINNACLE, the 
II system should increase its future confidence, but the global feedback signal was negative (during the 
task the word “Wrong” appears). To incorporate positive feedback would require reinterpretation 
mechanisms which we did not postulate as part of PINNACLE here (in the absence of a neural basis 
for this process). In addition to improving the category representations of the RB and II systems, more 
detailed feedback handling mechanisms may also be necessary to realize a computational model with 
strong reflection in the brain’s neurophysiology. 

6. Conclusions  

Together, the combination of neuroimaging and modeling data presented here demonstrate the 
utility of these integrated approaches for revealing the inner operations of the human brain in a way 
that neither alone could achieve. This symbiotic relationship between model development and fMRI 
data analysis advances both our understanding of RB and II category learning systems in the brain, and 
demonstrates the great potential this approach has for testing hypotheses about cognitive processes 
outside our awareness.  
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